Littérature scientifique sur le sujet « Shwachman-Diamond »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Shwachman-Diamond ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Shwachman-Diamond"
Tan, Huihan, Dequan Su et Zhiqiang Zhuo. « Shwachman-diamond syndrome ». Medicine 100, no 7 (19 février 2021) : e24712. http://dx.doi.org/10.1097/md.0000000000024712.
Texte intégralSabirova, D. R., A. R. Shakirova, I. I. Ramazanova et N. V. Shakurova. « Shwachman–Diamond Syndrome ». Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 66, no 5 (9 décembre 2021) : 223–26. http://dx.doi.org/10.21508/1027-4065-2021-66-5-223-226.
Texte intégralShimamura, Akiko. « Shwachman-Diamond Syndrome ». Seminars in Hematology 43, no 3 (juillet 2006) : 178–88. http://dx.doi.org/10.1053/j.seminhematol.2006.04.006.
Texte intégralDror, Yigal, et Melvin H. Freedman. « Shwachman-Diamond Syndrome ». British Journal of Haematology 118, no 3 (15 août 2002) : 701–13. http://dx.doi.org/10.1046/j.1365-2141.2002.03585.x.
Texte intégralMack, David R. « Shwachman-Diamond syndrome ». Journal of Pediatrics 141, no 2 (août 2002) : 164–65. http://dx.doi.org/10.1067/mpd.2002.126918.
Texte intégralSmith, O. P. « Shwachman-Diamond syndrome ». Seminars in Hematology 39, no 2 (avril 2002) : 95–102. http://dx.doi.org/10.1053/shem.2002.31915.
Texte intégralAbraham-Inpijn, Luzi. « SHWACHMAN-DIAMOND SYNDROOM ». Tandartspraktijk 33, no 6 (juin 2012) : 58–61. http://dx.doi.org/10.1007/s12496-012-0085-7.
Texte intégralDall’Oca, C., M. Bondi, M. Merlini, M. Cipolli, F. Lavini et P. Bartolozzi. « Shwachman–Diamond syndrome ». MUSCULOSKELETAL SURGERY 96, no 2 (27 décembre 2011) : 81–88. http://dx.doi.org/10.1007/s12306-011-0174-z.
Texte intégralAndolina, Jeffrey R., Colleen B. Morrison, Alexis A. Thompson, Sonali Chaudhury, A. Kyle Mack, Maria Proytcheva et Seth J. Corey. « Shwachman-Diamond Syndrome ». Journal of Pediatric Hematology/Oncology 35, no 6 (août 2013) : 486–89. http://dx.doi.org/10.1097/mph.0b013e3182667c13.
Texte intégralMaslak, P. « Shwachman-Diamond Syndrome ». ASH Image Bank 2005, no 0314 (14 mars 2005) : 101320. http://dx.doi.org/10.1182/ashimagebank-2005-101320.
Texte intégralThèses sur le sujet "Shwachman-Diamond"
ANDRÉ, VALENTINA ISABELLA. « Improving the understanding of Shwachman-Diamond Syndrome ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29980.
Texte intégralBARDELLI, DONATELLA. « SHWACHMAN-DIAMOND SYNDROME : FROM PATHOGENESIS TO DRUG TARGETING ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/170787.
Texte intégralShwachman-Diamond Syndrome (SDS) is a rare autosomal recessive disease, characterized by exocrine pancreatic disorder, hematological aberrancies, bone marrow failure and cognitive impairment. In 90% of patients the SBDS gene is found mutated. Similar to other marrow failure syndromes, SDS patients have an increased risk for developing myelodysplastic syndrome and AML. To date, the mechanisms underlying the bone marrow failure in SDS patients are not fully understood. Microenvironment constituents and in particular mesenchymal stromal cells (MSCs) are considered the pivotal organizers for the generation, maintenance and plasticity of the hematopoietic stem cell niche. Recent studies show that specific changes in MSCs may be sufficient to initiate a complex phenotype of disordered homeostasis with similarities to myelodysplasia. We have demonstrated that MSCs obtained from SDS patients were comparable in vitro to HD but gene expression analysis of 16 SDS-MSCs showed that these cells had a specific gene expression signature compared to HD. These results suggest that it is possible that MSCs could be involved in the pathogenesis of the SDS marrow disorders. We increased our patients cohort and investigated whether SDS-MSCs were able to sustain malignant evolution using an innovative scaffold-free in vivo system based on the ex vivo generation of semi-cartilaginous pellets (SCPs) from human MSCs. We obtained SCPs stimulating MSCs for 21 days with a specific differentiating medium and a complete and correct formation of cartilaginous tissues both in HD and SDS samples. These SCPs were transplanted heterotopically into subcutaneous tissue of immunocompromised mice. After 60 days, we sacrificed mice and collected ossicles. We found that in 90% of cases, HD were able to recreate the hematopoietic microenvironment, with the establishment of a complete marrow niche, while none of the transplanted SDS-SCPs was able to recreate the hematopoietic microenvironment, revealing a defect in these differentiating process. The second part of our study was focused on testing a specific drug able to act on nonsense stop codon mutation, one of the most diffuse alterations in SDS patients, linked to risk of developing myelodysplastic syndrome. We successfully obtained restoration of SBDS protein in different cell lineages deriving from patients (Lymphoblastoids, MSCs, mononuclear cells from bone marrow). Protein restoration was also accompanied in some cases with an improvement of functionality. In particular, mononuclear cells from bone marrow treated with drug showed an increase in their ability to form colonies when cultured in a specific assay. This represents a powerful result, due to the potential clinical consequences related to possible therapeutic strategy. Indeed, SDS patients in future could take advantage of this drug to ameliorate their hematological defects and abolish other symptoms.
Menne, Tobias Fritz. « Functional insights into the protein family mutated in Shwachman-Diamond syndrome ». Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612892.
Texte intégralHoslin, Angela. « Genetic and phenotypic characterisation of a novel Efl1 mouse mutant of Shwachman Diamond syndrome ». Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:78fdeb8d-ed5c-4bc7-aca2-e71c50df49a0.
Texte intégralRigby, Kate. « The behavioral phenotype in Shwachman-diamond syndrome : An exploration of learning, behavioral and psychological functioning ». Thesis, Royal Holloway, University of London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529040.
Texte intégralBEDINI, GLORIA. « Shwachman-Diamond Syndrome : an autosomal recessive inherited bone marrow failure disorder with defective angiogenesis and lymphoid lineage impairment ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/304798.
Texte intégralShwachman-Diamond Syndrome (SDS, OMIM 260400) is a multi-organ disorder mainly characterized by bone marrow (BM) dysfunctions and exocrine pancreatic insufficiency. SDS patients present also severe haematologic abnormalities, with neutropenia as the most common deficiency. Of note, SDS patients have an increased risk for myelodysplastic syndrome (MDS) and malignant transformation to acute myeloid leukaemia (AML). In the first part of this work, we focused our attention on the in vitro angiogenic capability of SDS-mesenchymal stromal cells (MSCs). Angiogenesis is not only involved in the pathogenesis of solid tumours, but also in haematological malignancies. MSCs can potentiate angiogenesis via direct cell differentiation, cell-cell interaction, and autocrine or paracrine effects. Using both in vitro and in vivo models, our research group recently demonstrated that SDS-MSCs display a marked impairment in their angiogenic potential. Here, we confirm that SDS-derived cells obtained from a cohort of 10 patients show altered angiogenic properties in response to angiogenic stimuli and that the defective in vitro tube formation is associated with TGFβ1/VEGFA signalling abnormalities. Indeed, we show that the expression of several growth factors able to increase the endogenous release of VEGFA and to be induced by TGFβ1 is down-regulated in SDS- vs HD-MSCs. Moreover, by providing the exogenous administration of VEGFA or TGFβ1, we demonstrate that only SDS-MSCs from severely neutropenic patients can restore their angiogenic properties. Finally, our data also show that under angiogenic stimulation, P53 protein levels are 2-fold increase in SDS- vs HD-MSCs, as well as the number of early/late apoptotic cells. Collectively, our results suggest a strong link between TGFβ1 and VEGFA in dictating the altered in vitro angiogenic capability of SDS-MSCs. Moreover, we provide a rational to investigate whether the defective angiogenesis driven by SDS-MSCs could be related to neutropenia. The better comprehension of the molecular mechanisms regulating neutrophil number and functionality may lead to novel strategies for the management of recurrent SDS infections. The second part of our study was focused on the analysis of the molecular mechanisms and signalling pathways responsible of SDS patients neutropenia, and evolution to MDS or AML. Signal transducer and activator of transcription 3 (STAT3) is a key regulator of several cellular processes including neutrophil granulogenesis, leukaemia, and lymphoma malignant transformation. Firstly recognised as an interleukin-6 (IL6)-activated transcription factor, nowadays STAT3 is also considered a direct substrate for the mammalian target of rapamycin (mTOR). Recently, it has been demonstrated that both mTOR and STAT3 pathways are constitutively up-regulated in primary leukocytes and lymphoblastoid cell lines derived from SDS patients. Here, we show that mTOR-STAT3 signalling is markedly up-regulated in several cell subsets belonging to the lymphoid compartment of SDS patients. Furthermore, our data reveal elevated IL6 levels in cellular supernatants obtained from lymphoblasts, bone marrow mononuclear and mesenchymal stromal cells, and plasma samples obtained from a cohort of 10 patients. Of note, everolimus-mediated inhibition of mTOR signalling was associated with the basal state of phosphorylated STAT3. Finally, inhibition of mTOR-STAT3 pathway leads to normalization of IL6 expression in SDS cells. Altogether, our data strengthen the hypothesis that SDS affects both lymphoid and myeloid blood compartment and suggest everolimus as a potential therapeutic agent to reduce excessive mTOR-STAT3 activation in SDS [Vella A., et al. 2020]. The discovery of new altered molecular pathways underlying SDS pathophysiology could lead to the identification of new therapeutic targets for the correction of SDS-related haematological defects and the prevention of leukemic evolution.
Ho, William. « Characterization of oral diseases in Shwachman-Diamond syndrome ». 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370197&T=F.
Texte intégralEllenor, Darlene Wendy. « Attempts to identify interactors of the Shwachman-Diamond syndrome protein ». 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370359&T=F.
Texte intégralSen, Saswati. « Mechanisms of Erythropoietic Failure in Shwachman Diamond Syndrome Caused by Loss of the Ribosome-related Protein, SBDS ». Thesis, 2009. http://hdl.handle.net/1807/18860.
Texte intégralBoocock, Graeme Roy Brooke. « Identification and characterisation of the shwachman-diamond syndrome gene and its orthologues / ». 2006. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=442551&T=F.
Texte intégralLivres sur le sujet "Shwachman-Diamond"
Ho, William. Characterization of oral diseases in Shwachman-Diamond syndrome. 2005.
Trouver le texte intégralEllenor, Darlene Wendy. Attempts to identify interactors of the Shwachman-Diamond syndrome protein. 2005.
Trouver le texte intégralBoocock, Graeme Roy Brooke. Identification and characterisation of the shwachman-diamond syndrome gene and its orthologues. 2006.
Trouver le texte intégralEditorial Staff of Annals of the New York Academy of Sciences. Annals Meeting Reports - Research Advances in Bipolar Disorder and Shwachman-Diamond Syndrome, Volume 1242. Wiley & Sons, Limited, John, 2012.
Trouver le texte intégralPopovic, Maja. Genetic and physical mapping of the Shwachman-Diamond syndrome locus at the pericentromeric region of chromosome 7. 2003.
Trouver le texte intégralChapitres de livres sur le sujet "Shwachman-Diamond"
Chong-Neto, Herberto Jose, et Debora Carla Chong-Silva. « Shwachman-Diamond Syndrome ». Dans Encyclopedia of Medical Immunology, 593–96. New York, NY : Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-8678-7_147.
Texte intégralMyers, Kasiani C., et Akiko Shimamura. « Shwachman-Diamond Syndrome ». Dans Pediatric Oncology, 153–64. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-61421-2_8.
Texte intégralChong-Neto, Herberto Jose, et Debora Carla Chong-Silva. « Shwachman-Diamond Syndrome ». Dans Encyclopedia of Medical Immunology, 1–5. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-9209-2_147-1.
Texte intégralLeung, Alexander K. C., Cham Pion Kao, Andrew L. Wong, Alexander K. C. Leung, Thomas Kolter, Ute Schepers, Konrad Sandhoff et al. « Shwachman Diamond Syndrome ». Dans Encyclopedia of Molecular Mechanisms of Disease, 1931–32. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_1589.
Texte intégralCipolli, M. « Shwachman-Diamond Syndrome : Clinical Phenotypes ». Dans Genetic Disorders of the Exocrine Pancreas, 134–39. Basel : KARGER, 2002. http://dx.doi.org/10.1159/000070354.
Texte intégral« Shwachman-Diamond Syndrome (Shwachman-Bodian-Diamond syndrome, 7q11) ». Dans Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1806. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_15571.
Texte intégralMACK, DAVID. « Shwachman-Diamond Syndrome ». Dans Pediatric Gastroenterology, 329–34. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-323-03280-3.50046-6.
Texte intégral« Shwachman-Diamond Syndrome ». Dans Diagnostic Pathology : Blood and Bone Marrow, 256–59. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-323-39254-9.50055-6.
Texte intégral« Shwachman-Diamond Syndrome ». Dans High-Yield Imaging : Gastrointestinal, 931–32. Elsevier, 2010. http://dx.doi.org/10.1016/b978-1-4160-5544-0.00369-x.
Texte intégralLiu, Dongyou. « Shwachman−Diamond Syndrome ». Dans Handbook of Tumor Syndromes, 625–29. CRC Press, 2020. http://dx.doi.org/10.1201/9781351187435-78.
Texte intégralActes de conférences sur le sujet "Shwachman-Diamond"
Osetek-Müller, K., A. Bellon, A. Wagner, R. Suttner, D. Shakeshaft, W. Würfel, D. Wahl, H.-G. Klein et I. Rost. « Präimplantationsdiagnostik zum Ausschluss von Shwachman-Bodian-Diamond-Syndrom : Etablierung eines Allel-spezifischen Multiplex-PCR basierten Assays für das SBDS-Gen ». Dans 64. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe e. V. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1756977.
Texte intégralRapports d'organisations sur le sujet "Shwachman-Diamond"
Novina, Carl. Dysregulated microRNA Activity in Shwachman-Diamond Syndrome. Fort Belvoir, VA : Defense Technical Information Center, juillet 2015. http://dx.doi.org/10.21236/ada624270.
Texte intégralRevskoy, Sergei. Identification of Genetic Co-Modifiers in Shwachman-Diamond Syndrome. Fort Belvoir, VA : Defense Technical Information Center, mars 2013. http://dx.doi.org/10.21236/ada592341.
Texte intégralRevskoy, Sergei. Identification of Genetic Co-Modifiers in Shwachman-Diamond Syndrome. Fort Belvoir, VA : Defense Technical Information Center, août 2012. http://dx.doi.org/10.21236/ada592442.
Texte intégral