Littérature scientifique sur le sujet « Signal processing for network security »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Signal processing for network security ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Signal processing for network security"
Alapati, Yaswanth Kumar, et Suban Ravichandran. « An Efficient Signal Processing Model for Malicious Signal Identification and Energy Consumption Reduction for Improving Data Transmission Rate ». Traitement du Signal 38, no 3 (30 juin 2021) : 837–43. http://dx.doi.org/10.18280/ts.380330.
Texte intégralGao, Feng, Yun Wu et Shang Qiong Lu. « LabVIEW-Based Virtual Laboratory for Digital Signal Processing ». Advanced Materials Research 268-270 (juillet 2011) : 2150–57. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.2150.
Texte intégralXue, Lian, et Cheng-song Hu. « A Vibration Signal Processing of Large-scale Structural Systems Based on Wireless Sensor ». International Journal of Online Engineering (iJOE) 13, no 05 (14 mai 2017) : 43. http://dx.doi.org/10.3991/ijoe.v13i05.7050.
Texte intégralCheng, Jie, Bingjie Lin, Jiahui Wei et Ang Xia. « The Compound Prediction Analysis of Information Network Security Situation based on Support Vector Combined with BP Neural Network Learning Algorithm ». International Journal of Circuits, Systems and Signal Processing 16 (13 janvier 2022) : 489–96. http://dx.doi.org/10.46300/9106.2022.16.60.
Texte intégralXiang, Zhongwu, Weiwei Yang, Gaofeng Pan, Yueming Cai et Yi Song. « Physical Layer Security in Cognitive Radio Inspired NOMA Network ». IEEE Journal of Selected Topics in Signal Processing 13, no 3 (juin 2019) : 700–714. http://dx.doi.org/10.1109/jstsp.2019.2902103.
Texte intégralDemidov, R. A., P. D. Zegzhda et M. O. Kalinin. « Threat Analysis of Cyber Security in Wireless Adhoc Networks Using Hybrid Neural Network Model ». Automatic Control and Computer Sciences 52, no 8 (décembre 2018) : 971–76. http://dx.doi.org/10.3103/s0146411618080084.
Texte intégralJi, Cheongmin, Taehyoung Ko et Manpyo Hong. « CA-CRE : Classification Algorithm-Based Controller Area Network Payload Format Reverse-Engineering Method ». Electronics 10, no 19 (8 octobre 2021) : 2442. http://dx.doi.org/10.3390/electronics10192442.
Texte intégralTu, Jun, Willies Ogola, Dehong Xu et Wei Xie. « Intrusion Detection Based on Generative Adversarial Network of Reinforcement Learning Strategy for Wireless Sensor Networks ». International Journal of Circuits, Systems and Signal Processing 16 (13 janvier 2022) : 478–82. http://dx.doi.org/10.46300/9106.2022.16.58.
Texte intégralPeng, Qi Hua. « An Improved Abnormal Behavior Feature Detection Algorithm of Network Information Based on Fractional Fourier Transform ». Applied Mechanics and Materials 513-517 (février 2014) : 2408–11. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.2408.
Texte intégralAhmed, Aseel K., et Abbas Akram Khorsheed. « Open network structure and smart network to sharing cybersecurity within the 5G network ». Indonesian Journal of Electrical Engineering and Computer Science 27, no 1 (1 juillet 2022) : 573. http://dx.doi.org/10.11591/ijeecs.v27.i1.pp573-582.
Texte intégralThèses sur le sujet "Signal processing for network security"
Lu, Xiaotao. « Cost-effective signal processing algorithms for physical-layer security in wireless networks ». Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/16043/.
Texte intégralDi, Mauro Mario. « Statistical models for the characterization, identification and mitigation of distributed attacks in data networks ». Doctoral thesis, Universita degli studi di Salerno, 2018. http://hdl.handle.net/10556/3088.
Texte intégralThe thesis focuses on statistical approaches to model, mitigate, and prevent distributed network attacks. When dealing with distributed network attacks (and, more in general, with cyber-security problems), three fundamental phases/issues emerge distinctly. The first issue concerns the threat propagation across the network, which entails an "avalanche" effect, with the number of infected nodes increasing exponentially as time elapses. The second issue regards the design of proper mitigation strategies (e.g., threat detection, attacker's identification) aimed at containing the propagation phenomenon. Finally (and this is the third issue), it is also desirable to act on the system infrastructure to grant a conservative design by adding some controlled degree of redundancy, in order to face those cases where the attacker has not been yet defeated. The contributions of the present thesis address the aforementioned relevant issues, namely, propagation, mitigation and prevention of distributed network attacks. A brief summary of the main contributions is reported below. The first contribution concerns the adoption of Kendall’s birth-and-death process as an analytical model for threat propagation. Such a model exhibits two main properties: i) it is a stochastic model (a desirable requirement to embody the complexity of real-world networks) whereas many models are purely deterministic; ii) it is able to capture the essential features of threat propagation through a few parameters with a clear physical meaning. By exploiting the remarkable properties of Kendall’s model, the exact solution for the optimal resource allocation problem (namely, the optimal mitigation policy) has been provided for both conditions of perfectly known parameters, and unknown parameters (with the latter case being solved through a Maximum-Likelihood estimator). The second contribution pertains to the formalization of a novel kind of randomized Distributed Denial of Service (DDoS) attack. In particular, a botnet (a network of malicious entities) is able to emulate some normal traffic, by picking messages from a dictionary of admissible requests. Such a model allows to quantify the botnet “learning ability”, and to ascertain the real nature of users (normal or bot) via an indicator referred to as MIR (Message Innovation Rate). Exploiting the considered model, an algorithm that allows to identify a botnet (possibly) hidden in the network has been devised. The results are then extended to the case of a multi-cluster environment, where different botnets are concurrently present in the network, and an algorithm to identify the different clusters is conceived. The third contribution concerns the formalization of the network resilience problem and the consequent design of a prevention strategy. Two statistical frameworks are proposed to model the high availability requirements of network infrastructures, namely, the Stochastic Reward Network (SRN), and the Universal Generating Function (UGF) frameworks. In particular, since in the network environment dealing with multidimensional quantities is crucial, an extension of the classic UGF framework, called Multi-dimensional UGF (MUGF), is devised. [edited by author]
XVI n.s.
Mynampati, Vittal Reddy, Dilip Kandula, Raghuram Garimilla et Kalyan Srinivas. « Performance and Security of Wireless Mesh Networks ». Thesis, Blekinge Tekniska Högskola, Avdelningen för telekommunikationssystem, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2901.
Texte intégralXu, Jingxin. « Unusual event detection in crowded scenes ». Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/76365/1/Jingxin_Xu_Thesis.pdf.
Texte intégralMoore, Patrick. « Architectural investigation into network security processing ». Thesis, Queen's University Belfast, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492519.
Texte intégralZhao, Wentao. « Genomic applications of statistical signal processing ». [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2952.
Texte intégralLiu, Jinshan. « Secure and reliable deep learning in signal processing ». Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103740.
Texte intégralDoctor of Philosophy
Deep learning has provided computers and mobile devices extraordinary powers to solve challenging signal processing problems. For example, current deep learning technologies are able to improve the quality of machine translation significantly, recognize speech as accurately as human beings, and even outperform human beings in face recognition. Although deep learning has demonstrated great advantages in signal processing, it can be insecure and unreliable if the model is not trained properly or is tested under adversarial scenarios. In this dissertation, we study the following three security and reliability issues in deep learning-based signal processing methods. First, we provide insights on how the deep learning model reliability is changed as the size of training data increases. Since generating training data requires a tremendous amount of labor and financial resources, our research work could help researchers and product developers to gain insights on balancing the tradeoff between model performance and training data size. Second, we propose a novel model to detect the abnormal testing data that are significantly different from the training data. In deep learning, there is no performance guarantee when the testing data are significantly different from the training data. Failing to detect such data may cause severe security risks. Finally, we design a system to detect sensor attacks targeting autonomous vehicles. Deep learning can be easily fooled when the input sensor data are falsified. Security and safety can be enhanced significantly if the autonomous driving systems are able to figure out the falsified sensor data before making driving decisions.
Farhat, Md Tanzin. « An Artificial Neural Network based Security Approach of Signal Verification in Cognitive Radio Network ». University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo153511563131623.
Texte intégralCARDOSO, LUIZ ALBERTO LISBOA DA SILVA. « ANALYSIS OF PLASTIC NEURAL NETWORK MODELLING APPROACH TO SIGNAL PROCESSING ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9512@1.
Texte intégralOs modelos plásticos de redes neurais são estudados e avaliados como uma interessante abordagem da neurocomputação ao processamento de sinais. Dentre estes, o modelo SONN, recentemente proposto por Tenório e Lee, é revisado e adotado como base para a implementação de um ambiente interativo de prototipagem e análise de redes, dada sua reduzida carga heurística. Como ilustração de seu emprego, um problema de detecção e classificação de sinais pulsados é solucionado, com resultados que preliminarmente indicam a adequação do modelo como ferramenta na filtragem não-linear de sinais e no reconhecimento de padrões.
Plastic neural network models are evaluated as an attractive neurocomputing approach to signal processing. Among these, the SONN model, as recently introduced by Tenorio and Lee, is reviewed and adopted as the basis for the implementation of an interactive network prototyping and analysis system, due to its reduced heuristics. Its use is exemplified in the task of detection and classification of pulsed signals, showing up results that preliminarily qualify the model as a tool for non-linear filtering and pattern recognition applications.
Harper, Scott Jeffery. « A Secure Adaptive Network Processor ». Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/28023.
Texte intégralPh. D.
Livres sur le sujet "Signal processing for network security"
International, Conference on Intelligent Information Hiding and Multimedia Signal Processing (4th 2008 Harbin Shi China). IIH-MSP 2008 : 2008 Fourth International Conference on Intelligent Information Hiding and Multimedia Signal Processing : 15-17 August 2008, Harbin, China. Los Alamitos, Calif : IEEE Computer Society, 2008.
Trouver le texte intégralInternational Conference on Intelligent Information Hiding and Multimedia Signal Processing (2nd 2006 Pasadena, Calif.). 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing : (IIH-MSP 2006) : proceedings ; 18-20 December, 2006, Pasadena, California, USA. Los Alamitos, Calif : IEEE Computer Society, 2006.
Trouver le texte intégralJoaquim, Filipe, Coelhas Helder, Saramago Monica et International Conference on E-business and Telecommunication Networks (2nd : 2005 : Reading, England), dir. E-business and telecommunication networks : Second International Conference, ICETE 2005, Reading, UK, October 3-7, 2005 : selected papers. Berlin : Springer, 2007.
Trouver le texte intégralPathak, Manas A. Privacy-Preserving Machine Learning for Speech Processing. New York, NY : Springer New York, 2013.
Trouver le texte intégral1944-, Deprettere Ed F., Leupers Rainer, Takala Jarmo et SpringerLink (Online service), dir. Handbook of Signal Processing Systems. Boston, MA : Springer Science+Business Media, LLC, 2010.
Trouver le texte intégralDey, Nilanjan, et V. Santhi, dir. Intelligent Techniques in Signal Processing for Multimedia Security. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44790-2.
Texte intégralCorporate computer and network security. 2e éd. Boston : Prentice Hall, 2010.
Trouver le texte intégralSecurity+ guide to network security fundamentals. 3e éd. Boston, MA : Course Technology, Cengage Learning, 2009.
Trouver le texte intégralTakanami, Tetsuo, et Genshiro Kitagawa. Methods and Applications of Signal Processing in Seismic Network Operations. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/bfb0117693.
Texte intégralmissing], [name. Methods and applications of signal processing in seismic network operations. Berlin : Springer, 2003.
Trouver le texte intégralChapitres de livres sur le sujet "Signal processing for network security"
Wang, Wenting, Xin Liu, Xiaohong Zhao, Yang Zhao, Rui Wang et Jianpo Li. « Design of Intelligent Substation Communication Network Security Audit System ». Dans Advances in Intelligent Information Hiding and Multimedia Signal Processing, 389–97. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6420-2_48.
Texte intégralWang, Wenting, Guilin Huang, Xin Liu, Hao Zhang, Rui Wang et Jianpo Li. « Research on Security Auditing Scheme of Intelligent Substation Communication Network ». Dans Advances in Intelligent Information Hiding and Multimedia Signal Processing, 398–406. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6420-2_49.
Texte intégralSawlikar, Alka P., Z. J. Khan et S. G. Akojwar. « Parametric Evaluation of Different Cryptographic Techniques for Enhancement of Energy Efficiency in Wireless Communication Network ». Dans Intelligent Techniques in Signal Processing for Multimedia Security, 177–97. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44790-2_9.
Texte intégralGao, Lifang, Zhihui Wang, Huifeng Yang, Shaoying Wang, Qimeng Li, Shaoyong Guo et Chao Ma. « Network Security Situation Assessment of Power Information System Based on Improved Artificial Bee Colony Algorithm ». Dans Advances in Intelligent Information Hiding and Multimedia Signal Processing, 340–47. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6420-2_42.
Texte intégralYang, Yong, Jilin Wang, Rong Li et Jinxiong Zhao. « Review of Constructing the Early Warning and Diagnosis Information Database of Power Plant Network Security Events ». Dans 3D Imaging Technologies—Multidimensional Signal Processing and Deep Learning, 295–301. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3180-1_37.
Texte intégralWu, Ji, Qilian Liang, Baoju Zhang et Xiaorong Wu. « Security Analysis of Distributed Compressive Sensing-Based Wireless Sensor Networks ». Dans The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems, 41–49. Cham : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00536-2_5.
Texte intégralBenesty, Jacob, Tomas Gänsler, Dennis R. Morgan, M. Mohan Sondhi et Steven L. Gay. « Dynamic Resource Allocation for Network Echo Cancellation ». Dans Digital Signal Processing, 65–77. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04437-7_4.
Texte intégralMarks, Friedrich, Ursula Klingmüller et Karin Müller-Decker. « Supplying the Network with Energy : Basic Biochemistry of Signal Transduction ». Dans Cellular Signal Processing, 27–85. Second edition. | New York, NY : Garland Science, 2017. : Garland Science, 2017. http://dx.doi.org/10.4324/9781315165479-2.
Texte intégralKhattab, Ahmed, Zahra Jeddi, Esmaeil Amini et Magdy Bayoumi. « RBS Security Analysis ». Dans Analog Circuits and Signal Processing, 101–16. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47545-5_5.
Texte intégralCampion, Sébastien, Julien Devigne, Céline Duguey et Pierre-Alain Fouque. « Multi-Device for Signal ». Dans Applied Cryptography and Network Security, 167–87. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57878-7_9.
Texte intégralActes de conférences sur le sujet "Signal processing for network security"
Fok, Mable P., Konstantin Kravtsov, Yanhua Deng, Zhenxing Wang et Paul R. Prucnal. « Providing Network Security with Optical Signal Processing ». Dans 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781422.
Texte intégralCao, Zhanghua, Yuansheng Tang et Xinmei Huang. « Against wiretappers without key-security is an intrinsic property of network coding ». Dans Signal Processing (ICICS). IEEE, 2009. http://dx.doi.org/10.1109/icics.2009.5397469.
Texte intégralJia, Fenggen, Weiming Wang, Ming Gao et Chaoqi Lv. « A real-time rule-matching algorithm for the network security audit system ». Dans Signal Processing (ICICS). IEEE, 2009. http://dx.doi.org/10.1109/icics.2009.5397574.
Texte intégralKhan, Jihas. « Vehicle network security testing ». Dans 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). IEEE, 2017. http://dx.doi.org/10.1109/ssps.2017.8071577.
Texte intégralKo, Hoon, Chang Choi, Pankoo Kim et Junho Choi. « NETWORK SECURITY ARCHITECTURE AND APPLICATIONS BASED ON CONTEXT-AWARE SECURITY ». Dans 7th International Conference on Signal Image Processing and Multimedia. AIRCC Publication, 2019. http://dx.doi.org/10.5121/csit.2019.90308.
Texte intégralGemilang Gultom, Rudy Agus, Tatan Kustana et Romie Oktovianus Bura. « ENHANCING COMPUTER NETWORK SECURITY ENVIRONMENT BY IMPLEMENTING THE SIX-WARE NETWORK SECURITY FRAMEWORK (SWNSF) ». Dans 7th International Conference on Signal, Image Processing and Pattern Recognition. AIRCC Publication Corporation, 2018. http://dx.doi.org/10.5121/csit.2018.81714.
Texte intégralDu, Haoyuan, Meng Fan et Liquan Dong. « Super-resolution network for x-ray security inspection ». Dans OIT21 : Optoelectronic Imaging/Spectroscopy and Signal Processing Technology, sous la direction de Xun Cao, Chao Zuo, Wolfgang Osten, Guohai Situ et Xiaopeng Shao. SPIE, 2022. http://dx.doi.org/10.1117/12.2616535.
Texte intégralDo, Emily H., et Vijay N. Gadepally. « Classifying Anomalies for Network Security ». Dans ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053419.
Texte intégralPrasad, Jai Prakash, et S. C. Mohan. « Energy Efficient Dual Function Security Protocol for Wireless Sensor Network ». Dans Second International Conference on Signal Processing, Image Processing and VLSI. Singapore : Research Publishing Services, 2015. http://dx.doi.org/10.3850/978-981-09-6200-5_d-28.
Texte intégralOujezsky, Vaclav, David Chapcak, Tomas Horvath et Petr Munster. « Security Testing Of Active Optical Network Devices ». Dans 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). IEEE, 2019. http://dx.doi.org/10.1109/tsp.2019.8768811.
Texte intégralRapports d'organisations sur le sujet "Signal processing for network security"
Tong, Lang. Network-Centric Distributed Signal Processing. Fort Belvoir, VA : Defense Technical Information Center, septembre 2009. http://dx.doi.org/10.21236/ada519513.
Texte intégralFriedman, Haya, Julia Vrebalov et James Giovannoni. Elucidating the ripening signaling pathway in banana for improved fruit quality, shelf-life and food security. United States Department of Agriculture, octobre 2014. http://dx.doi.org/10.32747/2014.7594401.bard.
Texte intégralTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, janvier 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Texte intégralIrudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman et Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, octobre 2004. http://dx.doi.org/10.32747/2004.7587221.bard.
Texte intégralFederal Information Processing Standards Publication : guideline for the analysis of local area network security. Gaithersburg, MD : National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.fips.191.
Texte intégral