Thèses sur le sujet « Sewage Environmental aspects Vietnam »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Sewage Environmental aspects Vietnam ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Vo, Le Phu. « Urban stormwater management in Vietnam ». Title page, table of contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09ENV/09envl595.pdf.
Texte intégralLi, Bing, et 李炳. « Occurrence, transformation and fate of antibiotics in municipal wastewater treatment plants ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46591102.
Texte intégralTshivhunge, Azwiedziswi Sylvia. « Enzymology of activated sewage sludge during anaerobic treatment of wastewaters : identification, characterisation, isolation and partial purification of proteases ». Thesis, Rhodes University, 2001. http://hdl.handle.net/10962/d1004072.
Texte intégralMacNicol, Roger. « The forms of combination of Cu, Ni and Zn in anaerobic sewage sludge ». Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:ddd31ded-57f0-415d-9ab7-a390b9c8632a.
Texte intégralChan, Sai Yen Victor, et 陳世欽. « Potential environmental hazards of wastewater from hospitals and theirmitigation ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B41016257.
Texte intégralAnand, Archana. « The nitrogen isotope fingerprint of wastewater effluents in Hong Kong ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/207619.
Texte intégralpublished_or_final_version
Environmental Management
Master
Master of Science in Environmental Management
Visser, Gunnar Lieb. « Permeable reaction barrier system for the treatment of textile wastewater using cobalt oxide ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2631.
Texte intégralAdvanced oxidation processes (AOPs) have gained considerable interest in the wastewater treatment industry. Low selectivity to organic pollutants and the high oxidation potentials provided by the free radicals produced from these processes are the root of this interest. Hydroxyl radical based AOPs seemed to dominate the field but recently sulphate radical based AOPs started to become more popular due to their even higher oxidation potential. The textile industry is known to be a considerable contributor to wastewater production. Many pollutants in this wastewater are organic pollutants which are very persistent to the more traditional treatment processes such as biological treatment and membrane filtration. Numerous studies have shown the potential and success of catalytic AOPs for the degradation of organic pollutants in wastewater. One such process is the use of a cobalt oxide nano-catalyst in conjunction with a peroxymonosulfate (PMS) oxidizer (Co3O4/PMS). The shortcoming with nano-catalysts however are the difficulty of recovering the catalyst in a slurry system or the effective immobilization of the catalyst in a continuous system. To address the issue of nano-catalyst immobilization, two different methods were used in the study to effectively immobilize the catalyst in a substrate. The methods were compared by utilizing the permeable reaction barriers in a continuous flow reactor. A bench scale reactor of 2.4 L/hr was designed and used to study the effect of PMS, catalyst mass and flow rate on the degradation efficiency and to determine the residence time and catalyst per PRB cross-sectional area ratio. A scale up rationale was formulated based on a constant residence time and the catalyst mass per PRB cross-sectional area ratio. Two design correlations were developed to predict the size of the permeable barrier and the catalyst mass required for the scale up PRB system. These parameters were used to design a reactor 30 times that of the bench scale reactor. In both reactors the optimum degradation occurred within 2 minutes indicating the success for catalyst immobilization and the development of a continuous reactor utilizing the Co3O4/PMS advanced oxidation technology.
Chiu, Chen. « Anaerobic digestion of baker's yeast wastewater using a UASB reactor and a hybrid UASB reactor ». Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29589.
Texte intégralApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
DeBruyn, Adrian M. H. « Sewage and the ecology of the St. Lawrence River ». Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38176.
Texte intégralPardieck, Daniel L. « Biodegradation of phenols in aquatic culture by soil-derived microorganisms, with reference to their fate in the subsurface ». Diss., The University of Arizona, 1988. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1988_226_sip1_w.pdf&type=application/pdf.
Texte intégralTakwi, Colette Nchong. « An assessment of the management of odour at the Athlone wastewater treatment works, Cape Town ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2788.
Texte intégral¹Odour nuisance is increasingly becoming one of the major environmental problems in various countries across the world, especially odour associated with wastewater (Alfonsin et al., 2015; Schlegelmilch et al., 2005; Gostelow et al., 2001). As a result, the management of odour from Wastewater Treatment Works (WWTW) has become one of the environmental challenges besetting these facilities in recent times. The dispersion of odour across the physical boundary of wastewater treatment facilities presents not only negative environmental impacts to the natural environment, but also constitute a nuisance to surrounding populations. The Athlone (WWTW) located in the urban City of Cape Town with high demographics and adjacent to sensitive communities is thus not immune to poor air quality associated with WWTW activities (Walton, 2005). The population growth due to rural-urban migration has further put severe pressure on the facility and thus worsening the odour problem in the area. As a result, complaints have been received by the City Council from the surrounding communities over the last 20 years. In response to these complaints, the management of the WWTW introduced an odour management system with a particular focus on the use of a biotrickling filter coupled with the use of odour masking sprays. This management intervention was adopted in order to control the odour emitted to the atmosphere from the facility (WWTW). While these measures are said to reduce the prevalence of odour to the surrounding environment, it was, however, not clear whether or not such management interventions have reduced odour emitted from the treatment plant. This research was premised on two postulations as an approach to analyse the effect of the odour management plan adopted by the Athlone WWTW’s management and these are: 1) the perceived experience of odour by the adjacent neighbouring communities and, 2) the understanding of the inherent atmospheric dynamics (such as wind velocity, atmospheric stability, inversion layer and ventilation) which influence odour dispersal in the area. The research project argues that these two factors should be taken into account to ensure that the management of odour is sustainable. It is within this background that the research aimed at assessing the management of odour at the Athlone WWTW and to find out, if at all, the inherent local atmospheric conditions in the area and views of the surrounding communities are incorporated into the management of odour from the plant. The methodological design adopted in the study was case study approach. However, the atmospheric data (wind speed and direction) was obtained from the South African Weather Service (SAWS). These variables were analysed qualitatively and experimentally by the use of wind diagrams to provide insight on 2atmospheric stability conditions, surface inversion and topographical properties, and how these phenomenon influences odour dispersion. The study also reviewed previous odour management reports produced by the Althone WWTW management. This type of data was finally supported by data collected from the community by means of a community survey, face-to-face in-depth interviews and qualitative observation. Some major findings from the study revealed that the local weather of Athlone influences the dispersion of odour – facilitating dispersion in the summer through high wind velocities, while impeding dispersion during winter due to the presence of atmospheric stability conditions. Prevailing odours in this community has led to a general feeling of displeasure amongst community members especially since the management of the treatment plan does not include the local community in the decision-making process. In spite of these, the facility’s management approach was found to be more of a response driven nature even though it is ranked as a high-risk facility.
Keita, Abdoulaye. « The relative ecological effectiveness and economic efficiency of four wastewater treatment plants in East Central Indiana ». Virtual Press, 2000. http://liblink.bsu.edu/uhtbin/catkey/1177978.
Texte intégralDepartment of Natural Resources and Environmental Management
Lucero, Daniel William. « Plant and soil effects from the surface application of poultry litter to unmanaged pasture ». Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06112009-063243/.
Texte intégralUggetti, Enrica. « Sewage sludge treatment in constructed wetlands : technical, economic and environmental aspects applied to small communities of the mediterranean region ». Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/51580.
Texte intégralMyburgh, Dirk Petrus. « The treatment of biodiesel wastewater using an integrated electrochemical and adsorption process ». Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2693.
Texte intégralThe production of biodiesel is an energy and water intensive process. The wastewater that is produced during this process is high in concentrations of COD, BOD, FOG and various other contaminants. Since it contains low levels of nutrients, it is difficult to degrade using natural processes such as conventional activated sludge wastewater treatment. The discharge of untreated biodiesel wastewater also raises serious environmental concern. It interferes when remediated with biological processes and results in additional costs during the production of biodiesel when penalties and fines are applied. Conventional treatment processes are not capable of treating contaminants and pollutants in biodiesel to satisfactory concentrations and hence advanced treatment processes are necessary. In this research, a lab scale integrated treatment process was used to investigate the successful reduction of contaminants, in particular COD, BOD and FOG. The integrated treatment process used in this study consisted of three consecutive steps; acidification, electrochemical oxidation and adsorption using chitosan as an adsorbent. The electrochemical oxidation process with IrO2-Ta2O5/Ti anodes was applied to treat biodiesel wastewater. Different operating conditions were tested to establish favourable conditions. The current density applied as well as the concentration of NaCl as the supporting electrolyte greatly affected the process. A NaCl concentration of 0.08M was deemed sufficient, whereas a current density of 1 mA/cm² showed superior performance compared to lower or higher current densities. Adsorption of pollutants in biodiesel wastewater was investigated using Chitosan as the adsorbent. Various chitosan concentrations, initial pH of the wastewater and repetitive adsorption stages were investigated. It was discovered that all three operating conditions greatly affect the performance of the process. The three consecutive adsorption stages using a chitosan concentration of 4.5 g/L at a pH of 2 resulted in the highest pollutant removal. It was observed that the integrated treatment process could reduce COD, BOD and FOG levels by 94%, 86% and 95% respectively. This concludes that the treated effluent complies with local industrial effluent discharge standards, which could be disposed safely without further treatment.
Boshoff, Genevieve Ann. « Development of integrated biological processing for the biodesalination of sulphate- and metal-rich wastewaters ». Thesis, Rhodes University, 1999. http://hdl.handle.net/10962/d1003958.
Texte intégralShrivastava, Vikram. « Creek water quality impacts : irrigation tailwaters and sewage discharges ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/MQ44277.pdf.
Texte intégralKan, Hon-shing, et 簡漢成. « EIA of sewerage projects : an overview of the Hong Kong situation ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31253155.
Texte intégralFortin, Nathalie. « Molecular characterization of dechlorination potential in kraft pulp mill effluent treatment systems ». Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27317.
Texte intégralBhathena, Jasmine. « The physical and physiological effects of nitrogen and phosphorus limitation on a pulp and paper mill effluent biotreatment microbial community / ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80228.
Texte intégralN limitation, but not P limitation, caused the net floc surface charge to be much more negative, while P-limitation, but not N-limitation, increased the floc bound water content and surface hydrophobicity. Thus, in real pulp and paper mill AS systems, careful manipulation of N or P additions may be useful to optimize the key process of charged polymer-assisted AS dewatering.
Renew, Jay Earl. « Novel analytical method development and fate assessment for fluoroquinolone, sulfonamide and trimethoprim antibiotics in engineered water treatment systems ». Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/19910.
Texte intégralLarsson, Josefine. « Genetic Aspects of Environmental Disturbances in Marine Ecosystems : Studies of the Blue Mussel in the Baltic Sea ». Doctoral thesis, Södertörns högskola, Miljövetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-33697.
Texte intégralEvolutionära anpassningar till miljöstörningar i marina ekosystem: genetisk ekotoxikologi i Östersjön
Fappi, Devanir André. « Micro e ultrafiltração como pós-tratamento para reúso de efluentes de abatedouro e frigorífico de suínos ». Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1273.
Texte intégralAs indústrias alimentícias utilizam considerável volume de água para suprir a demanda de processos. Devido a isso, observa-se um grande volume gerado de efluentes que necessitam ser tratados para garantir o destino final adequado. Tendo em vista a crescente escassez de água, procedimentos de racionalização do uso da água e o reúso de efluentes tratados surgem como soluções para estes problemas. A aplicação de processos de separação por membranas no tratamento de efluentes da indústria alimentícia para reúso apresenta-se como um processo de tratamento avançado apropriado. Deste modo, o objetivo deste estudo foi avaliar a utilização dos processos de separação por membranas como tratamento avançado de águas residuárias agroindustriais provindas de um abatedouro e frigorífico de suínos, da região oeste do Paraná, visando à possibilidade de reúso destes efluentes. Para isso, foi necessário: realizar a caracterização físico-química dos efluentes agroindustriais; avaliar o emprego de microfiltração, ultrafiltração, e microfiltração seguida de ultrafiltração em diferentes condições operacionais de pressão aplicada à membrana, e avaliar a qualidade do efluente obtido pelos processos de separação com membranas, considerando o atendimento das exigências técnicas, legais e sanitárias para diferentes usos industriais. Os resultados mostraram que os processos de separação por membranas apresentaram, de uma maneira geral, uma sensível melhora na qualidade do efluente final quando comparados com o atual sistema de pós-tratamento empregado pela indústria (flotador físico-químico), que promove eficiências de remoção nas faixas oscilantes de 3% a 29%, 44% a 70%, 40% a 46% e 50% a 58,5%, aproximadamente, para os parâmetros sólidos totais voláteis, turbidez, nitrogênio amoniacal e DQO, respectivamente. A microfiltração apresentou as seguintes faixas de eficiência de remoção, aproximadas: sólidos totais voláteis (51% - 64%), turbidez (83% - 99%), nitrogênio amoniacal (21% - 24%) e DQO (64% - 72%). A ultrafiltração apresentou as seguintes faixas de eficiência de remoção, aproximadas: sólidos totais voláteis (23% - 51%), turbidez (87% - 99%), nitrogênio amoniacal (54% - 69%) e DQO (77% - 85%). A realização do ensaio de microfiltração seguido de ultrafiltração nas melhores condições experimentais investigadas obteve resultados satisfatórios na remoção de aproximadamente 97% para a turbidez, 17% para os sólidos totais voláteis, 67% para a DQO, 38% para o nitrogênio amoniacal, 96% a 99,95% para os coliformes termotolerantes e 93 a 99,69% para os coliformes termorresistentes. Com o aumento da pressão para a microfiltração e ultrafiltração foi obtido maior fluxo permeado e melhor qualidade do efluente final. Embora os efluentes tenham proporcionado distintos valores de fluxo permeado, foram obtidas curvas de desempenho bastante semelhantes, caracterizando-se por uma queda do fluxo permeado nos primeiros minutos de filtração, seguido de um período onde ocorre declínio gradual, com uma tendência ao equilíbrio. De acordo com os requisitos físico-químicos e microbiológicos mínimos exigidos para o reúso de efluentes tratados, a microfiltração e a ultrafiltração atenderam alguns dos parâmetros monitorados, alcançando a qualidade exigida para o reúso em torres de resfriamento, lavagem de pisos, irrigação de áreas verdes, lavagem de veículos, proteção contra incêndio e descarga sanitária.
The food industry uses large volumes of water to meet the demand processes. Because of this, there is a large volume of generated waste that need to be addressed to ensure proper final destination. In view of the growing scarcity of water, the use rationalization of procedures of the water and the reuse of treated effluent arise as solutions to these problems. Application of separation processes by membranes in the treatment of wastewater for reuse food industry presents itself as an appropriate advanced treatment process. Thus, the aim of this study was to evaluate the use of membrane separation processes as advanced treatment of agroindustrial wastewater stemmed from a swine slaughterhouse, the western region of Paraná, aiming at the possibility of recycling these effluents. For this it was necessary: to define the physical-chemical characterization of the agro-industrial effluents; evaluate the use of microfiltration, ultrafiltration, microfiltration and ultrafiltration then under different conditions of pressure applied to the membrane, and evaluate the quality of the effluent obtained by separation processes with membranes, considering the care of the technical, legal and health requirements for different uses industrial. The results showed that membrane separation processes presented in a general way a considerable improvement in final effluent quality compared with the current tertiary treatment system used by the industry (physicochemical flotation) which promotes removal efficiencies in oscillating ranges from 3% to 29%, 44% to 70%, 40% to 46%, 50% to 58.5%, approximately, for the parameters: total volatile solids, turbidity, ammonia nitrogen and COD, respectively. Microfiltration had the following removal efficiency ranges, approximate: total volatile solids (51% - 64%), turbidity (83% - 99%), ammonia nitrogen (21% - 24%) and COD (64% - 72%). Ultrafiltration showed the following removal efficiency ranges, approximate: total volatile solids (23% - 51%), turbidity (87% - 99%), ammonia nitrogen (54% - 69%) and COD (77% - 85%). The completion of the test microfiltration followed by ultrafiltration under the best experimental conditions investigated achieved satisfactory results in the removal of approximately 97% for the turbidity, 17% total volatile solids, 67% for COD, 38% for ammonia nitrogen, 96% to 99.95% for thermotolerant and 93 to 99.69% for the heat-resistant coliforms coliforms. With increasing pressure to microfiltration and ultrafiltration permeate flux was increased and better quality of the final effluent. Although the effluents have provided separate permeate flow rates, very similar performance curves were obtained, characterized by a drop in permeate flux during the first minute filtration followed by a period where there is a gradual decline, with a tendency toward equilibrium. According to the physicochemical requirements and minimum microbiological required for the reuse of treated wastewater, microfiltration and ultrafiltration attended some of the monitored parameters, achieving the required quality for reuse in cooling towers, floor washing, irrigation of green areas , washing vehicles, fire protection and sanitary discharge.
Wilson, Cullen. « Biogeochemical Effects of Lime-Treated Biosolids Amendments on Soils in a Northeastern Forested Ecosystem ». Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/WilsonC2008.pdf.
Texte intégralWilliams, Margot Lluttrell. « Macroinvertebrate community and species responses to chlorinated sewage effluent in the Umsunduze and Umbilo rivers, Kwa Zulu-Natal, South Africa ». Thesis, Rhodes University, 1997. http://hdl.handle.net/10962/d1005413.
Texte intégralJingxi, Estella Zandile. « Forward osmosis : a desalination technology for the textile industry ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2674.
Texte intégralSimilar to the energy crisis, the critical state of the water supply in South Africa (SA) is a combination of (i) resource exhaustion and pollution; (ii) increasing demand; and (iii) poor infrastructure. Despite its importance, water is the most poorly managed resource in the world. The disposal of industrial effluents contributes greatly to the poor quality of water. The textile industry consumes great quantities of water and produces enormous volumes of wastewater which requires appropriate treatment before being released into the environment. In an attempt to address the water issues, research globally has focused on advanced technologies such as desalination to increase limited pure water resources. The need for alternative desalination methods for the production of clean water from alternative water resources, such as seawater and brackish water, has gained worldwide attention. Reverse osmosis (RO) and Nanofiltration (NF) have been used as unswerving approaches to yield freshwater. Forward osmosis (FO) is a developing membrane technology that has increased substantial attention as a possible lower-energy desalination technology. However, challenges such as suitable FO membranes, membrane fouling, concentration polarisation, and the availability of effective draw solutions (DS), limit FO technology. FO is seeking more importance in novel areas where separation and recovery of the DS is not required. The aims of this study was to: i) identify alternative water resources and evaluate their potential as suitable feed solution (FS); ii) Identify dyes and evaluate their potential as suitable draw solutions (DS) at different concentrations; iii) assess the use of aquaporin biomimetic membrane and iv) assess a FO system for the production of dye solutions. Osmotic pressure (OP) is the pressure exerted by the flow of water through semi-permeable membrane, separating two solutions with different concentrations of solute. The DS should always have OP higher than the FS in order to achieve high water flux. Three basic dyes (i.e. Maxilon Turquoise, Red and Blue) and three reactive dyes (i.e. Carmine, Olive Green and Black) were selected, based on their common use in the SA textile industry. The respective dye samples were prepared at different concentrations and dye-to-salt mass ratios ranging from 1:10 to 1:60 and assessed for OP using a freezing point osmometer. A lab-scale FO unit was used for all the studies. Feed and draw channels were circulated in a counter-current flow at a volumetric flow rate of 600 mL/min. Feed solutions(FS) included deionised water (DI) as a control, brackish water (BW), synthetic seawater (SSW) and textile wastewater (TWW) collected from two textile factories. OP of the FS (DI, BW5, SSW and SW, Factory 1 and Factory 2) was 0, 414, 2761, 2579, 1505 and 3308 kPa, respectively. Basic Blue and Reactive Black generated a higher OP compared to other selected dyes in the study and were therefore selected to be used as DS at a 1:10 dye-to-salt ratio and 0.02 M concentration. An aquaporin biomimetic FO membrane (Aquaporin, Denmark) was used for all the experiments conducted in the FO mode.
Norwood, Sasha Norien. « Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media ». PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/981.
Texte intégralGeertsema, Wesley S. « Long-term effects of alum sludge application to land ». Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-12232009-020505/.
Texte intégralNelson, John D. « Toxicity characteristic leaching procedure analysis of dye containing sludges ». Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-10062009-020242/.
Texte intégralPrinz, William Ernst. « The management and regulation of the beneficial use of sewage sludge as an agricultural soil amendment in Riverside County ». CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1190.
Texte intégralMa, Ruowei, et 馬若為. « Quantification and partition of perfluorochemicals in Hong Kong wastewater sludge ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43223862.
Texte intégralLouis, Richard Joseph. « Utilization of a combined activated sludge fixed film media system for treatment of a high strength, high ammonia, industrial wastewater ». Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06112009-063901/.
Texte intégralNdobeni, Afika. « Effect of temperature and carbon to nitrogen ratio on the performance of an upflow anaerobic sludge blanket reactor treating sugarcane molasses ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2622.
Texte intégralThe sugar industry contributes to the development of the economy in many countries, including South Africa. The wastewater generated by this industry has a high pollution load, and therefore requires treatment before discharge to the environment. The primary aims of this study were to determine the performance of an upflow anaerobic sludge blanket (UASB) reactor treating sugarcane molasses and to develop an empirical model to predict the behaviour of the UASB in terms of chemical oxygen demand (COD) removal and biogas production. A UASB (46 L working volume) was inoculated with granular sludge from the brewery industry and was used to investigate the treatment of synthetic sugar industry wastewater with an average COD of 4101 mg/L. The experiments were designed using Design-Expert® Software Version 10. The analysis of variance for the models and the optimisation of reactor temperature and feed carbon to nitrogen (C/N ratio) were carried out using response surface methodology. The UASB was operated at constant hydraulic retention time and organic loading rate of 2.04 days and 2.01 kg/m3.d, respectively. A start-up period of 22 days was required to reach steady-state. The developed empirical models for total COD removal efficiency and biogas production rate were found to be statistically significant with Prob > F values of 0.0747 and 0.0495 and the determination coefficients (R2) were found to be 0.80 and 0.65, respectively. The optimal conditions were found to be at a temperature of 38oC and C/N ratio of 22 mgTOC/mgTN. The corresponding removal efficiencies in terms of total COD, five day biological oxygen demand, total nitrogen, total phosphorus, and sulphate was 77.7, 85.9, 99.2, 44.4 and 57.2%, respectively. Biogas was produced at a rate of 0.832 L/L.d with a methane, carbon dioxide and molecular oxygen content of 65.2, 32.8 and 0.6%. Results suggest that UASBs may offer a feasible option for reducing the organic strength of sugar industry wastewater, while simultaneously generating methane-rich biogas.
Nzube, Silumko. « The accumulation of heavy metals in soil and vegetables irrigated with wastewater effluent in the Bauffalo City Region ». Thesis, Nelson Mandela Metropolitan University, 2014. http://hdl.handle.net/10948/d10207673.
Texte intégralHalday, Ismail. « Study of the pathway of heavy metals in a sewerage system ». Thesis, Link to online version, 2007. http://hdl.handle.net/10019/389.
Texte intégralWeggler-Beaton, Karin M. « The beneficial and detrimental effects of sewage sludge applications in South Australia ». Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phw4113.pdf.
Texte intégralGauthier, Francis. « Study of coliform bacteria in Canadian pulp and paper mill water systems : their ecology and utility as health hazard indicators ». Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33401.
Texte intégralN2-fixing coliform populations were detected in mill water systems and were analyzed using N2-fixation assays and nitrogenase gene (nifH) probing. Both active in situ populations and cultured microbial isolates were tested. Active N2-fixation was demonstrated in six primary clarifiers. Measurement of the numbers and composition of the total culturable bacterial community in a primary clarifier revealed that approximately 50% of all aerobic cells contained nifH , of which >90% were Klebsiella. Coliforms growing on MacConkey agar plates from the primary clarifier were all identified as Klebsiella and 100% of these Klebsiella contained the nifH gene. Preliminary estimates indicate that the amount of N2 fixed per day is substantial in some clarifiers.
Muller, Matthew Justin. « Linking institutional and ecological provisions for wastewater treatment discharge in a rural municipality, Eastern Cape, South Africa ». Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1013048.
Texte intégralLacher, Laurel Jane 1964. « Recharge characteristics of an effluent dominated stream near Tucson, Arizona ». Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/191199.
Texte intégralSantos, Bruna Souza dos. « Sistema de tratamento híbrido utilizado na remoção do corante reativo 5g de um efluente têxtil sintético ». Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1274.
Texte intégralNos últimos anos observou-se um crescimento das atividades industriais que provocou impactos significativos aos recursos naturais, e as preocupações com o ambiente em geral adquirem especial importância. Neste contexto, a indústria têxtil considerada uma importante atividade responsável por parte desse desenvolvimento, se caracteriza como geradora de efluente líquido amplamente poluidor devido ao grande volume de água necessária nesse processo produtivo. Levando em consideração os métodos convencionais e também as dificuldades no tratamento dos efluentes têxteis, o processo eletrolítico conhecido como eletrofloculação se constitui em uma possibilidade importante. Este processo envolve a desestabilização de poluentes emulsificados, ou em suspensão, em meio aquoso. Desta forma o objetivo deste trabalho foi implantar um sistema de tratamento híbrido utilizado na remoção do corante reativo azul 5G de um efluente têxtil sintético, através da eletrofloculação associada a adição de coagulante natural a base de Moringa oleífera Lam, a fim de potencializar o nível de tratamento que seria alcançado com as técnicas utilizadas isoladamente Inicialmente trabalhou-se exclusivamente com a eletrofloculação para a remoção do corante. As variáveis analisadas foram: ddp (diferença de potencial aplicado), tempo e pH. Considerando o intervalo de confiança de 95% somente o termo quadrático da ddp e o termo linear do pH se mostraram significativos. Os valores de remoção da cor para os ensaios variaram de 64,38 a 90,87% e para a validação uma remoção média de 89,01%, valores muito próximos do predito pelo modelo. Na sequência foi realizada a otimização das condições para obtenção do extrato aquoso de Moringa oleífera. Avaliou-se as seguintes condições: salinidade e tempo de extração. A concentração do coagulante obtido, em água turva sintética também foi um dos fatores estudados. As melhores condições para o extrato aquoso de Moringa oleífera foram: 20 segundos de agitação em ultrassom, e solução de 20% em cloreto de sódio. Para potencializar o nível de tratamento as duas técnicas (eletrofloculação e coagulante natural a base de Moringa oleífera), foram testadas inicialmente em batelada e na sequência em fluxo contínuo. Os ensaios em batelada foram divididos em duas partes, o primeiro DCCR avaliou a intensidade de corrente elétrica (I), o tempo da eletrofloculação e a concentração do coagulante (MO), o qual obteve uma remoção de cor de 77,27% a 91,33%. Porém, nenhum termo foi significativo, mas o tempo apresentou menor efeito. Sendo assim, um novo planejamento foi realizado, o segundo DCCR, fixando o tempo na condição mínima, além das faixas de I e MO que também foram reduzidas. Obteve-se então uma remoção da cor para os ensaios de 13,45 a 80,8%, e para a validação uma remoção média de 86,56%. Para o módulo contínuo, as variáveis estudadas foram a intensidade de corrente elétrica (I), concentração do coagulante (MO) e tempo de retenção hidráulica (TRH). Dentre elas somente o TRH não se mostrou significativo. A remoção da cor variou de 8,46% a 90,25%. Nestes ensaios também foram realizados as análises das concentrações de Ferro Residual, e os valores obtidos variaram de 3,70 mg.L-1 a 9,03 mg.L-1, ficaram abaixo do valor máximo permissível pela Legislação (15 mg.L-1). Para maximizar a remoção da cor e minimizar a concentração de ferro residual, a função desejabilidade do software STATISTICA™ foi utilizada e nessas condições somente a I e a MO foram significativas. A partir da validação foi possível observar a tendência de remoção prevista pelo modelo. Obteve-se uma remoção da cor para a validação de 71,38% e uma concentração média de ferro residual de 5,2237 mg. L-1, porém, com um erro distante do esperado (32,85%).
In recent years there has been a growth of industrial activities that caused significant impacts to natural resources, and concerns about the environment in general are of particular importance. In this context, the textile industry considered an important activity responsible for part of that development is characterized as liquid effluent generating widely polluter due to the large volume of water needed in this production process. Taking into account the conventional methods and also the difficulties in treating textile effluents, the electrolytic process known as eletrofloculation constitutes an important possibility. This process involves the destabilization of the emulsified pollutants, or suspension in aqueous medium. Thus the aim of this study was to implement a hybrid treatment system used in removing the blue reactive dye 5G of a synthetic textile effluent by eletrofloculation associated with adding natural coagulant the basis of Moringa Oleifera Lam, in order to enhance the level treatment would be achieved with the techniques used alone initially worked up exclusively with eletrofloculation to remove the dye. The variables analyzed were: ddp (potential difference applied), time and pH. Whereas the 95% confidence interval only the quadratic term of the linear term DDP and pH were significant. The removal of color values for the tests ranged from 64.38 to 90.87% and validating an average removal of 89.01%, very close values predicted by the model. Following was carried out to optimize the conditions for obtaining the aqueous extract of Moringa oleifera. Salinity and extraction time: The following conditions were evaluated. The concentration of the coagulant obtained in synthetic turbid water was also one of the factors studied. The best conditions for the aqueous extract of Moringa oleifera were 20 seconds of ultrasound in agitation, and solution of 20% sodium chloride. To enhance the level of treatment the two techniques (eletrofloculation and natural coagulant Moringa oleifera the base), were initially tested in batch and following streaming. The batch tests were divided into two parts, the first CCRD evaluated the intensity of electric current (I), the time eletrofloculation and concentration of the coagulant (MO), which obtained a color removal of 91 to 77.27% 33%. But no term was significant, but time showed less effect. Thus, a new planning was done, the second CCRD, setting the time at a minimum, in addition to the R and MO tracks that were also reduced. There was thus obtained a removal color for testing 13.45 to 80.8%, and validating an average removal of 86.56%. For the continuous form, the variables studied were the intensity of electric current (I), the coagulant concentration (MO) and hydraulic retention time (HRT). Among them only HRT was not significant. The color removal ranged from 8.46 % to 90.25%. In these assays were also performed the analysis of the residual iron concentrations, and the values obtained ranged from 3.70 mg L- 1 to 9.03 mg.L-1, were below the maximum value allowable by law (15 mg.L-1). To maximize the removal of color and minimize the residual concentration of iron, the desirability function STATISTICA ™ software was used and under these conditions only I and MO were significant. From the validation was observed removing trend predicted by the model. Obtained was a color removal for the validation of 71.38 % and an average concentration of 5.2237 mg.L-1 of residual iron, but with a far from the expected error (32.85%).
Lopes, Thiara Reis. « Caracterização do esgoto sanitário e lodo proveniente de reator anaeróbio e de lagoas de estabilização para avaliação da eficiência na remoção de contaminantes ». Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1285.
Texte intégralAs Estações de Tratamento de Esgoto (ETEs), são utilizadas com o objetivo de simular os fenômenos naturais de degradação em condições controladas para promover o tratamento dos esgotos, durante este processo, ocorre à produção de um subproduto denominado lodo de esgoto, constituído basicamente por uma mistura de matéria orgânica e inorgânica, que durante o processo de tratamento do esgoto permanece acumulada no sistema. As características do esgoto e do lodo estão relacionadas com as atividades antrópicas, condições climáticas, avanços tecnológicos que também contribuem com a inserção de compostos de difícil degradação, raramente tratados e removidos por processos convencionais. O objetivo desta pesquisa foi avaliar as características do esgoto e do lodo gerado em dois sistemas convencionais aplicados no tratamento do esgoto, estimar a eficiência dos sistemas e indicar o melhor potencial uso agrícola do lodo produzido. Para isso, foram determinados no afluente e efluente dos sistemas de tratamento biológico os parâmetros físico-químicos (pH, temperatura, oxigênio dissolvido, sólidos totais, sólidos totais fixos, sólidos totais voláteis, sólidos sedimentáveis, Demanda Química de Oxigênio (DQO), nitrogênio amoniacal). No lodo foram determinados parâmetros físico-químicos (pH, fósforo, potássio, íons metálicos, sólidos totais, sólidos totais fixos, sólidos totais voláteis, umidade, matéria orgânica e carbono orgânico total) e biológicos (coliformes termotolerantes, E. coli, Salmonella sp.). Os isolados de E. coli e Salmonella sp. foram submetidos a testes de susceptibilidade a agentes antimicrobianos. Os resultados indicaram que os esgotos avaliados apresentaram pH próximos à neutralidade e temperaturas ótimas para as atividades bacterianas. Ao comparar os sistemas de tratamento, a ETE operada com lagoas foi mais eficiente na conversão de nitrogênio amoniacal, sólidos e menor eficiência na redução da DQO. Todos os parâmetros avaliados no esgoto, apresentaram concentrações inferiores aos limites estabelecidos na legislação, exceto o nitrogênio amoniacal, e em determinadas amostragens a DQO e o OD. Em relação ao lodo, este apresentou pH próximos à neutralidade, a concentração de fósforo, potássio e matéria orgânica no lodo do sistema operado com RALF foi superior a do sistema operado com lagoas. Às concentrações dos íons metálicos no lodo do RALF foram superiores às do lodo do leito de secagem, nas lagoas essas concentrações reduziram durante o processo de tratamento. Ao comparar as ETEs, às concentrações dos íons metálicos foram maiores no lodo do RALF, exceto Mn e Ni, e a concentração de Fe foi semelhante entre os sistemas. No lodo do RALF, do leito de secagem e das lagoas foram detectadas colônias de Salmonella sp. resistentes à amoxicilina (10µg), tetraciclina (30µg) e cefalotina (30µg). As colônias de E. coli, foram sensíveis apenas à gentamicina. Este estudo possibilitou avaliar a eficiência destes sistemas convencionais de tratamento de esgotos, os resultados evidenciam a necessidade de utilizar métodos adequados de tratamento que possibilitem a remoção desses antibióticos e inativação dos microrganismos patogênicos, pois indicam um potencial risco das ETEs na dispersão desses no ambiente.
The Wastewater Treatment Plants (WWTPs) are used in order to simulate the natural degradation phenomena using controlled conditions to promote sewage treatment, a byproduct called sewage sludge is produced during this process, this is one blend of organic and inorganic material, it was accumulated in the system during the sewage treatment process. The sewage and sludge characteristics are related to human activities, weather conditions. Technological advances can contribute to the insertion of some compounds that are difficult to degrade, rarely treated and removed by conventional methods. This research aims to evaluate the sewage and sludge characteristics, estimating the efficiency of two conventional treatment systems and verify the agricultural potential use of sludge produced. For this, were determined in the influent and effluent of the biological systems of wastewater treatment some physico-chemical parameters (pH, temperature, Dissolved Oxygen (DO), total solids, total fixed solids, total volatile solids, settleable solids, chemistry oxygen demand (COD), ammonia nitrogen). In the sludge were determined physico-chemical parameters (pH, total solids, total fixed solids, total volatile solids, total phosphorus, total K, metals, humidity, organic matter and total organic carbon) and biological (CTT, E. coli, Salmonella sp.). The isolates of E. coli and Salmonella sp. were tested to antimicrobial agents. The results indicated the pH in sewage was near to neutrality and optimum temperatures for bacterial activities. By comparing the treatment systems, the WWTP operated with ponds was more efficient in ammonia nitrogen conversion, removing solids and less efficient in reducing COD. All results were below the limits established by law, except ammonia nitrogen and in some samples the DO and COD. The pH in sludge was slightly acid and near neutrality. The concentration of phosphorus, potassium and organic material in the sludge collected in the system operated with RALF exceeded the system operated with ponds. The concentrations of metal ions in sludge of RALF were higher than those of the sludge drying bed, in ponds the concentrations decreased during the treatment process, to compare the WWTPs, the concentrations of metal ions were higher in RALF sludge, except Mn and Ni, and the Fe concentration was similar. In the sludge of RALF, in the drying bed and ponds were detected Salmonella sp. resistant to amoxicillin (10µg), tetracycline (30µg) and cephalothin (30µg). The E. coli were susceptible only to gentamicin. This study evaluated the efficiency of these conventional systems applied in sewage treatment, the results suggest the need to use appropriate methods of treatment to removal of these antibiotics and inactivation the pathogenic microorganisms, this indicate a potential hazard of these WWTPs in the dispersion of the environment.
Coogan, Melinda Ann. « Bioaccumulation of Triclocarban, Triclosan, and Methyl-triclosan in a North Texas Wastewater Treatment Plant Receiving Stream and Effects of Triclosan on Algal Lipid Synthesis ». Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3986/.
Texte intégralMtimkulu, Yandiswa. « Monitoring extracellular enzyme activities and microbial population numbers during composting of winery solid waste ». Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2344.
Texte intégralWaste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) grinded material, lined and T5 (40%) unlined. Composting was allowed to proceed in open air over 12 months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df =3, 16, P < 0.05) had significant effects (df =1, 3, P < 0.05) on heap temperature and moisture in all treatments. Similarly, microorganisms (actinobacteria and heterotrophs) varied significantly in all treatments in response to seasonal change (df = 3, 16; P < 0.05). Enzyme activities fluctuated in accordance with seasonal factors and compost maturity stages, with phosphatases, esterases, amino-peptidases, proteases and glycosyl-hydrolases being most prominent. Compared to treatments T2 and T3, compost treatments with higher percentage waste filter materials (T1, T4 and T5) had higher N (16100-21300 mg/kg), P (1500-2300 mg/kg), K (19800-28200 mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste.
Rinquest, Zainab. « Poultry slaughterhouse wastewater treatment using a static granular bed reactor (Sgbr) coupled with a hybrid sidestream membrane bioreactor ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2638.
Texte intégralAn increase in the demand for poultry products coupled with the potable water shortages currently experienced in South Africa (SA), attributed to climate change among other factors, makes it crucial for SA to develop water conservation strategies to minimize potable water consumption by water-intensive industries, such as the poultry industry. The development of innovative wastewater treatment processes is therefore paramount in attempting to counteract the large quantity of wastewater generated as well as to manage the environmental health concerns arising from poultry slaughterhouse wastewater (PSW) discharge into the environment. Moreover, increasing wastewater treatment costs and the implementation of increasingly stringent government legislation to mitigate environmental pollution whilst minimizing fresh water source contamination, requires that wastewater such as PSW, be adequately treated prior to discharge. This study, investigated the feasibility of treating PSW from a poultry slaughterhouse to: 1) a water quality standard compliant with industrial wastewater discharge standards and 2) for possible re-use purposes. The performance of a lab-scale PSW treatment system consisting of an anaerobic static granular bed reactor (SGBR) followed by single stage nitrificationdenitrification (SSND) bioreactor and sidestream ultrafiltration membrane module (ufMM) post-treatment systems, were evaluated, with the objective being to: assess the treatment efficiency of the individual treatment systems namely; the SGBR, SSND bioreactor, and ufMM, under varying operational conditions, as well as to determine the performance of the overall designed PSW treatment system. The down-flow SGBR (2 L) was used to reduce the organic matter (COD, BOD5, and FOG) and total suspended solids (TSS) in the PSW. Anaerobic granules from a full-scale mesophilic anaerobic reactor treating brewery wastewater were used to inoculate the SGBR, and the PSW used as feed was obtained from a local poultry slaughterhouse (Western Cape, South Africa). The SGBR was operated continuously at mesophilic temperature (35-37 °C) without pH modification and under varying HRTs (24, 36, 48, 55, and 96 h) and OLRs (0.73 to 12.49 g COD/Lday), for a period of 138 days. The optimization of the SGBR, with regard to a suitable HRT and OLR, was determined using response surface methodology (RSM) and Design Expert® 10.0.3 statistical software. Periodic backwashing of the SGBR system was performed using stored effluent, i.e. treated PSW.
Belini, Aldria Diana. « Otimização da remoção da matéria carbonácea e nitrogenada do esgoto sanitário por reator anaeróbio e aeróbio de leito fixo ». Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/1937.
Texte intégralO aumento da população agrava a qualidade dos corpos receptores existentes, devido a concentração dos despejos de esgotos sanitários com elevadas cargas carbonáceas e nitrogenadas. Existem inúmeras operações de tratamento, porém, a aplicação dos processos biológicos, na maioria dos casos é a alternativa mais econômica. Logo, este trabalho tem por objetivo, otimizar a remoção da matéria carbonácea e nitrogenada de esgotos sanitário por sistema combinado composto de reator anaeróbio e aeróbio de leito fixo. O sistema foi composto de reatores anaeróbio e aeróbio de leito fixo, com escoamento ascendente e fluxo continuo, base retangular e volume útil de 19,8 L e 19,3 L respectivamente, mais um dispositivo de separação de sólidos líquidos com volume útil de 7,3 L (TDH de 8h em cada reator) e 9,8 L (TDH de 6h em cada reator). O meio suporte para imobilização da biomassa era constituído de anéis corrugados de Policloreto de Polivinila (PVC). O Sistema foi operado em 6 etapas distintas em que foi variado a taxa de recirculação (etapa 1 50%, etapa 2 100% e etapa 3 150%) e vazão de aeração (etapa 4 10 L.min-1, etapa 5 5 L.min-1 e etapa 6 2,5 L.min-1). Para a avaliação do sistema, determinou-se os seguintes parâmetros físico-químicos: temperatura do líquido (TL), pH, alcalinidade total (AT), alcalinidade a bicarbonato (AB), ácidos voláteis (AV), oxigênio dissolvido (OD), demanda química de oxigênio (DQO) nitrogênio total kjeldahl (N-NTK), nitrogênio amoniacal (N-amoniacal), nitrito (N-NO2-), nitrato (N-NO3-) e fósforo total (P). A avaliação do comportamento hidrodinâmico foi realizada pela técnica de estímulo-resposta tipo pulso com injeção do corante Eosina Y. Os resultados obtidos nas três primeiras etapas com influência da variação da taxa de recirculação (50%, 100 % e 150 %), apresentaram remoções da concentração de matéria orgânica em termos de DQO(amostras brutas) superiores a 97 %, em relação a concentração de nitrogênio, a remoção de N-NTK ficou superior a 95 %; foi possível concluir que quanto maior a taxa de recirculação maior é a eficiência de remoção de nitrogênio e menores são os valores de nitrito e nitrato, entretanto cabe ressaltar que o aumento da taxa de recirculação provoca o aumento da concentração de OD no reator anaeróbio o que pode provocar o desequilíbrio do processo. Ao observar a influência da variação da vazão de aeração com taxa de recirculação constante de 100 %, as remoções de matéria orgânica apresentaram remoção de DQO (amostras brutas) superiores 98 a % enquanto a remoção de nitrogênio caiu conforme a diminuição da vazão de aeração (Qa) com eficiências de remoção de N-NTK superiores a 96% (Qa = 10 L.min-1), 90 % (Qa = 5 L.min-1) e 45 % (Qa = 2,5 L.min-1). E em relação a variação do TDH, na remoção de matéria orgânica, obteve valores de remoção superiores de DQOamostras brutas a 98 % (TDH de 8h em cada reator) e 99 % (TDH de 6h em cada reator) enquanto que para remoção de nitrogênio as eficiências foram superiores a 96% para ambos os TDH testados o que evidência que o sistema combinado apresentou boa capacidade de amortecer a variação de cargas hidráulicas como orgânicas.
The increase in population worsens the quality of existing receiving bodies, because the concentration of sewage dumps with high organic and nitrogen loads. There are numerous processing operations, however, the application of biological processes, in most cases is the most economical alternative. Thus, this study aims to optimize the removal of carbonaceous and nitrogenous matter sanitary sewer system consists of a combined anaerobic and aerobic fixed bed reactor. The system was composed of anaerobic and aerobic fixed-bed reactors, with upward flow and continuous flow, rectangular base and useful volume of 19.8 L and 19.3 L, respectively, plus a solid liquid separation device with a volume of 7 3 L (HDT 8 h in each reactor) and 9.8 L (HDT 6 h in each reactor). The medium support for biomass immobilization consisted of corrugated rings Polyvinyl Polyvinyl (PVC). The system was operated in six different stages in which was varied the recirculation rate (50% step 1, 100% step 2 and step 3 150%) and flow aeration (step 4 10 L.min-1, Step 5 5 L .min-1 and step 6 2.5 L.min-1). For the evaluation system, it was determined the following physicochemical parameters: liquid temperature (TL), pH, total alkalinity (AT), bicarbonate alkalinity (AB), volatile acids (AV), dissolved oxygen (DO), chemical oxygen demand (COD) Total kjeldahl nitrogen (N-TKN), ammonia (N-ammonia), nitrite (N-NO2-), nitrate (N-NO3-) and phosphorus (P). The hydrodynamic behavior evaluation was performed by pulse type stimulus-response technique of injection of the dye Eosin Y. The results obtained in the first three steps with recirculation rate influence of variation (50%, 100% and 150%) showed removal concentration of organic matter in terms of COD (raw samples) greater than 97%, for nitrogen concentrations, the removal of N-TKN was greater than 95%; it was concluded that the higher the recirculation rate is nitrogen removal efficiency and lower the nitrite values and nitrate, however it is worth noting that increasing the recirculation rate causes an increase of OD concentration in the anaerobic reactor which may cause the imbalance of the process. To observe the influence of variation in the flow aeration with constant recirculation rate of 100%, the removal of organic matter showed a COD(raw samples) removal higher than 98% while the nitrogen removal fell as the reduction of aeration flow ( Qa) with N-TKN removal efficiencies exceeding 96% (Qa = 10 L.min-1), 90% (Qa = 5 L.min-1) and 45% (Qa = 2.5 L.min-1). And regarding the variation of TDH, in the removal of organic matter, obtained higher removal values DQO(raw samples) 98% (HDT of 8 hours in each reactor) and 99% (HDT of 6 hours in each reactor) while for nitrogen removal efficiencies were higher than 96% for both tested HDT which shows that the combined system showed a good ability to cushion the variation of hydraulic and organic fillers.
Holtman, Gareth Alistair. « Design, installation, and assessment of a biological winery wastewater treatment system ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2573.
Texte intégralCurrently in South Africa, most wastewater from small cellars is pH-adjusted and disposed of via land irrigation. This practice can lead to environmental degradation. There is a need for low cost, low maintenance solutions for the treatment of cellar effluent. Constructed wetlands provide such an option. However, the use of plants is problematic because winery effluent can be phytotoxic. After successful initial laboratory-scale experiments, an in-situ pilot scale biological sand filter (unplanted constructed wetland) system was designed, installed, and used to treat effluent from a small winery in the Western Cape, South Africa. The system is off-grid, totally self-regulating, and uses a modular approach which allows for the addition and subtraction of filter modules within the system to alter treatment capacity, retention time and/or rest filter modules. The system can be easily integrated into existing settling basins and/or retention ponds at small wineries. The biological sand filter was operational for 610 days, and showed promising results. The average chemical oxygen demand removal efficiency was 81% (range: 44-98%) with an average effluent of 324 mg/L, and an average flow rate of 413 L/day after the acclimation (start-up) period. The average hydraulic loading rate after the initial start-up period was 143 L/m3 sand day-1 (range: 67-222/m3 sand day-1), with an organic loading rate of 205 gCOD/m3 of sand day-1 (range: 83-338 gCOD/m3 sand day-1) which resulted in an organic removal rate of 164 gCOD/m3 of sand day-1. There was an average of 67% removal of total phenolics, thereby reducing the potential phytotoxicity of the effluent. In addition, there was a 1.6 times increase in calcium concentration, a 29% decrease in the average sodium adsorption ratio, and complete passive neutralisation of the acidic winery wastewater (final effluent pH range: 6.63 – 8.14. The findings of this study compare well with previous laboratory studies conducted with synthetic and authentic winery effluent. The system can potentially provide a low cost, energy efficient, low maintenance, sustainable means of treating cellar effluent at small wineries. Uptake of this technology may alleviate environmental degradation caused by irrigating land with inadequately treated effluent.
Baerenklau, Amy L. (Amy Lyn). « Evaluation of a Constructed Wetland to Reduce Toxicity from Diazinon at the Pecan Creek Wastewater Treatment Plant, Denton, TX ». Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc279107/.
Texte intégralXiong, Xianzhe, et mikewood@deakin edu au. « Heavy metal accumulation in soils at three field sites subject to effluent irrigation ». Deakin University. School of Ecology and Environment, 2003. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20050902.110403.
Texte intégralMaschmann, Gerald F. « Recovery of the Fish Population of a Municipal Wastewater Dominated, North Texas Creek After a Major Chlorine Disturbance ». Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3230/.
Texte intégralHendricks, Nicolette Rebecca. « The application of high capacity ion exchange absorbent material, synthesized from fly ash and acid mine drainage, for the removal of heavy and trace metals from secondary co-disposed process waters ». Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Texte intégral