Littérature scientifique sur le sujet « Simple Astigmatic Gaussian Beam »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Simple Astigmatic Gaussian Beam ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Simple Astigmatic Gaussian Beam"

1

Volyar, Alexander, Eugeny Abramochkin, Yana Akimova et Mikhail Bretsko. « Astigmatic-Invariant Structured Singular Beams ». Photonics 9, no 11 (8 novembre 2022) : 842. http://dx.doi.org/10.3390/photonics9110842.

Texte intégral
Résumé :
We investigate the transformation of structured Laguerre–Gaussian (sLG) beams after passing through a cylindrical lens. The resulting beam, ab astigmatic structured Laguerre–Gaussian (asLG) beam, depends on quantum numbers (n,ℓ) and three parameters. Two of them are control parameters of the initial sLG beam, the amplitude ϵ and phase θ. The third one is the ratio of the Rayleigh length z0 and the focal length f of the cylindrical lens. It was theoretically revealed and experimentally confirmed that the asLG beam keeps the intensity shape of the initial sLG beam when the parameters satisfy simple conditions: ϵ is unity and the tangent of the phase parameter θ/2 is equal to the above ratio. We also found sharp bursts and dips of the orbital angular momentum (OAM) in the asLG beams in the vicinity of the point where the OAM turns to zero. The heights and depths of these bursts and dips significantly exceed the OAM maximum and minimum values of the initial sLG beam and are controlled by the radial number n.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Plachenov, A. B., V. N. Kudashov et A. M. Radin. « Simple formula for a Gaussian beam with general astigmatism in a homogeneous medium ». Optics and Spectroscopy 106, no 6 (juin 2009) : 910–12. http://dx.doi.org/10.1134/s0030400x09060204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Repasky, K. S., J. K. Brasseur, J. G. Wessel et J. L. Carlsten. « Correcting an astigmatic, non-Gaussian beam ». Applied Optics 36, no 7 (1 mars 1997) : 1536. http://dx.doi.org/10.1364/ao.36.001536.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vinogradov, D. V. « Mirror conversion of gaussian beams with simple astigmatism ». International Journal of Infrared and Millimeter Waves 16, no 11 (novembre 1995) : 1945–63. http://dx.doi.org/10.1007/bf02072550.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tuvi, Ram, et Timor Melamed. « Astigmatic Gaussian Beam Scattering by a PEC Wedge ». IEEE Transactions on Antennas and Propagation 67, no 11 (novembre 2019) : 7014–21. http://dx.doi.org/10.1109/tap.2019.2925928.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bilger, Hans R., et Taufiq Habib. « Knife-edge scanning of an astigmatic Gaussian beam ». Applied Optics 24, no 5 (1 mars 1985) : 686. http://dx.doi.org/10.1364/ao.24.000686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Huang, Yong-Liang, et Chi-Kuang Sun. « Z-scan measurement with an astigmatic Gaussian beam ». Journal of the Optical Society of America B 17, no 1 (1 janvier 2000) : 43. http://dx.doi.org/10.1364/josab.17.000043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kotlyar, V. V., A. A. Kovalev et A. P. Porfirev. « ORBITAL ANGULAR MOMENTUM OF AN ASTIGMATIC HERMITE-GAUSSIAN BEAM ». Computer Optics 42, no 1 (30 mars 2018) : 13–21. http://dx.doi.org/10.18287/2412-6179-2018-42-1-13-21.

Texte intégral
Résumé :
An explicit formula for the normalized orbital angular momentum (OAM) of an elliptical Hermite-Gaussian (HG) beam of orders (0, n) focused by a cylindrical lens is obtained. In modulus, this OAM can be both greater and smaller than n. If the cylindrical lens focuses not an elliptical, but a conventional HG beam, the latter will also have an OAM that can be both larger and smaller in modulus than that of an elliptical HG beam. For n = 0, this beam converts to an astigmatic Gaussian beam, but, as before, it will still have OAM. With the help of two interferograms, a phase of the astigmatic Gaussian beam is reconstructed, which is then used to calculate the normalized OAM. The values of the OAM calculated by the theoretical formula and using a hybrid method combining modeling with experiment differ only by 6 %.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhu, Kaicheng, Chang Gao, Jiahui Li, Dengjuan Ren et Jie Zhu. « Propagations of Sin-Gaussian Beam with Astigmatism through Oceanic Turbulence ». E3S Web of Conferences 299 (2021) : 03013. http://dx.doi.org/10.1051/e3sconf/202129903013.

Texte intégral
Résumé :
The propagation behaviours of a sin-Gaussian beam (SiGB) with astigmatism in oceanic water is analysed. The analytical expressions for the average intensity of such a beam are derived by using the extended Huygens-Fresnel integral. Its average intensity and on-axial intensity distributions in oceanic water are numerically examined. Then, we mainly focus on the effect of the beam parameters and the medium structure constant on the propagation behaviours for the astigmatic SiGBs in oceanic water, revealing that the evolutions of the intensity distributions can be effectively modulated by adjusting the astigmatic parameter, coherence length and the atmosphere turbulence strength.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kotlyar, V. V., A. A. Kovalev et A. P. Porfirev. « Measurement of the orbital angular momentum of an astigmatic Hermite–Gaussian beam ». Computer Optics 43, no 3 (juin 2019) : 356–67. http://dx.doi.org/10.18287/2412-6179-2019-43-3-356-367.

Texte intégral
Résumé :
Here we study three different types of astigmatic Gaussian beams, whose complex amplitude in the Fresnel diffraction zone is described by the complex argument Hermite polynomial of the order (n, 0). The first type is a circularly symmetric Gaussian optical vortex with and a topological charge n after passing through a cylindrical lens. On propagation, the optical vortex "splits" into n first-order optical vortices. Its orbital angular momentum per photon is equal to n. The second type is an elliptical Gaussian optical vortex with a topological charge n after passing through a cylindrical lens. With a special choice of the ellipticity degree (1: 3), such a beam retains its structure upon propagation and the degenerate intensity null on the optical axis does not “split” into n optical vortices. Such a beam has fractional orbital angular momentum not equal to n. The third type is the astigmatic Hermite-Gaussian beam (HG) of order (n, 0), which is generated when a HG beam passes through a cylindrical lens. The cylindrical lens brings the orbital angular momentum into the original HG beam. The orbital angular momentum of such a beam is the sum of the vortex and astigmatic components, and can reach large values (tens and hundreds of thousands per photon). Under certain conditions, the zero intensity lines of the HG beam "merge" into an n-fold degenerate intensity null on the optical axis, and the orbital angular momentum of such a beam is equal to n. Using intensity distributions of the astigmatic HG beam in foci of two cylindrical lenses, we calculate the normalized orbital angular momentum which differs only by 7 % from its theoretical orbital angular momentum value (experimental orbital angular momentum is –13,62, theoretical OAM is –14.76).
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Simple Astigmatic Gaussian Beam"

1

Grimaldi, Andrea. « Mode Matching sensing in Frequency Dependent Squeezing Source for Advanced Virgo plus ». Doctoral thesis, Università degli studi di Trento, 2023. https://hdl.handle.net/11572/365037.

Texte intégral
Résumé :
Since the first detection of a Gravitational Wave, the LIGO-Virgo Collaboration has worked to improve the sensitivity of their detectors. This continuous effort paid off in the last scientific run, in which the collaboration detected an average of one gravitational wave per week and collected 74 candidates in less than one year. This result was also possible due to the Frequency Independent Squeezing (FIS) implementation, which improved the Virgo detection range for the coalescence between two Binary Neutron Start (BNS) of 5-8\%. However, this incredible result was dramatically limited by different technical issues, among which the most dangerous was the mismatch between the squeezed vacuum beam and the resonance mode of the cavities. The mismatch can be modelled as a simple optical loss in the first approximation. If the beam shape of squeezed vacuum does not match the resonance mode, part of its amplitude is lost and replaced with the incoherent vacuum. However, this modelisation is valid only in simple setups, e.g. if we study the effect inside a single resonance cavity or the transmission of a mode cleaner. In the case of a more complicated system, such as a gravitational wave interferometer, the squeezed vacuum amplitude rejected by the mismatch still travels inside the optical setup. This component accumulates an extra defined by the characteristics of the mismatch, and it can recouple into the main beam reducing the effect of the quantum noise reduction technique. This issue will become more critical in the implementation of the Frequency Dependent Squeezing. This technique is an upgrade of the Frequency Independent Squeezing one. The new setup will increase the complexity of the squeezed beam path. The characterisation of this degradation mechanism requires a dedicated wavefront sensing technique. In fact, the simpler approach based on studying the resonance peak of the cavity is not enough. This method can only estimate the total amount of the optical loss generated by the mismatch, but it cannot characterise the phase shift generated by the decoupling. Without this information is impossible to estimate how the mismatched squeezed vacuum is recoupled into the main beam, and this limits the possibility to foreseen the degradation of the Quantum Noise Reduction technique. For this reason, the Padova-Trento Group studied different techniques for characterising Mode Matching. In particular, we proposed implementing the Mode Converter technique developed by Syracuse University. This technique can fully characterise the mismatch of a spherical beam, and it can be the first approach to monitoring the mismatch. However, this method is not enough for the Frequency Dependent Squeezer source since it cannot detect the mismatch generated by the astigmatism of the incoming beam. In fact, the Frequency Dependent Squeezer Source case uses off-axis reflective telescopes to reduce the power losses generated by transmissive optics. This setup used curved mirrors that induce small astigmatic aberrations as a function of the beam incident angle. These aberrations are present by design, and the standard Mode Converter Technique will not detect them. To overcome this issue, I proposed an upgrade of the Mode Converter technique, which can extend the detection to this kind of aberration.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kochkina, Evgenia [Verfasser]. « Stigmatic and astigmatic Gaussian beams in fundamental mode : impact of beam model choice on interferometric pathlength signal estimates / Evgenia Kochkina ». Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2013. http://d-nb.info/1042068879/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Simple Astigmatic Gaussian Beam"

1

Kiselev, Aleksei P., et Alexandr B. Plachenov. « Astigmatic Gaussian beam : Exact solution of the Helmholtz equation ». Dans 2018 Days on Diffraction (DD). IEEE, 2018. http://dx.doi.org/10.1109/dd.2018.8553170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Plachenov, Alexandr B., Irina A. So et Aleksei P. Kiselev. « Paraxial Gaussian modes with simple astigmatic phases and nonpolynomial amplitudes ». Dans 2017 Days on Diffraction (DD). IEEE, 2017. http://dx.doi.org/10.1109/dd.2017.8168037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Colbourne, Paul D. « Generally astigmatic Gaussian beam representation and optimization using skew rays ». Dans International Optical Design Conference, sous la direction de Mariana Figueiro, Scott Lerner, Julius Muschaweck et John Rogers. SPIE, 2014. http://dx.doi.org/10.1117/12.2071105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wada, Atsushi, Yoko Miyamoto, Takumi Ohtani, Noboru Nishihara et Mitsuo Takeda. « Effects of astigmatic aberration in holographic generation of Laguerre-Gaussian beam ». Dans Optical Engineering for Sensing and Nanotechnology (ICOSN '01), sous la direction de Koichi Iwata. SPIE, 2001. http://dx.doi.org/10.1117/12.427088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wada, Atsushi, Yoko Miyamoto, Takumi Ohtani, Noboru Nishihara et Mitsuo Takeda. « Effects of astigmatic aberration in holographic generation of Laguerre-Gaussian beam ». Dans International Conference on Lasers, Applications, and Technologies 2002 Advanced Lasers and Systems, sous la direction de Guenter Huber, Ivan A. Scherbakov et Vladislav Y. Panchenko. SPIE, 2003. http://dx.doi.org/10.1117/12.517961.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dostovalov, A. V., V. P. Korolkov, V. S. Terentyev, K. A. Bronnikov et S. A. Babin. « Thermochemical High-ordered Surface Structure Formation with an Astigmatic Gaussian Beam on Metal Thin Films ». Dans 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nemes, George, et A. E. Siegman. « Measuring all ten second order moments of a general astigmatic light beam using a rotating anamorphic optical system ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.wr.17.

Texte intégral
Résumé :
The propagation properties and beam quality factors for any general astigmatic, multimode, partially coherent laser beam can be fully characterized in second order by a real, symmetric, positive definite matrix having at most ten independent parameters. Orthogonal (simple astigmatic) or rotationally symmetric (stigmatic) beams have seven or three independent parameters, respectively. A method is proposed for determining all ten beam parameters by measuring only the second-order moments of the beam intensity distribution in a single transversal plane after the beam is passed through a simple rotating optical system. Several particularly simple systems involving only one or two rotating cylindrical lenses and a single CCD camera are proposed and their properties are discussed. This work was sponsored by the National Science Foundation and the Air Force Office of Scientific Research.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jawla, Sudheer, Ioannis Pagonakis, Jean-Philippe Hogge, Stefano Alberti, Timothy Goodman et Trach-Minh Tran. « Mode content analysis of the RF output of a gyrotron based on the astigmatic Gaussian beam of higher order ». Dans 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IORMMW-THz 2009). IEEE, 2009. http://dx.doi.org/10.1109/icimw.2009.5324969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Walker, P. L. « Beam propagation through Gaussian clouds ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.fk5.

Texte intégral
Résumé :
Finite aerosol structures with Gaussian spatial number density distributions have been used to model localized obscurants and might be used as an extremely simple model of water clouds with fuzzy edges. A Monte Carlo method has been used to compute radiative transport of a laser beam through such structures. Coupled with the Monte Carlo program is an optics ray tracing program which was used to simulate the operation of a camera. The intensity of direct and scattered light was computed as a function of off-axis angle at the image plane of the camera and as a function of cloud size, optical depth, distance of cloud center from the camera, and width of an assumed Gaussian phase function. It was found that the intensity of the scattered light increases with decreasing width of the phase function, but that the angular width and shape of the beam aureole is independent of the width of the phase function. The angular size of the aureole depends primarily on the distance of cloud center from the camera. The intensity of scattered light drops off approximately as the inverse square of this distance. Thus, although scattered light may predominate close to the cloud, at large distances it may become insignificant relative to the directly transmitted light.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abdullina, S. R., S. A. Babin, S. I. Kablukov et A. A. Vlasov. « Simple technique of fiber Bragg gratings apodization by use of Gaussian beam ». Dans SPIE Proceedings, sous la direction de Nikolay N. Rosanov. SPIE, 2007. http://dx.doi.org/10.1117/12.740153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie