Sommaire
Littérature scientifique sur le sujet « Similarité d'interaction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Similarité d'interaction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Similarité d'interaction"
Gibbons, Cynthia, Rachel Schiffman, Holly Brophy-Herb, Hiram E. Fitzgerald, Mildred Omar et Lorraine McKelvey. « Une étude exploratoire. Interaction entre les dyades mère-nourrisson et père-nourrisson chez les couples à faible revenu ». Santé mentale au Québec 26, no 1 (5 février 2007) : 101–17. http://dx.doi.org/10.7202/014513ar.
Texte intégralBering Christiansen, Mads, Ahmad Rafsanjani et Jonas Jørgensen. « Ex Silico ». .able journal, no 22 (2023). http://dx.doi.org/10.69564/able.fr.24022.exsilico.
Texte intégralThèses sur le sujet "Similarité d'interaction"
Mazuel, Laurent. « Traitement de l'hétérogénéité sémantique dans les interactions humain-agent et agent-agent ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00413004.
Texte intégralLa plupart des approches segmentent ce traitement en fonction de l'émetteur de la demande (humain ou agent). Nous pensons au contraire qu'il est possible de proposer un modèle d'interaction commun aux deux situations. Ainsi, nous présentons d'abord un algorithme d'interprétation sémantique de la commande indépendant du type d'interaction (humain-agent ou agent-agent). Cet algorithme considère le rapport entre « ce qui est compris » de la commande et « ce qui est possible » pour la machine. Ce rapport intervient dans un système de sélection de réponses basé sur une mesure de degré de relation sémantique. Nous proposons ensuite une telle mesure, conçue pour prendre en compte plus d'informations que la plupart des mesures actuelles.
Nous étudions ensuite les implémentations que nous avons faites dans les cadres humain-agent et agent-agent. Pour l'implémentation humain-agent, l'une des spécificités est l'utilisation d'une langue naturelle, impliquant le besoin d'utiliser des outils de modélisation de la langue. Pour l'implémentation agent-agent, nous proposerons une adaptation de notre architecture, en s'appuyant sur des protocoles d'interactions entre agents.
Chiesa, Luca. « Development of artificial intelligence methods to help the design of new ligands of G-protein coupled receptors ». Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF020.
Texte intégralG-protein coupled receptor represent one of the most important protein families for drug discovery. Computer aided drug design techniques have been extensively applied to target members of this family, leading to the discovery of multiple bioactive molecules. This thesis describes the development, testing, and application of different computational and machine learning tools to assist in the discovery of new compounds with a desired pharmacological profile. Different aspects of the in silico drug discovery pipeline were covered in this work, from the modelling of a target protein, to the systematic evaluation of molecules identified by virtual screening
Voland, Mathieu. « Algorithmes pour la prédiction in silico d'interactions par similarité entre macromolécules biologiques ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV014/document.
Texte intégralThe action of a drug, or another small biomolecule, is induced by chemical interactions with other macromolecules such as proteins regulating the cell functions. The determination of the set of targets, the macromolecules that could bind the same small molecule, is essential in order to understand molecular mechanisms responsible for the effects of a drug. Indeed, this knowledge could help the drug design process so as to avoid side effects or to find new applications for known drugs. The advances of structural biology provides us with three-dimensional representations of many proteins involved in these interactions, motivating the use of in silico tools to complement or guide further in vitro or in vivo experiments which are both more expansive and time consuming.This research is conducted as part of a collaboration between the DAVID laboratory of the Versailles-Saint-Quentin University, and Bionext SA which offers a software suite to visualize and analyze chemical interactions between biological molecules. The objective is to design an algorithm to predict these interactions for a given compound, using the structures of potential targets. More precisely, starting from a known interaction between a drug and a protein, a new interaction can be inferred with another sufficiently similar protein. This approach consists in the search of a given pattern, the known binding site, across a collection of macromolecules.An algorithm was implemented, BioBind, which rely on a topological representation of the surface of the macromolecules based on the alpha shapes theory. Our surface representation allows to define a concept of region of any shape on the surface. In order to tackle the search of a given pattern region, a heuristic has been developed, consisting in the definition of regular region which is an approximation of a geodesic disk. This circular shape allows for an exhaustive sampling and fast comparison, and any circular region can then be extended to the actual pattern to provide a similarity evaluation with the query binding site.The target prediction problem is formalized as a binary classification problem, where a set of macromolecules is being separated between those predicted to interact and the others, based on their local similarity with the known target. With this point of view, classic metrics can be used to assess performance, and compare our approach with others. Three datasets were used, two of which were extracted from the literature and the other one was designed specifically for our problem emphasizing the pharmacological relevance of the chosen molecules. Our algorithm proves to be more efficient than another state-of-the-art similarity based approach, and our analysis confirms that docking software are not relevant for our target prediction problem when a first target is known, according to our metric
Voland, Alice. « Algorithmes pour la prédiction in silico d'interactions par similarité entre macromolécules biologiques ». Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV014.
Texte intégralThe action of a drug, or another small biomolecule, is induced by chemical interactions with other macromolecules such as proteins regulating the cell functions. The determination of the set of targets, the macromolecules that could bind the same small molecule, is essential in order to understand molecular mechanisms responsible for the effects of a drug. Indeed, this knowledge could help the drug design process so as to avoid side effects or to find new applications for known drugs. The advances of structural biology provides us with three-dimensional representations of many proteins involved in these interactions, motivating the use of in silico tools to complement or guide further in vitro or in vivo experiments which are both more expansive and time consuming.This research is conducted as part of a collaboration between the DAVID laboratory of the Versailles-Saint-Quentin University, and Bionext SA which offers a software suite to visualize and analyze chemical interactions between biological molecules. The objective is to design an algorithm to predict these interactions for a given compound, using the structures of potential targets. More precisely, starting from a known interaction between a drug and a protein, a new interaction can be inferred with another sufficiently similar protein. This approach consists in the search of a given pattern, the known binding site, across a collection of macromolecules.An algorithm was implemented, BioBind, which rely on a topological representation of the surface of the macromolecules based on the alpha shapes theory. Our surface representation allows to define a concept of region of any shape on the surface. In order to tackle the search of a given pattern region, a heuristic has been developed, consisting in the definition of regular region which is an approximation of a geodesic disk. This circular shape allows for an exhaustive sampling and fast comparison, and any circular region can then be extended to the actual pattern to provide a similarity evaluation with the query binding site.The target prediction problem is formalized as a binary classification problem, where a set of macromolecules is being separated between those predicted to interact and the others, based on their local similarity with the known target. With this point of view, classic metrics can be used to assess performance, and compare our approach with others. Three datasets were used, two of which were extracted from the literature and the other one was designed specifically for our problem emphasizing the pharmacological relevance of the chosen molecules. Our algorithm proves to be more efficient than another state-of-the-art similarity based approach, and our analysis confirms that docking software are not relevant for our target prediction problem when a first target is known, according to our metric
Chartier, Matthieu. « Développement et applications d’un outil bio-informatique pour la détection de similarités de champs d’interaction moléculaire ». Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8893.
Texte intégralAbstract : Methods that detect binding site similarities between proteins serve for the prediction of function and the identification of potential off-targets. These methods can help prevent side-effects, suggest drug repurposing and polypharmacological strategies and suggest bioisosteric replacements. Most methods use atom-based representations despite the fact that molecular interaction fields (MIFs) represents more closely the nature of what is meant to be identified. We developped a computational algorithm, IsoMif, that detects MIF similarities between binding sites. We benchmark IsoMif to other methods which has not been previously done for a MIF-based method. IsoMif performed best in average and more consistently accross datasets. We highlight limitations intrinsic to the methodology or to nature. The impact of design choices on performance is discussed. We built a freely available web interface that allows the detection of similarities between a protein and pre-calculated MIFs or user defined MIFs. PyMOL sessions can be downloaded to visualize similarities for the different intermolecular interactions. IsoMif was applied for a large-scale analysis (5,6 millions of comparisons) to predict offtargets of drugs. Docking simulations of the drugs in the binding site of their top hits were performed. The primary objective is to generate hypotheses that can be further investigated and validated regarding drug repurposing opportunities and side-effect mechanisms.