Littérature scientifique sur le sujet « Shell nanowire »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Shell nanowire ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Shell nanowire"
Chopra, Nitin, Yuan Li et Kuldeep Kumar. « Cobalt oxide-tungsten oxide nanowire heterostructures : Fabrication and characterization ». MRS Proceedings 1675 (2014) : 191–96. http://dx.doi.org/10.1557/opl.2014.863.
Texte intégralLee, Sun Sook, Hyun Jin Kim, Taek-Mo Chung, Young Kuk Lee, Chang Gyoun Kim et Ki-Seok An. « Fabrication of Nanocomposite Based on ZnO Nanowire ». Journal of Nanoscience and Nanotechnology 8, no 9 (1 septembre 2008) : 4895–98. http://dx.doi.org/10.1166/jnn.2008.ic80.
Texte intégralSon, Kwang-Soo, Dong Hyun Lee, Jae-Woong Choung, Yong Bum Pyun, Won Il Park, Taeseup Song et Ungyu Paik. « Catalyst-free synthesis and cathodoluminescent properties of ZnO nanobranches on Si nanowire backbones ». Journal of Materials Research 23, no 12 (décembre 2008) : 3403–8. http://dx.doi.org/10.1557/jmr.2008.0400.
Texte intégralVERMA, ASHWANI, BAHNIMAN GHOSH et AKSHAY KUMAR SALIMATH. « EFFECT OF ELECTRIC FIELD, TEMPERATURE AND CORE DIMENSIONS IN III–V COMPOUND CORE–SHELL NANOWIRES ». Nano 09, no 04 (juin 2014) : 1450051. http://dx.doi.org/10.1142/s1793292014500519.
Texte intégralLiu, Liqing, Hui Wang, Dehao Wang, Yongtao Li, Xuemin He, Hongguang Zhang et Jianping Shen. « ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells ». Crystals 10, no 4 (21 avril 2020) : 325. http://dx.doi.org/10.3390/cryst10040325.
Texte intégralShiave, Ali Imran, Ravi Pratap Singh Tomar, Ingrid Padilla Espinosa et Ram Mohan. « Deformation Mechanisms and Dislocations in Nickel–Cobalt Core–Shell Nanowires Under Uniaxial Tensile Loading—A Molecular Dynamics Modeling Analysis ». Advanced Science, Engineering and Medicine 11, no 12 (1 décembre 2019) : 1187–201. http://dx.doi.org/10.1166/asem.2019.2478.
Texte intégralAzmy, Ilham, et Jun Wang. « Construction of Hierarchical CuCo2O4-Ni(OH)2 Core-Shell Nanowire Arrays for High-Performance Pseudocapacitors ». Aceh International Journal of Science and Technology 11, no 1 (30 avril 2022) : 85–95. http://dx.doi.org/10.13170/aijst.11.1.24181.
Texte intégralLi, Xiaoxin, Xiaogan Li, Ning Chen, Xinye Li, Jianwei Zhang, Jun Yu, Jing Wang et Zhenan Tang. « CuO-In2O3Core-Shell Nanowire Based Chemical Gas Sensors ». Journal of Nanomaterials 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/973156.
Texte intégralKim, Jung Han, Seul Cham Kim, Do Hyun Kim, Kyu Hwan Oh, Woong-Ki Hong, Tae-Sung Bae et Hee-Suk Chung. « Fabrication and Characterization of ZnS/Diamond-Like Carbon Core-Shell Nanowires ». Journal of Nanomaterials 2016 (2016) : 1–6. http://dx.doi.org/10.1155/2016/4726868.
Texte intégralMonaico, Eduard V., Vadim Morari, Veaceslav V. Ursaki, Kornelius Nielsch et Ion M. Tiginyanu. « Core–Shell GaAs-Fe Nanowire Arrays : Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties ». Nanomaterials 12, no 9 (28 avril 2022) : 1506. http://dx.doi.org/10.3390/nano12091506.
Texte intégralThèses sur le sujet "Shell nanowire"
Connors, Benjamin James. « Simulation of current crowding mitigation in GaN core-shell nanowire led designs ». Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41206.
Texte intégralFickenscher, Melodie A. « Optical and Structural Characterization of Confined and Strained Core/Multi-Shell Semiconducting Nanowires ». University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1329936272.
Texte intégralKüpers, Hanno. « Growth and properties of GaAs/(In,Ga)As core-shell nanowire arrays on Si ». Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19402.
Texte intégralThis thesis presents an investigation of the growth of GaAs nanowires (NWs) and (In,Ga)As shells by molecular beam epitaxy (MBE) with a second focus on the optical properties of these core-shell structures. The selective-area growth of GaAs NWs on Si substrates covered by an oxide mask is investigated, revealing the crucial impact of the surface preparation on the vertical yield of NW arrays. Based on these results, a two-step growth approach is presented that enables the growth of thin and untapered NWs while maintaining the high vertical yield. For a detailed quantitative description of the NW shape evolution, a growth model is derived that comprehensively describes the NW shape resulting from changes of the droplet size during elongation and direct vapour-solid growth on the NW sidewalls. This growth model is used to predict the NW shape over a large parameter space to find suitable conditions for the realization of desired NW shapes and dimensions. Using these GaAs NW arrays as templates, the optimum parameters for the growth of (In,Ga)As shells are investigated and we show that the locations of the sources in the MBE system crucially affect the material quality. Here, the three-dimensional structure of the NWs in combination with the substrate rotation and the directionality of material fluxes in MBE results in different flux sequences on the NW sidefacets that determine the growth dynamics and hence, the point defect density. For GaAs NWs with optimum (In,Ga)As shell and outer GaAs shell, we demonstrate that thermionic emission with successive nonradiative recombination at the surface leads to a strong thermal quenching of the luminescence intensity, which is succesfully suppressed by the addition of an AlAs barrier shell to the outer shell structure. Finally, a process is presented that enables the ex-situ annealing of NWs at high temperatures resulting in the reduction of alloy inhomogeneities in the (In,Ga)As shell quantum wells and small emission linewidths.
Alqarni, Fahad, et Fahad Dhafer Alqarni. « Study of Piezo-phototronic Effect on Type-II Heterojunction ZnO/ZnSe Core/Shell Nanowire Array ». ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2034.
Texte intégralYang, Li. « First-principles Calculations on the Electronic, Vibrational, and Optical Properties of Semiconductor Nanowires ». Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14133.
Texte intégralKlankowski, Steven Arnold. « Hybrid core-shell nanowire electrodes utilizing vertically aligned carbon nanofiber arrays for high-performance energy storage ». Diss., Kansas State University, 2015. http://hdl.handle.net/2097/27651.
Texte intégralDepartment of Chemistry
Jun Li
Nanostructured electrode materials for electrochemical energy storage systems have been shown to improve both rate performance and capacity retention, while allowing considerably longer cycling lifetime. The nano-architectures provide enhanced kinetics by means of larger surface area, higher porosity, better material interconnectivity, shorter diffusion lengths, and overall mechanical stability. Meanwhile, active materials that once were excluded from use due to bulk property issues are now being examined in new nanoarchitecture. Silicon was such a material, desired for its large lithium-ion storage capacity of 4,200 mAh g[superscript]-1 and low redox potential of 0.4 V vs. Li/Li[superscript]+; however, a ~300% volume expansion and increased resistivity upon lithiation limited its broader applications. In the first study, the silicon-coated vertically aligned carbon nanofiber (VACNF) array presents a unique core-shell nanowire (NW) architecture that demonstrates both good capacity and high rate performance. In follow-up, the Si-VACNFs NW electrode demonstrates enhanced power rate capabilities as it shows excellent storage capacity at high rates, attributed to the unique nanoneedle structure that high vacuum sputtering produces on the three-dimensional array. Following silicon’s success, titanium dioxide has been explored as an alternative highrate electrode material by utilizing the dual storage mechanisms of Li+ insertion and pseudocapacitance. The TiO[subscript]2-coated VACNFs shows improved electrochemical activity that delivers near theoretical capacity at larger currents due to shorter Li[superscript]+ diffusion lengths and highly effective electron transport. A unique cell is formed with the Si-coated and TiO[subscript]2-coated electrodes place counter to one another, creating the hybrid of lithium ion battery-pseudocapacitor that demonstrated both high power and high energy densities. The hybrid cell operates like a battery at lower current rates, achieving larger discharge capacity, while retaining one-third of that capacity as the current is raised by 100-fold. This showcases the VACNF arrays as a solid platform capable of assisting lithium active compounds to achieve high capacity at very high rates, comparable to modern supercapacitors. Lastly, manganese oxide is explored to demonstrate the high power rate performance that the VACNF array can provide by creating a supercapacitor that is highly effective in cycling at various high current rates, maintaining high-capacity and good cycling performance for thousands of cycles.
Messinese, Danilo. « Morphological instability analysis of a misfit strained core-shell nanowire for the growth of quantum dots ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7159/.
Texte intégralDay, Robert Watson. « Crystal Growth on One-Dimensional Substrates : Plateau-Rayleigh Crystal Growth and Other Opportunities for Core/Shell Nanowire Synthesis ». Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17464133.
Texte intégralChemistry and Chemical Biology
Küpers, Hanno [Verfasser], Henning [Gutachter] Riechert, Christoph [Gutachter] Koch et Stefano [Gutachter] Sanguinetti. « Growth and properties of GaAs/(In,Ga)As core-shell nanowire arrays on Si / Hanno Küpers ; Gutachter : Henning Riechert, Christoph Koch, Stefano Sanguinetti ». Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1185578552/34.
Texte intégralSahu, Gayatri. « Investigating the Electron Transport and Light Scattering Enhancement in Radial Core-Shell Metal-Metal Oxide Novel 3D Nanoarchitectures for Dye Sensitized Solar Cells ». ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/td/1478.
Texte intégralLivres sur le sujet "Shell nanowire"
Narlikar, A. V. Small Superconductors—Introduction. Sous la direction de A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.1.
Texte intégralChapitres de livres sur le sujet "Shell nanowire"
Hazra, Purnima, et S. Jit. « Electrical Characteristics of Si/ZnO Core–Shell Nanowire Heterojunction Diode ». Dans Physics of Semiconductor Devices, 673–75. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_173.
Texte intégralPalutkiewicz, Tomasz, Maciej Wołoszyn et Bartłomiej J. Spisak. « Simulations of Transport Characteristics of Core-Shell Nanowire Transistors with Electrostatic All-Around Gate ». Dans Advances in Intelligent Systems and Computing, 233–41. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44260-0_14.
Texte intégralChou, Yi-Chia, et King-Ning Tu. « Core-Shell Effect on Nucleation and Growth of Epitaxial Silicide in Nanowire of Silicon ». Dans One-Dimensional Nanostructures, 105–17. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch5.
Texte intégralYanson, A. I., I. K. Yanson et J. M. Ruitenbeek. « Shell-Effects in Heavy Alkali-Metal Nanowires ». Dans Molecular Nanowires and Other Quantum Objects, 243–54. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2093-3_22.
Texte intégralYanson, A. I., I. K. Yanson et J. M. van Ruitenbeek. « Observation of Shell Structure in Sodium Nanowires ». Dans Statistical and Dynamical Aspects of Mesoscopic Systems, 305. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45557-4_24.
Texte intégralProenca, Mariana P., et João Ventura. « Exchange Bias in Core–Shell Nanowires and Nanotubes ». Dans Exchange Bias, 233–74. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | : CRC Press, 2017. http://dx.doi.org/10.1201/9781351228459-9.
Texte intégralSarikurt, Sevil, Cem Sevik, Alper Kinaci, Justin B. Haskins et Tahir Cagin. « Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires ». Dans TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), 433–40. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119090427.ch46.
Texte intégralSarikurt, Sevil, Cem Sevik, Alper Kinaci, Justin B. Haskins et Tahir Cagin. « Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires ». Dans Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), 433–40. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48766-3_46.
Texte intégralOzel, Tuncay. « Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas ». Dans Coaxial Lithography, 27–41. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.
Texte intégralWang, Rui, Jian Sun, Russell S. Deacon et Koji Ishibashi. « Ge/Si Core–Shell Nanowires for Hybrid Quantum Systems ». Dans Quantum Science and Technology, 165–95. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7_8.
Texte intégralActes de conférences sur le sujet "Shell nanowire"
Castillo, Eduardo, Sadia Choudhury, Hyun Woo Shim, Jaron Kuppers, Hanchen Huang et Diana-Andra Borca-Tasciuc. « Thermal Characterization of Silicon Carbide Nanowire Films ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67321.
Texte intégralYang, Ronggui, Gang Chen et Mildred S. Dresselhaus. « Thermal Conductivity of Core-Shell Nanostructures : From Nanowires to Nanocomposites ». Dans ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72198.
Texte intégralLiborius, Lisa, Jan Bieniek, Andreas Nagelein, Franz-Josef Tegude, Artur Poloczek et Nils Weimann. « n-doped InGaP Nanowire Shells in Core-Shell pn-junctions ». Dans 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819134.
Texte intégralHe, Jin, Lining Zhang, Xiangyu Zhang, Wen Wu, Wenping Wang, Miaomiao Ma, Yun Ye et Mansun Chan. « Research progress on core-shell nanowire FETs ». Dans 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021497.
Texte intégralLi, Fajun, Ziyuan Li, Liying Tan, Jing Ma, Lan Fu, Hark Hoe Tan et Chennupati Jagadish. « GaAs/AlGaAs core-shell ensemble nanowire photodetectors ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fm2h.6.
Texte intégralZhang, Lining, Jin He, Chenyue Ma, Xingye Zhou, Wei Bian, Lin Li et Mansun Chan. « An oxide/silicon core/shell nanowire FET ». Dans 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144306.
Texte intégralWang, Zhihuan, Pouya Dianat, Kiana Montazeri, Baris Taskin, Marc Currie, Paola Prete, Nico Lovergine et Bahram Nabet. « A Core-Shell Nanowire Platform for Silicon Photonics ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/fio.2017.jw4a.45.
Texte intégralManning, Hugh G., Subhajit Biswas, Shailja Kumar, Justin D. Holmes et John J. Boland. « Neuromorphic- Inspired Behaviour in Core-Shell Nanowire Networks ». Dans 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626353.
Texte intégralZhu, Jia, Yueqing Xu, Qi Wang et Yi Cui. « Amorphous silicon core-shell nanowire Schottky solar cells ». Dans 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5616752.
Texte intégralWu, Hue-Min, et Jing-Yuan Chang. « Heterojunction luminescence of GaN/AlN core-shell nanowire ». Dans 2011 IEEE 4th International Nanoelectronics Conference (INEC). IEEE, 2011. http://dx.doi.org/10.1109/inec.2011.5991706.
Texte intégralRapports d'organisations sur le sujet "Shell nanowire"
Wierer, Jonathan J. ,. Jr, Daniel David Koleske, Stephen Roger Lee, George T. Wang et Qiming Li. III-nitride core-shell nanowire arrayed solar cells. Office of Scientific and Technical Information (OSTI), septembre 2012. http://dx.doi.org/10.2172/1051734.
Texte intégralLee, Suhyun. The Optimized Synthesis of Copper Nanowire for High-quality and Fabrication of Core-Shell Nanowire. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.7259.
Texte intégralKrylyuk, Sergiy, Ratan Debnath, JongYoon Ha, Albert V. Davydov, Matthew King et Abhishek Motayed. Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions. Fort Belvoir, VA : Defense Technical Information Center, juillet 2016. http://dx.doi.org/10.21236/ad1011801.
Texte intégralBaowen, Li. Managing Phonon Transport by Core/Shell Nanowires. Fort Belvoir, VA : Defense Technical Information Center, novembre 2012. http://dx.doi.org/10.21236/ada570448.
Texte intégral