Articles de revues sur le sujet « SiGe SOLAR CELLS »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : SiGe SOLAR CELLS.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « SiGe SOLAR CELLS ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Diaz, Martin, Li Wang, Dun Li, Xin Zhao, Brianna Conrad, Anasasia Soeriyadi, Andrew Gerger et al. « Tandem GaAsP/SiGe on Si solar cells ». Solar Energy Materials and Solar Cells 143 (décembre 2015) : 113–19. http://dx.doi.org/10.1016/j.solmat.2015.06.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zulkefle, Ahmad Aizan, Maslan Zainon, Zaihasraf Zakaria, Mohd Ariff Mat Hanafiah, Nurul Huda Abdul Razak, Seyed Ahmad Shahahmadi, Md Akhtaruzzaman, Kamaruzzaman Sopian et Nowshad Amin. « A Comparative Study between Silicon Germanium and Germanium Solar Cells by Numerical Simulation ». Applied Mechanics and Materials 761 (mai 2015) : 341–46. http://dx.doi.org/10.4028/www.scientific.net/amm.761.341.

Texte intégral
Résumé :
This paper presents the performance between silicon germanium (SiGe) and crystalline germanium (Ge) solar cells in terms of their simulated open circuit voltage, short circuit current density, fill factor and efficiency. The PC1D solar cell modeling software has been used to simulate and analyze the performance for both solar cells, and the total thickness is limited to 1μm of both SiGe and Ge solar cells. The Si0.1Ge0.9 thickness is varied from 10nm to 100nm to examine the effect of Si0.1Ge0.9 thickness on SiGe solar cell. The result of simulation exhibits the SiGe solar cell give a better performance compared to Ge solar cell. The efficiency of 9.74% (VOC = 0.48V, JSC = 27.86mA/cm2, FF =0.73) is achieved with Si0.1Ge0.9 layer of 0.1μm in thickness whilst 2.73% (VOC = 0.20V, JSC = 27.31mA/cm2, FF =0.50) efficiency is obtained from Ge solar cell.
Styles APA, Harvard, Vancouver, ISO, etc.
3

ACHOUR, M. B., B. DENNAI et H. KHACHAB. « STUDY SIMULATION OF TOP-CELL ON THE PERFORMANCE OF AlxGa1- xAs/Si1-xGexTANDEM SOLAR CELL ». Digest Journal of Nanomaterials and Biostructures 15, no 2 (avril 2020) : 337–43. http://dx.doi.org/10.15251/djnb.2020.152.337.

Texte intégral
Résumé :
In this study, numerical optimization and analysis utilizing AMPS-1D software package of a simple model for tunnel junction (AlGaAs) between the top cell (AlGaAs) and bottom cell (SiGe) of cascade solar cells. The electrical properties and the photovoltaic performance parameters of AlGaAs/SiGe multijunction solar cells .The possible effects of base of the top cell layer thickness and doping level on solar cell performance parameters are addressed. The conversion efficiency of the solar cell has been found to increase significantly with the doping concentration in the range from 1015 to 1017 cm-3 of 19.52% to 31.19% under the AM1.5G spectrum and one sun. These results are very promising for future potential applications in multijunction and high performance AlGaAs/SiGe solar cells technology.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Soeriyadi, Anastasia H., Brianna Conrad, Xin Zhao, Dun Li, Li Wang, Anthony Lochtefeld, Andrew Gerger, Ivan Perez-Wurfl et Allen Barnett. « Increased Spectrum Utilization with GaAsP/SiGe Solar Cells Grown on Silicon Substrates ». MRS Advances 1, no 43 (2016) : 2901–6. http://dx.doi.org/10.1557/adv.2016.354.

Texte intégral
Résumé :
ABSTRACTWorld-record solar-to-electricity energy conversion efficiency has been previously achieved by photovoltaic devices that maximize the use of the solar spectrum, such as multi-junction tandem solar cells. These cells are made of III-V materials whose high cost is a strong limitation on their widespread commercial application. One solution to suppress the cost of these types of devices is to grow III-V solar cells on low-cost carrier materials such as silicon. We will discuss the material, structure and analysis of GaAsP/SiGe-on-silicon multi-junction tandem solar cells. A low threading dislocation density is realized by effective lattice-matching of the top and bottom cells which demonstrate a device that achieves high open-circuit voltage in the top solar cell. The GaAsP/SiGe solar cells have reached a measured efficiency of 20.6% under one sun concentration. Analysis of these results based on the product of the best parameters shows efficiency potential of 26% under one sun, 30.8% at 20× and 35.1% at 400×.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hsieh, C. F., H. S. Wu, Teng Chun Wu et M. H. Liao. « Periodic Nanostructured Thin-Film Solar Cells ». Advanced Materials Research 860-863 (décembre 2013) : 114–17. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.114.

Texte intégral
Résumé :
Si-based photonic crystal device such as solar cells have been developed and attract lots of attention. Whether what kind of different structures are used, two key problems are needed to investigate. One is the improvement of the optic-electric (or electric-optic) transformation efficiency. Another is the capability to modulate the light-emitting and detection wavelength for various industrial applications. The wavelength of the light emission and detection can also be further adjusted by changing the material band-gap. In this work, we develop the periodic nanoscale surface textured solar cells. The characteristics of top thin film textured solar cells is developed and estimated to see if the structure is worthy to be scaled from the modern micrometer (um) level down to the nanometer (nm) level continuously. The process of nm-scale textured Si optoelectronic device used in this work is fully comparable to the modern CMOS industry. Optimal Ge concentration in SiGe-based solar cells has been investigated qualitatively by the systemic experiments. With the appropriate addition of Ge to a SiGe-based solar cell, the short current density (Isc) is successfully increased without affecting the open-circuit voltage (Voc) and then the overall efficiency is successfully improved about 4 % than the nanoscale surface textured Si solar cell.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Qiu Bo, Wen Sheng Wei et Feng Shan. « Analysis on micro-/poly-Crystalline SiGe Alloy Solar Cells ». Advanced Materials Research 690-693 (mai 2013) : 2872–80. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2872.

Texte intégral
Résumé :
Performance of micro-/poly-crystalline SiGe alloy solar cell of TCO/(n)a-Si:H/(i)a-Si/(p) c(pc)-SiGe/(p+)μc-Si/Al structure was analyzed via the AFORS-HET software. Cell structures can be designed to reach up to the optimal performance. Employment of back surface electric field layer of (p+)μc-Si could improve cell properties. The maximum photoelectric conversion efficiency η=21.48% occurs in a cell with average Ge percent content x0.1 and 250 m-thick Si1-xGex alloy light absorption layer, which is higher than the experimental result of the same absorption layer thickness crystalline Si HIT cell [Progress in Photovoltaics: Research and Applications, 8 (2000) 503.]. Temperature dependence of the cell performance parameters (open circuit voltage Voc, circuit current density Jsc, fill factor FF and efficiency η) indicates that Si0.9Ge0.1 cell shows weaker temperature sensitivity than that of pure Si cell. Numerical calculation illustrates that Voc decreases while Jsc, FF and η heighten with raising mean grain sizes and crystalline volume fractions, these variations with the later are more remarkable. Present optimized technique will be benefit to designing and fabricating the high performance solar cell.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Caño, Pablo, Manuel Hinojosa, Iván García, Richard Beanland, David Fuertes Marrón, Carmen M. Ruiz, Andrew Johnson et Ignacio Rey-Stolle. « GaAsP/SiGe tandem solar cells on porous Si substrates ». Solar Energy 230 (décembre 2021) : 925–34. http://dx.doi.org/10.1016/j.solener.2021.10.075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Safi, M., A. Aissat, H. Guesmi et J. P. Vilcot. « SiGe quantum wells implementation in Si based nanowires for solar cells applications ». Digest Journal of Nanomaterials and Biostructures 18, no 1 (mars 2023) : 327–42. http://dx.doi.org/10.15251/djnb.2023.181.327.

Texte intégral
Résumé :
This study focuses on modelling and optimizing a new Si nanowire solar cell containing a SiGe/Si quantum well. Quantum efficiency measurements show that the proposed structure has a higher energy absorption advantage and stronger than that of a solar cell based on a standard Si p-i-n nanowire. As a result, the insertion of 14 layers of SiGe/Si quantum well improved the short circuit current density and the efficiency by a factor of about 1.24 and 1.37, respectively. The best concentration and radius values obtained are x = 0.05 and r = 0.190 µm, respectively, with a strain of less than 1%.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Daami, A., A. Zerrai, J. J. Marchand, J. Poortmans et G. Brémond. « Electrical defect study in thin-film SiGe/Si solar cells ». Materials Science in Semiconductor Processing 4, no 1-3 (février 2001) : 331–34. http://dx.doi.org/10.1016/s1369-8001(00)00101-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Eisele, C., M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel et M. Stutzmann. « Laser-crystallized microcrystalline SiGe alloys for thin film solar cells ». Thin Solid Films 427, no 1-2 (mars 2003) : 176–80. http://dx.doi.org/10.1016/s0040-6090(02)01216-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Maydell, K. V., K. Grunewald, M. Kellermann, O. Sergeev, P. Klement, N. Reininghaus et T. Kilper. « Microcrystalline SiGe Absorber Layers in Thin-film Silicon Solar Cells ». Energy Procedia 44 (2014) : 209–15. http://dx.doi.org/10.1016/j.egypro.2013.12.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Fujiwara, Kozo, Wugen Pan, Noritaka Usami, Kohei Sawada, Akiko Nomura, Toru Ujihara, Toetsu Shishido et Kazuo Nakajima. « Structural properties of directionally grown polycrystalline SiGe for solar cells ». Journal of Crystal Growth 275, no 3-4 (mars 2005) : 467–73. http://dx.doi.org/10.1016/j.jcrysgro.2004.12.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Riaz, Muhammad, S. K. Earles, Ahmed Kadhim et Ahmad Azzahrani. « Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE ». International Journal of Computational Materials Science and Engineering 06, no 03 (septembre 2017) : 1750017. http://dx.doi.org/10.1142/s2047684117500178.

Texte intégral
Résumé :
The computer analysis of tandem solar cell, c-Si/a-Si:H/[Formula: see text]c-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12[Formula: see text]eV, 1.50[Formula: see text]eV and 1.70[Formula: see text]eV, respectively. First, single junction solar cell with both a-Si and [Formula: see text]c-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as [Formula: see text], and [Formula: see text]. For [Formula: see text]c-SiGe absorbing layer, the efficiency and fill factor are increased as [Formula: see text] and [Formula: see text], respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/[Formula: see text]c-SiGe, the fill factor [Formula: see text] and efficiency [Formula: see text] have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/[Formula: see text]c-SiGe and tandem solar cell c-Si/a-Si:H/[Formula: see text]c-SiGe are improved with check board surface design for light trapping.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Haku, Hisao, Katsunobu Sayama, Eiji Maruyama, Hiroshi Dohjoh, Noboru Nakamura, Shinya Tsuda, Shoichi Nakano, Yasuo Kishi et Yukinori Kuwano. « High-Performance a-SiGe Solar Cells Using a Super Chamber Method ». Japanese Journal of Applied Physics 30, Part 1, No. 11A (15 novembre 1991) : 2700–2704. http://dx.doi.org/10.1143/jjap.30.2700.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sato, Shin-ichiro, Kevin Beernink et Takeshi Ohshima. « Degradation Behavior of Flexible a-Si/a-SiGe/a-SiGe Triple-Junction Solar Cells Irradiated With Protons ». IEEE Journal of Photovoltaics 3, no 4 (octobre 2013) : 1415–22. http://dx.doi.org/10.1109/jphotov.2013.2271672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

AZEDDINE, B., A. TALHI et K. HAMI. « PERFORMANCE OF SIGE SOLAR CELL WITH BSF LAYER EFFECT OF TEMPERATURE AND WINDOW LAYER ». Journal of Ovonic Research 16, no 3 (mai 2020) : 147–50. http://dx.doi.org/10.15251/jor.2020.163.147.

Texte intégral
Résumé :
The Silicon-Germanium (SiGe) technology, whose preliminary developments date from the mid-1980s and whose arrival on the market is recent, meets this joint need for economy and performance. In our days solar cells to thin films are increasingly used primarily because of their low cost. In recent decades the performance of these cells were significantly improved. In this work, we studied the temperature effect on performance forSiGe solar cell with BSF layer using software AMPS-1D to analyze some parameters. The temperature is one of most important effect and it plays a key on performance of solar cell.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Li, Martin Diaz, Brianna Conrad, Xin Zhao, Dun Li, Anastasia Soeriyadi, Andrew Gerger et al. « Material and Device Improvement of GaAsP Top Solar Cells for GaAsP/SiGe Tandem Solar Cells Grown on Si Substrates ». IEEE Journal of Photovoltaics 5, no 6 (novembre 2015) : 1800–1804. http://dx.doi.org/10.1109/jphotov.2015.2459918.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Xu, Xixiang, Jinyan Zhang, Anhong Hu, Cao Yu, Minghao Qu, Changtao Peng, Xiaoning Ru et al. « Development of Nanocrystalline Silicon Based Multi-junction Solar Cell Technology for High Volume Manufacturing ». MRS Proceedings 1536 (2013) : 57–62. http://dx.doi.org/10.1557/opl.2013.738.

Texte intégral
Résumé :
ABSTRACTWe conduct a comparative study mainly on two types of nc-Si based solar cell structures, a-Si/a-SiGe/nc-Si triple-junction and a-Si/nc-Si double-junction. We have attained comparable initial efficiency for the both solar cell structures, 10.8∼11.8% initial total area efficiency (85 - 95W over an area of 0.79 m2). For better compatibility to our installed manufacturing equipment, we deposit a-Si and a-SiGe component cells with the existing deposition machines. Only nc-Si bottom component cells are prepared in separate deposition machines tailored for nc-Si process. Material properties of nc-Si and TCO films are also studied by Raman spectra, SEM, and AFM.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Fan, Qi Hua, Xianbo Liao, Xianbi Xiang, Changyong Chen, Guofu Hou, Xinmin Cao et Xunming Deng. « Simulation of a-Si/a-SiGe thin film tandem junction solar cells ». Journal of Physics D : Applied Physics 43, no 14 (23 mars 2010) : 145101. http://dx.doi.org/10.1088/0022-3727/43/14/145101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Faucher, J., A. Gerger, S. Tomasulo, C. Ebert, A. Lochtefeld, A. Barnett et M. L. Lee. « Single-junction GaAsP solar cells grown on SiGe graded buffers on Si ». Applied Physics Letters 103, no 19 (4 novembre 2013) : 191901. http://dx.doi.org/10.1063/1.4828879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Okamoto, Shingo, Eiji Maruyama, Akira Terakawa, Wataru Shinohara, Shingo Nakano, Yoshihiro Hishikawa, Kenichiro Wakisaka et Seiichi Kiyama. « Towards large-area, high-efficiency a-Si/a-SiGe tandem solar cells ». Solar Energy Materials and Solar Cells 66, no 1-4 (février 2001) : 85–94. http://dx.doi.org/10.1016/s0927-0248(00)00161-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Aissat, A., F. Benyettou, S. Nacer et J. P. Vilcot. « Modeling and simulation of solar cells quantum well based on SiGe/Si ». International Journal of Hydrogen Energy 42, no 13 (mars 2017) : 8790–94. http://dx.doi.org/10.1016/j.ijhydene.2016.07.042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Bidiville, A., T. Matsui et M. Kondo. « Effect of oxygen doping in microcrystalline SiGe p-i-n solar cells ». Journal of Applied Physics 116, no 5 (7 août 2014) : 053701. http://dx.doi.org/10.1063/1.4891684.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wang, Jin, Ke Tao et Guo Feng Li. « Heteroepitaxial Growth of Ge-Rich SiGe Films on Si for Solar Cells ». Advanced Materials Research 1014 (juillet 2014) : 216–19. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.216.

Texte intégral
Résumé :
Germanium-rich silicon-germanium (Si1-xGex: 0.98≤x≤1) films were epitaxially grown on Si (001) substrate by reactive thermal chemical vapor deposition at low temperature. Si2H6and GeF4were used as source gases. The effect of gas flow ratio between Si2H6and GeF4was studied to optimize the film quality. The results indicated that Si1-xGex(x≥0.99) epilayer can be prepared directly on Si wafer at 350°C with a threading dislocation density of ~7×105/cm2and surface RMS roughness of 1.0 nm. Hall-effect and conductivity measurements revealed that the epilayer was p-type conduction with the hall mobility of 767 cm2/Vs and the hole concentration of 6.08×1016/cm3. Those results indicated the Ge-rich Si1-xGexwas an excellent candidate for bottom cells of multijunction solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhong, Yan Kai, Sze Ming Fu, Sheng Lun Yan, Po Yu Chen et Albert Lin. « Arbitrarily-Wide-Band Dielectric Mirrors and Their Applications to SiGe Solar Cells ». IEEE Photonics Journal 7, no 4 (août 2015) : 1–12. http://dx.doi.org/10.1109/jphot.2015.2452771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Terakawa, Akira, Masao Isomura et Shinya Tsuda. « Effect of optical gap on the stability of a-SiGe solar cells ». Journal of Non-Crystalline Solids 198-200 (mai 1996) : 1097–100. http://dx.doi.org/10.1016/0022-3093(96)00053-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kosarian, Abdolnabi, et Peyman Jelodarian. « Modeling and Optimization of Advanced Single- and Multijunction Solar Cells Based on Thin-Film a-Si:H/SiGe Heterostructure ». ISRN Renewable Energy 2011 (11 décembre 2011) : 1–8. http://dx.doi.org/10.5402/2011/712872.

Texte intégral
Résumé :
In amorphous thin-film p-i-n solar cell, a thick absorber layer can absorb more light to generate carriers. On the other hand, a thin i-layer cannot absorb enough light. Thickness of the i-layer is a key parameter that can limit the performance of solar cell. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. Especially, current density of the cell can be enhanced without deteriorating its open circuit voltage, due to the modulation of material band-gap and the formation of a heterostructure. This work presents a novel numerical evaluation and optimization of an amorphous silicon double-junction structure thin-film solar cell (a-SiGe:H/a-Si:H) and focuses on optimization of a-SiGe:H mid-gap single-junction solar cell based on the optimization of the Ge content in the film, thickness of i-layer, p-layer and doping concentration of p-layer in a (p-layer a-Si:H/i-layer a-SiGe:H/n-layer a-Si:H) single-junction thin-film solar cell. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6.5% compared with the traditional a-Si:H solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Said, K., J. Poortmans, M. Caymax, J. F. Nijs, L. Debarge, E. Christoffel et A. Slaoui. « Design, fabrication, and analysis of crystalline Si-SiGe heterostructure thin-film solar cells ». IEEE Transactions on Electron Devices 46, no 10 (1999) : 2103–10. http://dx.doi.org/10.1109/16.792004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ohdaira, Keisuke, Noritaka Usami, Wugen Pan, Kozo Fujiwara et Kazuo Nakajima. « Analysis of the Dark-Current Density in Solar Cells Based on Multicrystalline SiGe ». Japanese Journal of Applied Physics 44, no 11 (9 novembre 2005) : 8019–22. http://dx.doi.org/10.1143/jjap.44.8019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cariou, R., J. Tang, N. Ramay, R. Ruggeri et P. Roca i Cabarrocas. « Low temperature epitaxial growth of SiGe absorber for thin film heterojunction solar cells ». Solar Energy Materials and Solar Cells 134 (mars 2015) : 15–21. http://dx.doi.org/10.1016/j.solmat.2014.11.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Chen, Yu-Hung, Jun-Chin Liu, Yu-Ru Chen, Je-Wei Lin, Chun-Heng Chen, Wen-Haw Lu et Chiung-Nan Li. « Enhancing performance of amorphous SiGe single junction solar cells by post-deposition thermal annealing ». Thin Solid Films 529 (février 2013) : 7–9. http://dx.doi.org/10.1016/j.tsf.2012.06.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Usami, Noritaka, Wugen Pan, Kozo Fujiwara, Misumi Tayanagi, Keisuke Ohdaira et Kazuo Nakajima. « Effect of the compositional distribution on the photovoltaic power conversion of SiGe solar cells ». Solar Energy Materials and Solar Cells 91, no 2-3 (janvier 2007) : 123–28. http://dx.doi.org/10.1016/j.solmat.2006.07.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Caño, Pablo, Manuel Hinojosa, Huy Nguyen, Aled Morgan, David Fuertes Marrón, Iván García, Andrew Johnson et Ignacio Rey-Stolle. « Hybrid III-V/SiGe solar cells grown on Si substrates through reverse graded buffers ». Solar Energy Materials and Solar Cells 205 (février 2020) : 110246. http://dx.doi.org/10.1016/j.solmat.2019.110246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Xu, Zhongyang, Xuecheng Zou, Xuemei Zhou, Bofang Zhao, Changan Wang et Y. Hamakawa. « Optimum design and preparation ofa‐Si/a‐Si/a‐SiGe triple‐junction solar cells ». Journal of Applied Physics 75, no 1 (janvier 1994) : 588–95. http://dx.doi.org/10.1063/1.357011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Ringel, S. A., J. A. Carlin, C. L. Andre, M. K. Hudait, M. Gonzalez, D. M. Wilt, E. B. Clark et al. « Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers ». Progress in Photovoltaics : Research and Applications 10, no 6 (2002) : 417–26. http://dx.doi.org/10.1002/pip.448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Jelodarian, Peyman, et Abdolnabi Kosarian. « Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of Advanced a-Si:H/a-SiGe:H Thin Film Solar Cell from Numerical Modeling Prospect ». International Journal of Photoenergy 2012 (2012) : 1–7. http://dx.doi.org/10.1155/2012/946024.

Texte intégral
Résumé :
The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H) thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Nakajima, Kazuo, Noritaka Usami, Kozo Fujiwara, Yoshihiro Murakami, Toru Ujihara, Gen Sazaki et Toetsu Shishido. « Growth and properties of SiGe multicrystals with microscopic compositional distribution for high-efficiency solar cells ». Solar Energy Materials and Solar Cells 73, no 3 (juillet 2002) : 305–20. http://dx.doi.org/10.1016/s0927-0248(01)00216-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Rault, Francis K., et Ahmad Zahedi. « Computational modelling of the reflectivity of AlGaAs/GaAs and SiGe/Si quantum well solar cells ». Solar Energy Materials and Solar Cells 79, no 4 (septembre 2003) : 471–84. http://dx.doi.org/10.1016/s0927-0248(03)00050-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

XU, Z., X. ZOU, X. ZHOU, B. ZHAO, C. WANG et Y. HAMAKAWA. « The optimum design for high efficiency a-Si/a-Si/a-SiGe tandem solar cells ». Solar Energy Materials and Solar Cells 31, no 2 (novembre 1993) : 307–15. http://dx.doi.org/10.1016/0927-0248(93)90062-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Gu, Long, Hui Dong Yang et Bo Huang. « The Effect of Plasma Power on the Properties of Amorphous Silicon-Germanium Thin Films ». Advanced Materials Research 317-319 (août 2011) : 341–44. http://dx.doi.org/10.4028/www.scientific.net/amr.317-319.341.

Texte intégral
Résumé :
Amorphous Silicon-germanium films were prepared by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on glass substrates. The structural characteristics, deposition rate, photosensitivity, and optical band gap of the silicon-germanium thin films were investigated with plasma power varying from 15W to 45W. The deposition rate increased within a certain range of plasma power. With the plasma power increasing, the photosensitivity of the thin films decreased. It is evident that varying the plasma power changes the deposition rate, photosensitivity, which was fundamentally crucial for the fabrication of a-Si/a-SiGe/a-SiGe stacked solar cells. For our deposition system, the most optimization value was 30-35W.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Yu, Shu-Hung, Wei Lin, Yu-Hung Chen et Chun-Yen Chang. « High Improvement in Conversion Efficiency of μc-SiGe Thin-Film Solar Cells with Field-Enhancement Layers ». International Journal of Photoenergy 2012 (2012) : 1–5. http://dx.doi.org/10.1155/2012/817825.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Usami, Noritaka, Kozo Fujiwara, Wugen Pan et Kazuo Nakajima. « On the Origin of Improved Conversion Efficiency of Solar Cells Based on SiGe with Compositional Distribution ». Japanese Journal of Applied Physics 44, no 2 (8 février 2005) : 857–60. http://dx.doi.org/10.1143/jjap.44.857.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Yue, Guozhen, Xunming Deng, G. Ganguly et Daxing Han. « Electro- and photo-luminescence spectra from a-Si:H and a-SiGe p–i–n solar cells ». Journal of Non-Crystalline Solids 266-269 (mai 2000) : 1119–23. http://dx.doi.org/10.1016/s0022-3093(99)00914-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Pan, Wugen, Kozo Fujiwara, Noritaka Usami, Toru Ujihara, Kazuo Nakajima et Ryuichi Shimokawa. « Ge composition dependence of properties of solar cells based on multicrystalline SiGe with microscopic compositional distribution ». Journal of Applied Physics 96, no 2 (15 juillet 2004) : 1238–41. http://dx.doi.org/10.1063/1.1763227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Liou, J. J. « Physical models for predicting the performance of Si/Si, AlGaAs/GaAs, and Si/SiGe solar cells ». Solar Energy Materials and Solar Cells 29, no 3 (avril 1993) : 261–76. http://dx.doi.org/10.1016/0927-0248(93)90041-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hegedus, Steven S. « Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection ». Progress in Photovoltaics : Research and Applications 5, no 3 (mai 1997) : 151–68. http://dx.doi.org/10.1002/(sici)1099-159x(199705/06)5:3<151 ::aid-pip167>3.0.co;2-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

BELHADJ, M., et B. DENNAI. « STUDY OF A SOLAR CELL WITH A MULTILAYERED WINDOW BASED ON Si1-xGex USING AMPS-1D ». Journal of Ovonic Research 16, no 3 (mai 2020) : 151–57. http://dx.doi.org/10.15251/jor.2020.163.151.

Texte intégral
Résumé :
The Silicon-Germanium (SiGe) technology, whose preliminary developments date from the mid-1980s and whose arrival on the market is recent, meets this joint need for economy and performance. In our days solar cells to thin films are increasingly used primarily because of their low cost. In recent decades the performance of these cells were significantly improved. In this work, we simulate solar cell base Si (1-x) Ge (X) multilayer window using software (AMPS-1D) to analyze some parameters. In particular, the properties of the window layer (thickness, doping, etc.) play a key role in the performance of the cell, and in order to optimize them, their influence on the photovoltaic quantities of the solar cell is studied. In order to highlight the importance of the deposition of a Si (1-x) Ge (X) type window layer on the Si (1-x) Ge (X) solar cells, a comparison between three cells , one with a window layer, the other with two layers windows and the third with three layers windows was made under 300 K and one sun (AM1.5) . The optimal solar cell was founding for the first window layer ( 100 nm ; x = 0.3 ) ,second window layer ( 80 nm ; x = 0.2 ) and the third window layer ( 60 nm ; x = 0.1 ) for 15.56 % optimal efficiency. This comparison led to the following conclusion: the multiplication of the cascade windows leads to a cell equivalent to a gradual window.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ali, Khuram, et Zohaib Ali. « Analytical study of electrical performance of SiGe-based n-p-p solar cells with BaSi2 BSF structure ». Solar Energy 225 (septembre 2021) : 91–96. http://dx.doi.org/10.1016/j.solener.2021.07.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Baidakova, N. A., V. A. Verbus, E. E. Morozova, A. V. Novikov, E. V. Skorohodov, M. V. Shaleev, D. V. Yurasov, A. Hombe, Y. Kurokawa et N. Usami. « Selective etching of Si, SiGe, Ge and its usage for increasing the efficiency of silicon solar cells ». Semiconductors 51, no 12 (décembre 2017) : 1542–46. http://dx.doi.org/10.1134/s1063782617120028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Lueck, M. R., C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald et S. A. Ringel. « Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage ». IEEE Electron Device Letters 27, no 3 (mars 2006) : 142–44. http://dx.doi.org/10.1109/led.2006.870250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie