Thèses sur le sujet « Shimura varietie »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Shimura varietie ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
GROSSELLI, GIAN PAOLO. « Shimura varieties in the Prym loci of Galois covers ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/356638.
Texte intégralIn this thesis we study Shimura subvarieties in the moduli space of complex abelian varieties. These subvarieties arise from families of Galois covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to the projective line. We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, we build several Shimura subvarieties contained in the Prym loci.
Yafaev, Andrei. « Sous-varietes des varietes de shimura ». Rennes 1, 2000. http://www.theses.fr/2000REN10151.
Texte intégralPink, Richard. « Arithmetical compactification of mixed Shimura varieties ». Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/24807098.html.
Texte intégralHa, Eugene. « Quantum statistical mechanics of Shimura varieties ». [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980749964.
Texte intégralSoylu, Cihan. « Special Cycles on GSpin Shimura Varieties : ». Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107320.
Texte intégralThe results in this dissertation are on the intersection behavior of certain special cycles on GSpin(n, 2) Shimura varieties for n > 1. In particular, we will determine when the intersection of the special cycles defined by a collection of special endomorphisms consists of isolated points in terms of the fundamental matrix of this collection. These generalize the corresponding results in the lower dimensional cases proved by Kudla and Rapoport
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Chen, Ke. « Special subvarieties of mixed shimura varieties ». Paris 11, 2009. http://www.theses.fr/2009PA112177.
Texte intégralThis thesis studies the André-Oort conjecture for mixed Shimura varieties. The main result is: let M be a mixed Shimura variety defined by a mixed Shimura datum (P,Y), C a fixed Q-torus of P, and Z an arbitrary closed subvariety in M, then the set of maximal C-special subvarieties of M contained in Z is finite. The proof follows the strategy applied by L. Clozel, E. Ullmo, and A. Yafaev in the pure case, which relies on Ratner's theory on ergodic properties of unipotent flows on homogeneous spaces. Besides, a minoration on the degree of the Galois orbit of a special subvariety is proved in the mixed case, adapted from the pure case established by E. Ullmo and A. Yafaev. Finally, a relative version of the Manin-Mumford conjecture is proved in characteristic zero: let A be an abelian S-scheme of characteristic zero, then the Zariski closure of a sequence of torsion subschemes in A remains a finite union of torsion subschemes
Li, Hao. « Congruence relation for GSpin Shimura varieties : ». Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109206.
Texte intégralI prove the Chai-Faltings version of the Eichler-Shimura congruence relation for simple GSpin Shimura varieties with hyperspecial level structures at a prime p
Thesis (PhD) — Boston College, 2021
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Fiori, Andrew. « Questions in the theory of orthogonal shimura varieties ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119536.
Texte intégralLe but de cette thèse est l'exploration d'une variété de questions sur les variétés de Shimura de type orthogonal. On commence par une introduction à la théorie de ces espaces. Àpres, dans le but de caractériser les points spéciauxsur les variétés de Shimura de type orthogonal, on décrit les tores algébriques maximaux dans les groupes orthogonaux. Finalement, dans le but d'obtenir des formules explicites pour la dimension des espaces de formes modulaires sur les variétés de Shimura de type orthogonal, on trouve des formules pour les densités locales des réseaux. On se concentre sur les réseaux qui proviennent de la restriction de formes Hermitiennes.
Bultel, Oliver. « On the mod p-reduction of ordinary CM-points ». Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388853.
Texte intégralJohansson, Hans Christian. « Classicality of overconvergent automorphic forms on some Shimura varieties ». Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/12897.
Texte intégralCavicchi, Mattia. « Weights of the boundary motive of some Shimura varieties ». Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD032.
Texte intégralGiven a Shimura variety S associated to a reductive group G, we study the weight filtration in the cohomology of variations of Hodge structure µH(V ) and ℓ-adic sheaves µℓ(V) on S coming from algebraic representations V of G, with the aim of constructing motives for automorphic representations of G.In the first two chapters we review the theories that we use and we give some complements to them. In the first one we summarize the relationship between cohomology of Shimura varieties, automorphic representations and weights, whereas in the second one we recall relative Chow and Beilinson motives over PEL Shimura varieties and the applications of the theory of weight structures to this setting. In particular, we study in detail the action of the Hecke algebra at the level of motives. In the last two chapters we concentrate on the case of the group G =ResF|ℚGSp₄,F , for F a totally real number field, and to the associated Shimura varieties S (genus 2 Hilbert-Siegel varieties). In the third chapter, we study in detail the weight filtration on the degeneration of the sheaves µℓ(V) along the boundary of the Baily-Borel compactification of S. We are able to describe the weights in terms of an invariant of the representation V , called corank. From this, we deduce a complete characterization of the representations V such that the degeneration of µℓ(V) avoids the weights 0 and 1, and we find that they form a quite large class. In the fourth chapter, given such a representation V, we define motives for those automorphic representations of G which appear in the cohomology of µℓ(V). We then study the properties of such motives
Hörmann, Fritz. « The arithmetic volume of Shimura varieties of orthogonal type ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2010. http://dx.doi.org/10.18452/16226.
Texte intégralThe overall aim of this thesis is to compute arithmetic volumes of Shimura varieties of orthogonal type and natural heights of the special cycles on them. We develop a general theory of integral models of toroidal compactifications of Shimura varieties of Hodge type (and of its standard principal bundle) for the case of good reduction. This enables us, using the theory of Borcherds products, and generalizing work of Burgos, Bruinier and Kühn, to calculate the arithmetic volume of a Shimura variety associated with a lattice L of discriminant D, up to log(p)-contributions from primes p such that p^2|4D. The heights of the special cycles are calculated in the codimension 1 case up to log(p), p|2D, and with some additional restrictions in the codimension > 1 case. The values obtained are special derivatives of certain L-series. In the case of the special cycles they are equal to special derivatives of Fourier coefficients of certain normalized Eisenstein series (in addition, up to contributions from infinity) in accordance with conjectures of Bruinier-Kühn, Kudla, and others.
Yan, Q. « Adapted deformations and Ekedahl-Oort stratifications of Shimura varieties ». Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/540526.
Texte intégralFayad, Karam. « Semi-simplicity of l-adic representations with applications to Shimura varieties ». Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066356/document.
Texte intégralWe prove several abstract criteria for semi-simplicity of l-adic representations for profinite groups. As an application, we show that generalised Eichler-Shimura relations imply the semi-simplicity of a non-trivial subspace of middle cohomology of unitary Shimura varieties. The most complete results are obtained for unitary Shimura varieties of signature $(n,0)^a \times (n-1,1)^b \times (1,n-1)^c \times (0,n)^d$
Cauchi, Antonio. « On classes in the motivic cohomology of certain Shimura varieties ». Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10056126/.
Texte intégralRodriguez, Camargo Juan Esteban. « Locally analytic completed cohomology of Shimura varieties and overconvergent BGG maps ». Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEN027.
Texte intégralIn this thesis, we study the Hodge-Tate structure of the proétale cohomology of Shimura varieties. This document is divided in four main issues. First, we construct an integral model of the perfectoid modular curve. Using this formal scheme, we prove some vanishing results for the coherent cohomology of the perfectoid modular curve, we also provide a description of the dual completed cohomology as an inverse limit of integral modular forms of weight 2 by normalized traces. Secondly, we construct the overconvergent Eichler-Shimura map for the first coherent cohomology group, complementing the work of Andreatta-Iovita-Stevens. More precisely, we construct a map from the overconvergent cohomology with compact support of Boxer-Pilloni to the locally analytic modular symbols of Ash-Stevens. We reinterpret the construction of these maps in terms of the Hodge-Tate period map and the perfectoid modular curve. Thirdly, in a joint work with Joaquín Rodrigues Jacinto, we develop the classical theory of locally analytic representations of p-adic Lie groups in the context of condensed mathematics. Inspired from foundational works of Lazard, Schneider-Teitelbaum and Emerton, we define a notion of solid locally analytic representation for a compact p-adic Lie group. We prove that the category of solid locally analytic representations can be described as modules over algebras of analytic distributions. As an application, we prove a cohomological comparison theorem between solid group cohomology, solid group cohomology of the (derived) locally analytic vectors, and Lie algebra cohomology. Finally, we generalize the work of Lue Pan to arbitrary Shimura varieties. We construct a geometric Sen operator for a particular class of proetale modules over the structural sheaf which we call relative locally analytic. We prove that this Sen operator is related with the p-adic Simpson correspondence, and that it computes proétale cohomology. We apply this theory to Shimura varieties, obtaining that the computation of proétale cohomology can be translated in terms of Lie algebra cohomology over the flag variety via the Hodge-Tate period map. In particular, we prove that the Cp-extension of scalars of the locally analytic completed cohomology can be described as the analytic cohomology of the infinite-at-p level Shimura variety, of the locally analytic sections of the structural sheaf. This implies a rational version of the Calegari-Emerton conjectures for any Shimura variety without the hypothesis of the infinite-at-p level Shimura variety to be perfectoid. Then, we study the isotypic components of the locally analytic completed cohomology for the action of a Borel subalgebra. Using the interpretation as Lie algebra cohomology over the flag variety, we construct overconvergent BGG maps generalizing the previous work for the modular curve. In addition, we give a local proof of the classical Hodge-Tate decompositions for Shimura varieties, using the dual BGG resolution and the Hodge-Tate period map
Boxer, George A. « Torsion in the Coherent Cohomology of Shimura Varieties and Galois Representations ». Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467247.
Texte intégralMathematics
Zhang, C. « G-zips and Ekedahl-Oort strata for Hodge type Shimura varieties ». Doctoral thesis, Università degli Studi di Milano, 2013. http://hdl.handle.net/2434/235585.
Texte intégralTorzewski, Alexander. « Regulator constants of integral representations, together with relative motives over Shimura varieties ». Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/114472/.
Texte intégralMasdeu, Sabaté Marc. « CM cycles on varieties fibered over Shimura curves, and «p»-adic «L»-functions ». Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95183.
Texte intégralSoit f une forme modulaire de poids k ≥ 4 sur une courbe de Shimura, soit K un corps quadratique imaginaire, et soit p un premier fixé qu'on suppose inerte dans K. Le but de cette thèse est de construire une collection de cycles algébriques sur un motif de Chow approprié, et de démontrer qu'ils sont liés à la fonction-L p-adique anti-cyclotomique Lp(f,K,s) attachée à f et K introduite par Bertolini-Darmon-Iovita-Spieß dans [BDIS02]. Cette fonction d'une variable p-adique s s'annule dans l'intervalle critique s = 1,...,k−1, et nous nous intéressons à sa dérivée. Après avoir construit le motif et les cycles correspondants, nous calculons leur image par un analogue p-adique de l'application d'Abel-Jacobi, et nous retrouvons la dérivée de Lp(f,K,s) dans l'intervalle critique. Notre résultat principal est une généralisation du théorème obtenu par Iovita-Spieß dans [IS03], qui donne une formule du même genre pour la valeur centrale s = k/2. Cette thèse étend également les constructions introduites par Bertolini-Darmon-Prasanna dans [BDP09] au cadre des courbes de Shimura.
Dadoun, Yoël. « p-adic families of special cycles on a tower of unitary Shimura varieties ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS528.
Texte intégralWe study the p-adic properties of a family of special algebraic 1-cycles defined on a 3-dimensional unitary Shimura variety which appears in the setting of the Gan-Gross-Prasad conjectures. These cycles, introduced by Jetchev and also studied by Boumasmoud-Brooks-Jetchev and Boumasmoud, arise from the diagonal embedding of U(1,1) inside U(2,1) x U(1,1) attached to a CM extension E/F. These satisfy "horizontal" and "vertical" distribution relations for their conductors, making this family a new instance of a geometric Euler system generalizing the family of "CM-points" on modular curves, whose use by Kolyvagin provided a major conceptual advance towards the BSD conjecture. The proof of these local relations between the Galois action and the action of the Hecke algebra of G= U(2,1) x U(1,1) make full use of some operators acting on the local Bruhat-Tits building of G, at the corresponding finite places of F. We construct a tau-local filtration of G - for some inert place tau of F above p - by Iwahori-type compact open subgroups, which are the stabilizers of an increasing family of segments in a same apartment. We adapt to segments the notion of "successor" operators studied by Boumasmod-Brooks-Jetchev and show that these arise from the local Iwahori-Hecke algebra. We show that the tower of varieties induced by this filtration makes the Galois and Hecke actions "compatible" with the change-of-level maps. This level-wise vertical relation is an ingredient towards the existence of a p-adic family of Euler systems in the middle-degree étale cohomology of the Shimura variety attached to G
Vollaard, Inken-Kareen. « The supersingular locus of the Shimura variety of GU (1, s) ». [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976736950.
Texte intégralCaraiani, Ana. « Local-Global Compatibility and the Action of Monodromy on nearby Cycles ». Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10352.
Texte intégralMathematics
Wu, Haifeng Verfasser], et Ulrich [Akademischer Betreuer] [Görtz. « The Supersingular Locus of Shimura Varieties with Exotic Good Reduction / Haifeng Wu ; Betreuer : Ulrich Görtz ». Duisburg, 2016. http://d-nb.info/111466118X/34.
Texte intégralTayou, Salim. « Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS144/document.
Texte intégralThis thesis deals with some arithmetical and geometrical aspects of orthogonal Shimura varieties. These varieties appear naturally as moduli spaces of Hodge structures of K3 type. In some cases, they parametrize geometric objects as K3 surfaces and their analogous in higher dimensions, the hyperkähler varieties. This modular point of view will be our guiding principle throughout this dissertation. In the first part, we prove an equidistribution result of the Hodge locus in variations of Hodge structures of K3 type above complex quasi-projective curves. In the second part, we study analogous results in the arithemtic setting. An example of statements we get is the following: given a K3 surface having everywhere good reduction and satisfying an approximation hypothesis, there exists a specialization with strictly increasing geometric Picard rank. In both cases, our methods take advantage of the rich arithmetic, automorphic and geometric structure of orthogonal Shimura varieties as well as the Kuga-Satake construction that links them to moduli spaces of abelian varieties. Finally, we extend a result of Bogomolov and Tschinkel. In particular, we show that any K3 surface defined over an algebraically closed field of arbitrary characteristic and admitting a non-isotrivial elliptic fibration contains infinitely many rational curves
Hesse, Jens [Verfasser], Torsten [Akademischer Betreuer] Wedhorn et Timo [Akademischer Betreuer] Richarz. « Central leaves and EKOR strata on Shimura varieties with parahoric reduction / Jens Hesse ; Torsten Wedhorn, Timo Richarz ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/1207999776/34.
Texte intégralKret, Arno. « Stratification de Newton des variétés de Shimura et formule des traces d’Arthur-Selberg ». Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112365/document.
Texte intégralWe study the Newton stratification of Shimura varieties of PEL type, at the places of good reduction. We consider the basic stratum of certain simple Shimura varieties of PEL type at a place of good reduction. Under simplifying hypotheses we prove a relation between the l-adic cohomology of this basic stratum and the cohomology of the complex Shimura variety. In particular we obtain explicit formulas for the number of points in the basic stratum over finite fields, in terms of automorphic representations. We obtain our results using the trace formula and truncation of the formula of Kottwitz for the number of points on a Shimura variety over a finite field. We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-type of type (A) is non-empty at a prime of good reduction. This result is already established by Viehmann-Wedhorn; we give a new proof of this theorem. We consider the basic stratum of Shimura varieties associated to certain unitary groups in cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke operators acting on the basic stratum. We relate the rate of convergence to the bounds from the Ramanujan conjecture of certain particular cuspidal automorphic representations on Gl_n. The Ramanujan conjecture turns out to be known for these automorphic representations, and therefore we obtain very sharp estimates on the rate of convergence. We prove that any connected reductive group G over a non-Archimedean local field has a cuspidal representation. Together with Erez Lapid we compute the Jacquet module of a Ladder representation at any standard parabolic subgroup of the general linear group over a non-Archimedean local field
Nguyen, Manh Tu. « Higher Hida Theory on Unitary Group GU (2,1) ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN009.
Texte intégralIn their breakthrough work, Calegari and Geraghty have shown how to bypass some serious restrictions of the original method by Taylor-Wiles, thus allowing us to attack more general modularity conjectures and related questions. Their method hinges on two conjectures, one is related to the problem of attaching Galois representations to torsion classes in the cohomology of Shimura varieties and the other to the requirement that these cohomology groups, localised at an appropriate ideal are non zero only in a certain range. The first conjecture is addressed in a great generality by Peter Scholze, but the second remains elusive. Recently, for coherent cohomology, inspired by the classical Hida theory, Vincent Pilloni has proposed a method consisting of p-adically interpolating the entire complex of coherent sheaves of automorphic forms on the Siegel threefold. This serves as a way to get around the second conjecture above and plays a crucial role in a recent work, where they show that abelian surfaces over a totally real field are potentially modular. In this thesis, we adapt the argument of Pilloni to construct a Hida complex interpolating classes in higher cohomology groups of the Picard modular surface. In a future work, we hope to use this to obtain some similar modularity results for abelian three-folds arising as Jacobians of some Picard curves
Cloitre, Guillaume. « Sur le motif intérieur de certaines variétés de Shimura : le cas des variétés de Picard ». Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCD033/document.
Texte intégralPicard varieties are Shimura varieties associated to the group of unitary similitudes of an hermitian space of dimension 3 over a CM eld. They parametrize isomorphism classes of abelian varieties with some additional data. In particular, there exists a universal abelian variety over a Picard variety and more generally Kuga-Sato families. Cohomology groups are attached to these varieties. Automorphic representations can be found in cohomology groups, more precisely in interior cohomology groups. Following Langlands' program, these representations correspond conjecturally to motives. The main result of this thesis is the construction of direct factors of the interior motive of certain Kuga-Sato families over a Picard variety, meaning a motivic analogue of interior cohomology. To prove this, we study the weights of the boundary motive of such families. We deduce from this the existence of a motive associated to certain automorphic representations
Orr, Martin. « La conjecture d'André-Pink : orbites de Hecke et sous-variétés faiblement spéciales ». Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00879010.
Texte intégralRen, Jinbo. « Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS208/document.
Texte intégralIn this thesis, we study some arithmetic and geometric problems for Shimura varieties. This thesis consists of three parts. In the first part, we study some applications of model theory to number theory. In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j-function and, with Mok, have recently announced a proof of its generalization to any (pure) Shimura variety. We refer to this generalization as the hyperbolic Ax-Schanuel conjecture. In this article, we show that the hyperbolic Ax-Schanuel conjecture can be used to reduce the Zilber-Pink conjecture for Shimura varieties to a problem of point counting. We further show that this point counting problem can be tackled in a number of cases using the Pila-Wilkie counting theorem and several arithmetic conjectures. Our methods are inspired by previous applications of the Pila-Zannier method and, in particular, the recent proof by Habegger and Pila of the Zilber-Pink conjecture for curves in abelian varieties. This is joint work with Christopher Daw. The second part is devoted to a Galois cohomological result towards the proof of the Zilber-Pink conjecture. Let G be a linear algebraic group over a field k of characteristic 0. We show that any two connected semisimple k-subgroups of G that are conjugate over an algebraic closure of kare actually conjugate over a finite field extension of k of degree bounded independently of the subgroups. Moreover, if k is a real number field, we show that any two connected semisimple k-subgroups of G that are conjugate over the field of real numbers ℝ are actually conjugate over a finite real extension of k of degree bounded independently of the subgroups. This is joint work with Mikhail Borovoi and Christopher Daw. Finally, in the third part, we consider the distribution of compact Shimura varieties. We recall that a Shimura variety S of dimension 1 is always compact unless S is a modular curve. We generalize this observation by defining a height function in the space of Shimura varieties attached to a fixed real reductive group. In the case of unitary groups, we prove that the density of non-compact Shimura varieties is zero
Hernandez, Valentin. « Géométrie p-adique des variétés de Shimura de type P.E.L et familles de formes automorphes ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066041.
Texte intégralIn this thesis we study the p-adic properties of P.E.L. type Shimura varieties which have good reduction at p and for which the ordinary locus is empty. In the first chapter, we construct locally some invariants that cuts out inside the Shimura varieties an open and dense locus, the mu-ordinary locus, and study the geometric properties of these invariants. In the second chapter we extend to the unramified mu-ordinary case the theory of the canonical subgroup. Thus, we construct for ’nearly’ mu-ordinary families of p-divisible groups a canonical filtration of the p^n-torsion. This applies in particular to some strict rigid neighbourhoods of the mu-ordinary locus of the Shimura varieties previously studied. In the third chapter, which is a collaboration with Stéphane Bijakowski, we extend the construction of the invariants of the first chapter to some local integral models of Shimura varieties where the prime p can be ramified in the local datum. Finally, in the last chapter, we use the constructions of the first two chapter to construct a rigid variety, the Eigenvariety, which parametrises the finite slope p-adic families of Picard automorphic forms when the prime p is inert in the quadratic imaginary field of the Picard datum
Amorós, Carafí Laia. « Images of Galois representations and p-adic models of Shimura curves ». Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/471452.
Texte intégralHartwig, Philipp [Verfasser], Ulrich [Akademischer Betreuer] Görtz et Michael [Akademischer Betreuer] Rapoport. « Kottwitz-Rapoport and p-rank strata in the reduction of Shimura varieties of PEL type / Philipp Hartwig. Gutachter : Michael Rapoport. Betreuer : Ulrich Görtz ». Duisburg, 2012. http://d-nb.info/1026012287/34.
Texte intégralNualart, Riera Joan. « On the hyperbolic uniformization of Shimura curves with an Atkin-Lehner quotient of genus 0 ». Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396134.
Texte intégralL’objectiu principal d’aquesta tesi és contribuir a la uniformització hiperbòlica explícita de les corbes de Shimura. Ens restringim a les corbes associades a ordres d’Eichler dins d’àlgebres de quaternions racionals tals que el seu quocient pel grup d’involucions d’Atkin-Lehner és de gènere 0. Aquest cas,tot I que presenta nombroses diferències amb el cas modular clàssic, també hi té certes similituds. Utilitzem aquest fet per a discutir una aproximació al problema de l’obtenció d’uniformitzacions hiperbòliques explícites d’aquestes corbes i d’alguns recobriments, així com també algunes aplicacions, que il·lustrem amb abundants exemples. Per a entendre millor el problema, començarem introduint breument el seu rerefons històric. Després explicarem en detall les nostres contribucions i el contingut de la memòria.
Koskivirta, Jean-stefan. « Relation de congruence pour les variétés de Shimura associées aux groupes unitaires GU (n-1,1) ». Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD018/document.
Texte intégralBlasius and Rogawski have stated a conjecture saying that the action of the Frobenius element on the cohomology of a Shimura variety is annihilated by some polynomial with coefficients in the Hecke algebra. This is the analogue of the Eichler-Shimura congruence relation for the modular curve. In this thesis, we prove this conjecture for Shimura varieties associated to unitary groups in signature (n-1,1) when n is odd. We also investigate some particular aspects in the case n=3. We explicitely show the congruence relation on the ordinary locus. Further, we study the graph of supersingular Dieudonné crystals and liftings of isogenies to characteristic zero
Fox, Maria. « TheGL(4) Rapoport-Zink Space : ». Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108374.
Texte intégralThis dissertation gives a description of the GL(4) Rapoport-Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl-Oort stratification. As an application of this, this dissertation also includes a description of the supersingular locus of the Shimura variety for the group GU(2,2) over a prime split in the relevant imaginary quadratic field
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Hamacher, Paul Jonas [Verfasser], Eva [Akademischer Betreuer] Viehmann, Michael [Akademischer Betreuer] Rapoport et Andreas [Akademischer Betreuer] Rosenschon. « The geometry of Newton strata in the reduction modulo p of Shimura varieties of PEL type / Paul Jonas Hamacher. Gutachter : Eva Viehmann ; Michael Rapoport ; Andreas Rosenschon. Betreuer : Eva Viehmann ». München : Universitätsbibliothek der TU München, 2014. http://d-nb.info/1054135134/34.
Texte intégralGao, Ziyang. « The mixed Ax-Lindemann theorem and its applications to the Zilber-Pink conjecture ». Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112347/document.
Texte intégralThe Zilber-Pink conjecture is a diophantine conjecture concerning unlikely intersections in mixed Shimura varieties. It is a common generalization of the André-Oort conjecture and the Mordell-Lang conjecture. This dissertation is aimed to study the Zilber-Pink conjecture. More concretely, we will study the André-Oort conjecture, which predicts that a subvariety of a mixed Shimura variety having dense intersection with the set of special points is special, and the André-Pink-Zannier conjecture which predicts that a subvariety of a mixed Shimura variety having dense intersection with a generalized Hecke orbit is weakly special. The latter conjecture generalizes the Mordell-Lang conjecture as explained by Pink.In the Pila-Zannier method, a key point to study the Zilber-Pink conjec- ture is to prove the Ax-Lindemann theorem, which is a generalization of the functional analogue of the classical Lindemann-Weierstrass theorem. One of the main results of this dissertation is to prove the Ax-Lindemann theorem in its most general form, i.e. the mixed Ax-Lindemann theorem. This generalizes results of Pila, Pila-Tsimerman, Ullmo-Yafaev and Klingler-Ullmo-Yafaev concerning the Ax-Lindemann theorem for pure Shimura varieties.Another main result of this dissertation is to prove the André-Oort conjecture for a large class of mixed Shimura varieties: unconditionally for any mixed Shimura variety whose pure part is a subvariety of AN6 (e.g. products of universal families of abelian varieties of dimension 6 and the Poincaré bundle over A6) and under GRH for all mixed Shimura varieties of abelian type. This generalizes existing theorems of Klinger-Ullmo-Yafaev, Pila, Pila-Tsimerman and Ullmo concerning pure Shimura varieties.As for the André-Pink-Zannier conjecture, we prove several cases when the ambient mixed Shimura variety is the universal family of abelian varieties. First we prove the overlap of André-Oort and André-Pink-Zannier, i.e. we study the generalized Hecke orbit of a special point. This generalizes results of Edixhoven-Yafaev and Klingler-Ullmo-Yafaev for Ag. Secondly we prove the conjecture in the following case: a subvariety of an abelian scheme over a curve is weakly special if its intersection with the generalized Hecke orbit of a torsion point of a non CM fiber is Zariski dense. Finally for the generalized Hecke orbit of an arbitrary algebraic point, we prove the conjecture for curves. These generalize existing results of Habegger-Pila and Orr for Ag.In all these proofs, the o-minimal theory, in particular the Pila-Wilkie counting theorems, plays an important role
Spence, Haden. « O-minimality, nonclassical modular functions and diophantine problems ». Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:38147ede-511d-4c5e-abba-657c2cbfb4f3.
Texte intégralFargues, Laurent. « Correspondances de Langlands locales dans la cohomologie des espaces de Rapoport-Zink ». Paris 7, 2001. http://www.theses.fr/2001PA077192.
Texte intégralChen, Jiaming. « Topology at infinity and atypical intersections for variations of Hodge structures ». Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7049.
Texte intégralThis thesis studies topological and geometrical aspects of some interesting spaces springing from Hodge theory, such as locally symmetric varieties, and their generalization, Hodge varieties; and the period maps which take value in them.In Chapter 1 (joint work with Looijenga) we study the Baily-Borel compactifications of locally symmetric varieties and its toroidal variants, as well as the Deligne-Mumford compactification of the moduli of curves from a topological viewpoint. We define a "stacky homotopy type" for these spaces as the homotopy type of a small category and thus generalize an old result of Charney-Lee on the Baily-Borel compactificationof Ag and recover (and rephrase) a more recent one of Ebert-Giansiracusa on the Deligne-Mumford compactification. We also describe an extension of the period map for Riemann surfaces in these terms.In Chapter 2 (joint work with Looijenga) we give a relatively simple algebrogeometric proof of another result of Charney and Lee on the stable cohomology of the Satake-Baily-Borel compactification of Ag and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers.In Chapter 3 (themain chapter of this thesis) we study an atypical intersection problem for an integral polarized variation of Hodge structure V on a smooth irreducible complex quasi-projective variety S. We show that the union of the non-factor special subvarieties for (S,V), which are of Shimura type with dominant period maps, is a finite union of special subvarieties of S. This proves a conjecture of Klingler
Karnataki, Aditya Chandrashekhar. « Two theorems on Galois representations and Shimura varieties ». Thesis, 2016. https://hdl.handle.net/2144/17738.
Texte intégralHa, Eugene [Verfasser]. « Quantum statistical mechanics of Shimura varieties / vorgelegt von Eugene Ha ». 2006. http://d-nb.info/980749964/34.
Texte intégralXiao, Xiao (Luciena). « On The Hecke Orbit Conjecture for PEL Type Shimura Varieties ». Thesis, 2020. https://thesis.library.caltech.edu/13757/1/Thesis_Final.pdf.
Texte intégralThe Hecke orbit conjecture plays an important role in understanding the geometric structure of Shimura varieties. First postulated by Chai and Oort in 1995, the Hecke orbit conjecture predicts that prime-to-p Hecke correspondences on mod p reductions of Shimura varieties characterize the foliation structure formed by Oort's central leaves. In other words, every prime-to-p Hecke orbit is Zariski dense in the central leaf containing it. Roughly speaking, a central leaf is the locus in a Shimura variety consisting of all points whose corresponding Barsotti-Tate groups belong to a fixed geometric isomorphism class. On the other hand, the prime-to-p Hecke orbit of a closed point x is the (countable) set consisting of all points y such that there is a prime-to-p quasi-isogeny from x to y.
In 2005, Chai and Yu proved the Hecke orbit conjecture for Hilbert modular varieties, followed by a proof for Siegel modular varieties by Chai and Oort in the same year. The major purpose of the present work is to generalize the method of Chai and Oort to Shimura varieties of PEL type. We show that the Hecke orbit conjecture holds for points in certain irreducible components of Newton strata under our assumptions.
Meusers, Volker [Verfasser]. « Local L(2)-cohomology of Shimura varieties / vorgelegt von Volker Meusers ». 2007. http://d-nb.info/989890503/34.
Texte intégralHesse, Jens. « Central leaves and EKOR strata on Shimura varieties with parahoric reduction ». Phd thesis, 2020. https://tuprints.ulb.tu-darmstadt.de/11543/1/prom-official.pdf.
Texte intégralHörmann, Fritz [Verfasser]. « The arithmetic volume of Shimura varieties of orthogonal type / von Fritz Hörmann ». 2010. http://d-nb.info/1010606832/34.
Texte intégralKrishnamoorthy, Raju. « Dynamics, Graph Theory, and Barsotti-Tate Groups : Variations on a Theme of Mochizuki ». Thesis, 2016. https://doi.org/10.7916/D88K792N.
Texte intégralMoya, Giusti Matias Victor. « Sobre la existencia de clases fantasma en la cohomología de ciertas variedades de Shimura ». Doctoral thesis, 2014. http://hdl.handle.net/11086/2878.
Texte intégralEn este trabajo, estudiamos la existencia de clases fantasma en la cohomología de ciertas variedades de Shimura asociadas a grupos algebráicos de rango racional 2. Utilizamos ciertos argumentos sobre los pesos de las estructuras de Hodge mixtas asociadas a los espacios de cohomología involucrados en la definición del espacio de clases fantasma.