Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Shape controlled synthesis.

Articles de revues sur le sujet « Shape controlled synthesis »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Shape controlled synthesis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Xia, Younan, Xiaohu Xia, Yi Wang et Shuifen Xie. « Shape-controlled synthesis of metal nanocrystals ». MRS Bulletin 38, no 4 (avril 2013) : 335–44. http://dx.doi.org/10.1557/mrs.2013.84.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sun, Jialin, Jianhong Zhang, Wei Liu, Sheng Liu, Hongsan Sun, Kaili Jiang, Qunqing Li et Jihua Guo. « Shape-controlled synthesis of silver nanostructures ». Nanotechnology 16, no 10 (2 septembre 2005) : 2412–14. http://dx.doi.org/10.1088/0957-4484/16/10/070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jang, Hee-Jeong, Soonchang Hong et Sungho Park. « Shape-controlled synthesis of Pt nanoframes ». Journal of Materials Chemistry 22, no 37 (2012) : 19792. http://dx.doi.org/10.1039/c2jm34187e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

YU, MING, XIANGJU DIAO, TAO HUANG, HANFAN LIU et JINLIN LI. « SHAPE-CONTROLLED SYNTHESIS OF RUTHENIUM NANOPARTICLES ». Functional Materials Letters 04, no 04 (décembre 2011) : 337–40. http://dx.doi.org/10.1142/s1793604711002214.

Texte intégral
Résumé :
Uniform pompon-like Ru nanoparticles with an average diameter of 148 nm were readily synthesized by reducing RuCl 3 with triethylene glycol (TG) as both a reducing agent and a solvent in the presence of PVP by oil-bath heating at 170°C for 6 h. The as-prepared Ru nano-pompons were characterized by TEM, XRD, XPS and UV-vis absorption spectroscopy. The effects of some parameters such as the average molecular weight and the concentration of PVP on the synthesis of Ru nano-pompons were investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lin, Hua, Shijie He, Zhou Mao, Jie Miao, Meng Xu et Qing Li. « Shape-controlled synthesis of vanadium diselenide ». Nanotechnology 28, no 44 (12 octobre 2017) : 445603. http://dx.doi.org/10.1088/1361-6528/aa882c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Debao, Caixia Song et Zhengshui Hu. « Shape-controlled synthesis of ZnO architectures ». Crystal Research and Technology 43, no 1 (janvier 2008) : 55–60. http://dx.doi.org/10.1002/crat.200710991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zeng, Hao, Philip M. Rice, Shan X. Wang et Shouheng Sun. « Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4Nanoparticles ». Journal of the American Chemical Society 126, no 37 (septembre 2004) : 11458–59. http://dx.doi.org/10.1021/ja045911d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Z. L., T. S. Ahmadi, J. M. Petroski et M. A. El-Sayed. « Surface Structures of Shape-Controlled Platinum Nanoparticles ». Microscopy and Microanalysis 3, S2 (août 1997) : 429–30. http://dx.doi.org/10.1017/s143192760000903x.

Texte intégral
Résumé :
The selectivity and activities of platinum (Pt) particles strongly depend on their sizes and shapes. A technique has been recently reported for controlling the shapes and sizes of Pt particles [1]. Pt particles were prepared by bubbling Ar gas through the solution of K2PtCl4, and the Pt ions were reduced by flowing H2 gas through the solution. The shape control was performed by changing the ratio of the concentration of the capping polymer material to that of the platinum cations used in the reductive synthesis of colloidal particles in solution at room temperature [2]. High percentage of cubic, tetrahedral and octahedral particles have been prepared at room temperature, making it possible for studying the chemical activities of particles with different shapes and facets. This paper aims to study the surface structures of Pt particles prepared by the shape-controlling synthesis technique using high-resolution transmission electron microscopy (HRTEM).
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ahmadi, T. S., Z. L. Wang, T. C. Green, A. Henglein et M. A. El-Sayed. « Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles ». Science 272, no 5270 (28 juin 1996) : 1924–25. http://dx.doi.org/10.1126/science.272.5270.1924.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Ruigang, et Randi Dangerfield. « Seed-mediated synthesis of shape-controlled CeO2nanocrystals ». RSC Adv. 4, no 7 (2014) : 3615–20. http://dx.doi.org/10.1039/c3ra44495c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sebastian, Victor, Christopher D. Smith et Klavs F. Jensen. « Shape-controlled continuous synthesis of metal nanostructures ». Nanoscale 8, no 14 (2016) : 7534–43. http://dx.doi.org/10.1039/c5nr08531d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Wang, Yu-Hsiang A., Ningzhong Bao et Arunava Gupta. « Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals ». Solid State Sciences 12, no 3 (mars 2010) : 387–90. http://dx.doi.org/10.1016/j.solidstatesciences.2009.11.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wu, Dongfang, Qingqing Tan et Lichong Hu. « Shape-controlled synthesis of Cu-Ni nanocrystals ». Materials Chemistry and Physics 206 (février 2018) : 150–57. http://dx.doi.org/10.1016/j.matchemphys.2017.12.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Xiao, Gaofeng, Yanbao Zhao, Xiangli Meng, Zhishen Wu et Zhijun Zhang. « Shape-controlled synthesis of BiIn alloy nanostructures ». Journal of Alloys and Compounds 437, no 1-2 (juin 2007) : 329–31. http://dx.doi.org/10.1016/j.jallcom.2006.07.123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wang, Yong, Xiaowen Su, Panshuang Ding, Shan Lu et Huaping Yu. « Shape-Controlled Synthesis of Hollow Silica Colloids ». Langmuir 29, no 37 (4 septembre 2013) : 11575–81. http://dx.doi.org/10.1021/la402769u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Pei, Zhenzhao, Xia Zhang et Xiang Gao. « Shape-controlled synthesis of LiMnPO4 porous nanowires ». Journal of Alloys and Compounds 546 (janvier 2013) : 92–94. http://dx.doi.org/10.1016/j.jallcom.2012.08.080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Wenshou, Yongxing Hu, James Goebl, Zhenda Lu, Liang Zhen et Yadong Yin. « Shape- and Size-Controlled Synthesis of Calcium Molybdate Doughnut-Shaped Microstructures ». Journal of Physical Chemistry C 113, no 37 (24 août 2009) : 16414–23. http://dx.doi.org/10.1021/jp9059278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Paul, Biplab, et P. Banerji. « Controlled Synthesis of Lead Telluride Nanocrystals ». Advanced Materials Research 67 (avril 2009) : 251–58. http://dx.doi.org/10.4028/www.scientific.net/amr.67.251.

Texte intégral
Résumé :
Nanocrystalline PbTe particles of controlled size and shape are synthesized via chemical route at different growth temperatures. The size of the nanoparticles is in the range ~ 20 to 35 nm. The size and shape of the particles have been controlled by controlling temperature, using proper surfactant and maintaining the atomic ratio between Pb and Te. The intrinsic properties of surface energy of different crystallographic planes involve in growth process are studied. The crystallinity and phase of PbTe nanocrystals are analyzed by X-ray diffraction (XRD). The shape and size of the nanocrystals have been characterized by transmission electron microscopy (TEM). The optical band gap of nanocrystals is determined by FTIR photo-absorption spectra.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zheng, Hongjuan, Kongjun Zhu, Ayumu Onda et Kazumichi Yanagisawa. « Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides ». Nanomaterials 11, no 2 (19 février 2021) : 529. http://dx.doi.org/10.3390/nano11020529.

Texte intégral
Résumé :
Eu(OH)3 with various shape-controlled morphologies and size, such as plate, rod, tube, prism and nanoparticles was successfully synthesized through simple hydrothermal reactions. The products were characterized by XRD (X-Ray Powder Diffraction), FE-SEM (Field Emission- Scanning Electron Microscopy) and TG (Thermogravimetry). The influence of the initial pH value of the starting solution and reaction temperature on the crystalline phase and morphology of the hydrothermal products was investigated. A possible formation process to control morphologies and size of europium products by changing the hydrothermal temperature and initial pH value of the starting solution was proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wiley, Benjamin, Yugang Sun, Jingyi Chen, Hu Cang, Zhi-Yuan Li, Xingde Li et Younan Xia. « Shape-Controlled Synthesis of Silver and Gold Nanostructures ». MRS Bulletin 30, no 5 (mai 2005) : 356–61. http://dx.doi.org/10.1557/mrs2005.98.

Texte intégral
Résumé :
AbstractThis article provides a brief account of solution-phase methods that generate silver and gold nanostructures with well-controlled shapes. It is organized into five sections: The first section discusses the nucleation and formation of seeds from which nanostructures grow. The next two sections explain how seeds with fairly isotropic shapes can grow anisotropically into distinct morphologies. Polyol synthesis is selected as an example to illustrate this concept. Specifically, we discuss the growth of silver nanocubes (with and without truncated corners), nanowires, and triangular nanoplates. In the fourth section, we show that silver nanostructures can be transformed into hollow gold nanostructures through a galvanic replacement reaction. Examples include nanoboxes, nanocages, nanotubes (both single- and multi-walled), and nanorattles. The fifth section briefly outlines a potential medical application for gold nanocages.We conclude with some perspectives on areas for future work.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dinh, Cao-Thang, Thanh-Dinh Nguyen, Freddy Kleitz et Trong-On Do. « Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals ». ACS Nano 3, no 11 (6 octobre 2009) : 3737–43. http://dx.doi.org/10.1021/nn900940p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Xiao, Junyan, et Limin Qi. « Surfactant-assisted, shape-controlled synthesis of gold nanocrystals ». Nanoscale 3, no 4 (2011) : 1383. http://dx.doi.org/10.1039/c0nr00814a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Su, Sijing, Jialin Shen, Haochen Sun, Jiaqi Tao, Da Xu, Tong Wei, Chao Fan, Ziying Wang, Chun Sun et Wengang Bi. « Shape-controlled synthesis of Ag/Cs4PbBr6 Janus nanoparticles ». Nanotechnology 32, no 7 (26 novembre 2020) : 075601. http://dx.doi.org/10.1088/1361-6528/abb905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wang, Fang, Jinbin Wang, Xiangli Zhong, Bo Li, Jun Liu, Di Wu, Dan Mo et al. « Shape-controlled hydrothermal synthesis of ferroelectric Bi4Ti3O12 nanostructures ». CrystEngComm 15, no 7 (2013) : 1397. http://dx.doi.org/10.1039/c2ce26330k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sun, Y. « Shape-Controlled Synthesis of Gold and Silver Nanoparticles ». Science 298, no 5601 (13 décembre 2002) : 2176–79. http://dx.doi.org/10.1126/science.1077229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Niu, Wenxin, Ling Zhang et Guobao Xu. « Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals ». ACS Nano 4, no 4 (22 mars 2010) : 1987–96. http://dx.doi.org/10.1021/nn100093y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wang, Tie, Xirui Wang, Derek LaMontagne, Zhongliang Wang, Zhongwu Wang et Y. Charles Cao. « Shape-Controlled Synthesis of Colloidal Superparticles from Nanocubes ». Journal of the American Chemical Society 134, no 44 (30 octobre 2012) : 18225–28. http://dx.doi.org/10.1021/ja308962w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Henkes, Amanda E., et Raymond E. Schaak. « Template-Assisted Synthesis of Shape-Controlled Rh2P Nanocrystals ». Inorganic Chemistry 47, no 2 (janvier 2008) : 671–77. http://dx.doi.org/10.1021/ic701783f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Li, Shaozhou, et Chee Lip Gan. « Salt assisted synthesis of shape controlled ZnO nanostructures ». Materials Letters 154 (septembre 2015) : 73–76. http://dx.doi.org/10.1016/j.matlet.2015.04.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cheng, Gang, Hanmin Yang, Kaifeng Rong, Zhong Lu, Xianglin Yu et Rong Chen. « Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials ». Journal of Solid State Chemistry 183, no 8 (août 2010) : 1878–83. http://dx.doi.org/10.1016/j.jssc.2010.06.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Wang, Shufen, Feng Gu, Chunzhong Li et Hongming Cao. « Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures ». Journal of Crystal Growth 307, no 2 (septembre 2007) : 386–94. http://dx.doi.org/10.1016/j.jcrysgro.2007.06.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wang, Fudong, Rui Tang, Heng Yu, Patrick C. Gibbons et William E. Buhro. « Size- and Shape-Controlled Synthesis of Bismuth Nanoparticles ». Chemistry of Materials 20, no 11 (juin 2008) : 3656–62. http://dx.doi.org/10.1021/cm8004425.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zheng, Mingtao, Yingliang Liu, Shuai Zhao, Wenqi He, Yong Xiao et Dingsheng Yuan. « Simple Shape-Controlled Synthesis of Carbon Hollow Structures ». Inorganic Chemistry 49, no 19 (4 octobre 2010) : 8674–83. http://dx.doi.org/10.1021/ic9024316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Gao, Guo, Haixia Wu, Meijuan Chen, Lizhao Zhang, Bo Yu et Lan Xiang. « Synthesis of Size- and Shape-Controlled CuO Assemblies ». Journal of The Electrochemical Society 158, no 3 (2011) : K69. http://dx.doi.org/10.1149/1.3528941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lu, Zhouguang, Yougen Tang, Limiao Chen et Yadong Li. « Shape-controlled synthesis and characterization of BaZrO3 microcrystals ». Journal of Crystal Growth 266, no 4 (juin 2004) : 539–44. http://dx.doi.org/10.1016/j.jcrysgro.2004.02.107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Xu, Linlin, Danye Liu, Dong Chen, Hui Liu et Jun Yang. « Size and shape controlled synthesis of rhodium nanoparticles ». Heliyon 5, no 1 (janvier 2019) : e01165. http://dx.doi.org/10.1016/j.heliyon.2019.e01165.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ramasamy, Parthiban, et Jinkwon Kim. « Wurtzite Cu2GeS3Nanocrystals : Phase- and Shape-Controlled Colloidal Synthesis ». Chemistry - An Asian Journal 10, no 7 (26 mai 2015) : 1468–73. http://dx.doi.org/10.1002/asia.201500199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Chen, Limiao, Younian Liu, Zhouguang Lu et Dongming Zeng. « Shape-controlled synthesis and characterization of InVO4 particles ». Journal of Colloid and Interface Science 295, no 2 (mars 2006) : 440–44. http://dx.doi.org/10.1016/j.jcis.2005.09.051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Pei, Zhenzhao, Xia Zhang et Xiang Gao. « ChemInform Abstract : Shape-Controlled Synthesis of LiMnPO4Porous Nanowires. » ChemInform 44, no 8 (19 février 2013) : no. http://dx.doi.org/10.1002/chin.201308180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Theerdhala, Sriharsha, Devendra Alhat, Satish Vitta et D. Bahadur. « Synthesis of Shape Controlled Ferrite Nanoparticles by Sonochemical Technique ». Journal of Nanoscience and Nanotechnology 8, no 8 (1 août 2008) : 4268–72. http://dx.doi.org/10.1166/jnn.2008.an21.

Texte intégral
Résumé :
Synthesis of magnetic iron oxides/ferrites in the nano scale by sonochemical synthesis has become prominent recently. This technique facilitates the synthesis of magnetic particles in the nano scale attributed to the hotspot mechanism arising due to acoustic cavitation induced chemical reaction. Generally volatile organometallic precursor compounds favoring the formation of fully amorphous particles have been used to synthesize various nano magnetic materials. We report here the synthesis of ultrafine, <10 nm magnetic iron oxide nanoparticles by sonochemical technique starting with a non-volatile precursor iron salt such as iron citrate which seems to favor the formation of semi crystalline/crystalline particles as the reaction takes place either in the interfacial region or in the bulk solution. Mono dispersed, ultra fine, ∼4 nm spherical shaped magnetic maghemite particles having a saturation magnetization of 58.2 emu/g and coercivity of 118 Oe were obtained at low values of pH, 10 while higher pH, 11–13 favored the formation of elongated, cylindrical, acicular particles with a reduced magnetization. The coercivity was also found to decrease with increasing pH, with it being 118 Oe at pH 10 and 3 Oe at pH 13. When the ultrasound amplitude/intensity was low, 38% heat treatment of the samples at 300 °C (at pH 10) was required to make them crystalline, while application of high intensity ultrasound, 50% amplitude served as a single step mechanism for obtaining crystalline maghemite particles. The maghemite particles obtained at a pH of 10 could find applications in information storage media.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jones, Dorothy K., Brendan Kerwin, Wenjing Zhao et Nagarjuna Gavvalapalli. « Aryl amphiphile shape-directors for shape-controlled synthesis of organic semiconductor particles ». Chemical Communications 55, no 9 (2019) : 1306–9. http://dx.doi.org/10.1039/c8cc09405e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Yu, Ying-Tao, et Bo-Qing Xu. « Shape-controlled synthesis of Pt nanocrystals : an evolution of the tetrahedral shape ». Applied Organometallic Chemistry 20, no 10 (2006) : 638–47. http://dx.doi.org/10.1002/aoc.1123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Jianqin, Hangduo Lin, Xiaolin Zhang et Ming Li. « Seed shape-controlled, facet-selective growth of superspiky gold nanocrystals for biosensing applications ». Journal of Materials Chemistry C 9, no 27 (2021) : 8694–704. http://dx.doi.org/10.1039/d1tc02083h.

Texte intégral
Résumé :
Seed shape-controlled synthesis of superspiky Au nanocrystals is reported using different shaped Au seeds, showing excellent plasmonic sensing and surface-enhanced Raman scattering sensing performances.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Zhao, Yu Xia, Cheng Mei Liu, Lu Han et Yen Wei. « Shape-Controlled Synthesis of Ag Nanocubes with Uniform Size ». Advanced Materials Research 1004-1005 (août 2014) : 37–41. http://dx.doi.org/10.4028/www.scientific.net/amr.1004-1005.37.

Texte intégral
Résumé :
The controllable synthesis of special shape of nanoparticles with uniform size was most important for some special applications. In this work, we prepared silver nanocubes by Na2S-mediated polyol synthesis using AgNO3 as precursor, polyvinyl pyrrolidine(PVP) as capping agent and ethylene glycol(EG) as solvent and reductant under the protection of Ar characterized by SEM, UV-vis, DLS and Zeta potential. Silver nanocubes were successfully controllably obtained via optimizing the reaction conditions, such as the rate of Ar initially after 50 min pre-heating and subsequently after the addition of AgNO3 solution,the volume of 3 mM Na2S solution. The results showed that silver nanocubes with edge length of 50 nm and sharp corners were achieved at 230μL 3mM Na2S solution added under a Ar rate of 1000 ml/min.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhang, J., H. Liu, Z. Wang et N. Ming. « Shape-Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances ». Advanced Functional Materials 17, no 16 (20 septembre 2007) : 3295–303. http://dx.doi.org/10.1002/adfm.200700497.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yu, Yanchun, Yanxi Zhao, Tao Huang et Hanfan Liu. « Shape-controlled synthesis of palladium nanocrystals by microwave irradiation ». Pure and Applied Chemistry 81, no 12 (18 novembre 2009) : 2377–85. http://dx.doi.org/10.1351/pac-con-08-11-22.

Texte intégral
Résumé :
The controlled synthesis of Pd icosahedra in tetraethylene glycol (TEG) with H2PdCl4 as a precursor and poly(vinylpyrrolidone) (PVP) as a stabilizer in the presence of an appropriate amount of KOH under microwave irradiation was demonstrated. TEG served as both solvent and reducing agent, and stable Pd icosahedra with uniform sizes and well-defined shapes could be prepared in a yield of over 90 % by microwave heating for 60 s. The sizes of Pd icosahedra can be well controlled by adjusting the concentration of the precursor H2PdCl4.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Petroski, Janet M., Zhong L. Wang, Travis C. Green et Mostafa A. El-Sayed. « Kinetically Controlled Growth And Shape Formation Mechanism Of Platinum Nanoparticles ». Microscopy and Microanalysis 4, S2 (juillet 1998) : 746–47. http://dx.doi.org/10.1017/s1431927600023850.

Texte intégral
Résumé :
Many studies on colloidal nanoparticles have focused on the control of nanoparticle size and correlated this to the catalytic activity. Recently, our group has reported for the first time a technique that controlled the shape distribution of Pt nanoparticles. This was done by varying the concentration of the capping polymer and the platinum ion ratio used in the reductive synthesis of colloidal nanoparticles at room temperature. Cubic, tetrahedral and truncated octahedral (TO) particles have been prepared, making it possible to study the catalytic activities of nanoparticles with different shapes and facets.Using transmission electron microscopy (TEM), we imaged the shapes and determined the shape distribution of platinum nanoparticles at different stages of their growth as a function of time. The small nanoparticles formed during the early stages of growth or at high polymer concentration displayed distributions with a dominance of tetrahedral shapes (see Figure la).
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhao, Xiang, Yue Liu, Zhi‐Yuan Zhang, Yiliang Wang, Xueshun Jia et Chunju Li. « One‐Pot and Shape‐Controlled Synthesis of Organic Cages ». Angewandte Chemie International Edition 60, no 33 (2 juillet 2021) : 17904–9. http://dx.doi.org/10.1002/anie.202104875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhao, Xiang, Yue Liu, Zhi‐Yuan Zhang, Yiliang Wang, Xueshun Jia et Chunju Li. « One‐Pot and Shape‐Controlled Synthesis of Organic Cages ». Angewandte Chemie 133, no 33 (2 juillet 2021) : 18048–53. http://dx.doi.org/10.1002/ange.202104875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhou, Mingge, Wei Li, Minggang Zhu, Dong Zhou et Yanglong Hou. « Shape-controlled synthesis and magnetic properties of FePt nanocubes ». Journal of the Korean Physical Society 63, no 3 (août 2013) : 302–5. http://dx.doi.org/10.3938/jkps.63.302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie