Thèses sur le sujet « Sequenze biologiche »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Sequenze biologiche ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Zappala', Domenica. « Espressione di diverse sequenze geniche del Polyomavirus JC nel soggetto immunocompromesso ». Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1091.
Texte intégralFortino, Vittorio. « Sequence analysis in bioinformatics : methodological and practical aspects ». Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/985.
Texte intégralMy PhD research activities has focused on the development of new computational methods for biological sequence analyses. To overcome an intrinsic problem to protein sequence analysis, whose aim was to infer homologies in large biological protein databases with short queries, I developed a statistical framework BLAST-based to detect distant homologies conserved in transmembrane domains of different bacterial membrane proteins. Using this framework, transmembrane protein domains of all Salmonella spp. have been screened and more than five thousands of significant homologies have been identified. My results show that the proposed framework detects distant homologies that, because of their conservation in distinct bacterial membrane proteins, could represent ancient signatures about the existence of primeval genetic elements (or mini-genes) coding for short polypeptides that formed, through a primitive assembly process, more complex genes. Further, my statistical framework lays the foundation for new bioinformatics tools to detect homologies domain-oriented, or in other words, the ability to find statistically significant homologies in specific target-domains. The second problem that I faced deals with the analysis of transcripts obtained with RNA-Seq data. I developed a novel computational method that combines transcript borders, obtained from mapped RNA-Seq reads, with sequence features based operon predictions to accurately infer operons in prokaryotic genomes. Since the transcriptome of an organism is dynamic and condition dependent, the RNA-Seq mapped reads are used to determine a set of confirmed or predicted operons and from it specific transcriptomic features are extracted and combined with standard genomic features to train and validate three operon classification models (Random Forests - RFs, Neural Networks – NNs, and Support Vector Machines - SVMs). These classifiers have been exploited to refine the operon map annotated by DOOR, one of the most used database of prokaryotic operons. This method proved that the integration of genomic and transcriptomic features improve the accuracy of operon predictions, and that it is possible to predict the existence of potential new operons. An inherent limitation of using RNA-Seq to improve operon structure predictions is that it can be not applied to genes not expressed under the condition studied. I evaluated my approach on different RNA-Seq based transcriptome profiles of Histophilus somni and Porphyromonas gingivalis. These transcriptome profiles were obtained using the standard RNA-Seq or the strand-specific RNA-Seq method. My experimental results demonstrate that the three classifiers achieved accurate operon maps including reliable predictions of new operons. [edited by author]
XI n.s.
Seth, Pawan. « STUDY OF THE RELATIONSHIP BETWEEN Mus musculus PROTEIN SEQUENCES AND THEIR BIOLOGICAL FUNCTIONS ». University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1176736255.
Texte intégralArvestad, Lars. « Algorithms for biological sequence alignment ». Doctoral thesis, KTH, Numerisk analys och datalogi, NADA, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2905.
Texte intégralAltschul, Stephen Frank. « Aspects of biological sequence comparison ». Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/102708.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Bibliography: leaves 165-168.
by Stephen Frank Altschul.
Ph.D
Yeats, Corin Anthony. « Biological investigations through sequence analysis ». Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614848.
Texte intégralPustuÅ‚ka-Hunt, Elżbieta Katarzyna. « Biological sequence indexing using persistent Java ». Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270957.
Texte intégralXu, Keyuan. « Stochastic modeling of biological sequence evolution ». Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32113.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaves 81-86).
Markov models of sequence evolution are a fundamental building block for making inferences in biological research. This thesis reviews several major techniques developed to estimate parameters of Markov models of sequence evolution and presents a new approach for evaluating and comparing estimation techniques. Current methods for evaluating estimation techniques require sequence data from populations with well-known phylogenetic relationships. Such data is not always available since phylogenetic relationships can never be known with certainty. We propose generating sequence data for the purpose of estimation technique evaluation by simulating sequence evolution in a controlled setting. Our elementary simulator uses a Markov model and a binary branching process, which dynamically builds a phylogenetic tree from an initial seed sequence. The sequences at the leaves of the tree can then be used as input to estimation techniques. We demonstrate our evaluation approach on Arvestad and Bruno's estimation method, and show how our approach can reveal performance variations empirically. The results of our simulation can be used as a guide towards improving estimation techniques.
by Keyuan Xu.
M.Eng.
Murrel, Benjamin. « Improved models of biological sequence evolution ». Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71870.
Texte intégralENGLISH ABSTRACT: Computational molecular evolution is a field that attempts to characterize how genetic sequences evolve over phylogenetic trees – the branching processes that describe the patterns of genetic inheritance in living organisms. It has a long history of developing progressively more sophisticated stochastic models of evolution. Through a probabilist’s lens, this can be seen as a search for more appropriate ways to parameterize discrete state continuous time Markov chains to better encode biological reality, matching the historical processes that created empirical data sets, and creating useful tools that allow biologists to test specific hypotheses about the evolution of the organisms or the genes that interest them. This dissertation is an attempt to fill some of the gaps that persist in the literature, solving what we see as existing open problems. The overarching theme of this work is how to better model variation in the action of natural selection at multiple levels: across genes, between sites, and over time. Through four published journal articles and a fifth in preparation, we present amino acid and codon models that improve upon existing approaches, providing better descriptions of the process of natural selection and better tools to detect adaptive evolution.
AFRIKAANSE OPSOMMING: Komputasionele molekulêre evolusie is ’n navorsingsarea wat poog om die evolusie van genetiese sekwensies oor filogenetiese bome – die vertakkende prosesse wat die patrone van genetiese oorerwing in lewende organismes beskryf – te karakteriseer. Dit het ’n lang geskiedenis waartydens al hoe meer gesofistikeerde waarskynlikheidsmodelle van evolusie ontwikkel is. Deur die lens van waarskynlikheidsleer kan hierdie proses gesien word as ’n soektog na meer gepasde metodes om diskrete-toestand kontinuë-tyd Markov kettings te parametriseer ten einde biologiese realiteit beter te enkodeer – op so ’n manier dat die historiese prosesse wat tot die vorming van biologiese sekwensies gelei het nageboots word, en dat nuttige metodes geskep word wat bioloë toelaat om spesifieke hipotesisse met betrekking tot die evolusie van belanghebbende organismes of gene te toets. Hierdie proefskrif is ’n poging om sommige van die gapings wat in die literatuur bestaan in te vul en bestaande oop probleme op te los. Die oorkoepelende tema is verbeterde modellering van variasie in die werking van natuurlike seleksie op verskeie vlakke: variasie van geen tot geen, variasie tussen posisies in gene en variasie oor tyd. Deur middel van vier gepubliseerde joernaalartikels en ’n vyfde artikel in voorbereiding, bied ons aminosuur- en kodon-modelle aan wat verbeter op bestaande benaderings – hierdie modelle verskaf beter beskrywings van die proses van natuurlike seleksie sowel as beter metodes om gevalle van aanpassing in evolusie te vind.
Gîrdea, Marta. « New methods for biological sequence alignment ». Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10089/document.
Texte intégralBiological sequence alignment is a fundamental technique in bioinformatics, and consists of identifying series of similar (conserved) characters that appear in the same order in both sequences, and eventually deducing a set of modifications (substitutions, insertions and deletions) involved in the transformation of one sequence into the other. This technique allows one to infer, based on sequence similarity, if two or more biological sequences are potentially homologous, i.e. if they share a common ancestor, thus enabling the understanding of sequence evolution.This thesis addresses sequence comparison problems in two different contexts: homology detection and high throughput DNA sequencing. The goal of this work is to develop sensitive alignment methods that provide solutions to the following two problems: i) the detection of hidden protein homologies by protein sequence comparison, when the source of the divergence are frameshift mutations, and ii) mapping short SOLiD reads (sequences of overlapping di-nucleotides encoded as colors) to a reference genome. In both cases, the same general idea is applied: to implicitly compare DNA sequences for detecting changes occurring at this level, while manipulating, in practice, other representations (protein sequences, sequences of di-nucleotide codes) that provide additional information and thus help to improve the similarity search. The aim is to design and implement exact and heuristic alignment methods, along with scoring schemes, adapted to these scenarios
Orobitg, Cortada Miquel. « High performance computing on biological sequence alignment ». Doctoral thesis, Universitat de Lleida, 2013. http://hdl.handle.net/10803/110930.
Texte intégralThompson, James. « Genetic algorithms applied to biological sequence analysis / ». Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2269.
Texte intégralLyall, Andrew. « Biological sequence comparison on a parallel computer ». Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/12493.
Texte intégralStanescu, Ana. « Semi-supervised learning for biological sequence classification ». Diss., Kansas State University, 2015. http://hdl.handle.net/2097/35810.
Texte intégralDepartment of Computing and Information Sciences
Doina Caragea
Successful advances in biochemical technologies have led to inexpensive, time-efficient production of massive volumes of data, DNA and protein sequences. As a result, numerous computational methods for genome annotation have emerged, including machine learning and statistical analysis approaches that practically and efficiently analyze and interpret data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data in order to build quality classifiers. The process of labeling data can be expensive and time consuming, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on semi-supervised learning approaches for biological sequence classification. Although an attractive concept, semi-supervised learning does not invariably work as intended. Since the assumptions made by learning algorithms cannot be easily verified without considerable domain knowledge or data exploration, semi-supervised learning is not always "safe" to use. Advantageous utilization of the unlabeled data is problem dependent, and more research is needed to identify algorithms that can be used to increase the effectiveness of semi-supervised learning, in general, and for bioinformatics problems, in particular. At a high level, we aim to identify semi-supervised algorithms and data representations that can be used to learn effective classifiers for genome annotation tasks such as cassette exon identification, splice site identification, and protein localization. In addition, one specific challenge that we address is the "data imbalance" problem, which is prevalent in many domains, including bioinformatics. The data imbalance phenomenon arises when one of the classes to be predicted is underrepresented in the data because instances belonging to that class are rare (noteworthy cases) or difficult to obtain. Ironically, minority classes are typically the most important to learn, because they may be associated with special cases, as in the case of splice site prediction. We propose two main techniques to deal with the data imbalance problem, namely a technique based on "dynamic balancing" (augmenting the originally labeled data only with positive instances during the semi-supervised iterations of the algorithms) and another technique based on ensemble approaches. The results show that with limited amounts of labeled data, semisupervised approaches can successfully leverage the unlabeled data, thereby surpassing their completely supervised counterparts. A type of semi-supervised learning, known as "transductive" learning aims to classify the unlabeled data without generalizing to new, previously not encountered instances. Theoretically, this aspect makes transductive learning particularly suitable for the task of genome annotation, in which an entirely sequenced genome is typically available, sometimes accompanied by limited annotation. We study and evaluate various transductive approaches (such as transductive support vector machines and graph based approaches) and sequence representations for the problems of cassette exon identification. The results obtained demonstrate the effectiveness of transductive algorithms in sequence annotation tasks.
Herndon, Nic. « Domain adaptation algorithms for biological sequence classification ». Diss., Kansas State University, 2016. http://hdl.handle.net/2097/35242.
Texte intégralDepartment of Computing and Information Sciences
Doina Caragea
The large volume of data generated in the recent years has created opportunities for discoveries in various fields. In biology, next generation sequencing technologies determine faster and cheaper the exact order of nucleotides present within a DNA or RNA fragment. This large volume of data requires the use of automated tools to extract information and generate knowledge. Machine learning classification algorithms provide an automated means to annotate data but require some of these data to be manually labeled by human experts, a process that is costly and time consuming. An alternative to labeling data is to use existing labeled data from a related domain, the source domain, if any such data is available, to train a classifier for the domain of interest, the target domain. However, the classification accuracy usually decreases for the domain of interest as the distance between the source and target domains increases. Another alternative is to label some data and complement it with abundant unlabeled data from the same domain, and train a semi-supervised classifier, although the unlabeled data can mislead such classifier. In this work another alternative is considered, domain adaptation, in which the goal is to train an accurate classifier for a domain with limited labeled data and abundant unlabeled data, the target domain, by leveraging labeled data from a related domain, the source domain. Several domain adaptation classifiers are proposed, derived from a supervised discriminative classifier (logistic regression) or a supervised generative classifier (naïve Bayes), and some of the factors that influence their accuracy are studied: features, data used from the source domain, how to incorporate the unlabeled data, and how to combine all available data. The proposed approaches were evaluated on two biological problems -- protein localization and ab initio splice site prediction. The former is motivated by the fact that predicting where a protein is localized provides an indication for its function, whereas the latter is an essential step in gene prediction.
Blanco, García Enrique. « Meta-alignment of biological sequences ». Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/6654.
Texte intégralÉs llavors quan la comparació directa entre dues seqüències no es capaç de revelar aquelles estructures d'ordre superior que podrien explicar la relació establerta entre aquestes seqüències.
Amb aquest treball hem contribuït a millorar la forma en que dues seqüències poden ser comparades, desenvolupant una família d'algorismes d'alineament de la informació d'alt nivell codificada en seqüències biològiques (meta-alineaments). Inicialment, hem redissenyat un antic algorisme, basat en programació dinàmica, que és capaç d'alinear dues seqüències de meta-informació, procedint després a introduir-hi vàries millores per accelerar la seva velocitat. A continuació hem desenvolupat un algorisme de meta-aliniament capaç d'alinear un número múltiple de seqüències, combinant l'algorisme general amb un esquema de clustering jeràrquic. A més, hem estudiat les propietats dels meta-alineaments produïts, modificant l'algorisme per tal d'identificar alineaments amb una configuració no necessàriament col.lineal, el que permet llavors la detecció de permutacions en els resultats.
La vida molecular és un exemple paradigmátic de la versatilitat de les seqüències. Les comparaciones entre genomes, ara que la seva seqüència està disponible, permeten identificar numerosos elements biològicament funcionals. La seqüència de nucleòtids de molts gens, per exemple, es troba acceptablement conservada entre diferents espècies. En canvi, les seqüències que regulen la activació dels propis gens són més curtes i variables. Així l'activació simultànea d'un conjunt de gens es pot explicar només a partir de la conservació de configuracions comunes d'elements reguladors d'alt nivell i no pas a partir de la simple conservació de les seves seqüències. Per tant, hem entrenat els nostres programes de meta-alineament en una sèrie de conjunts de regions reguladores recopilades per nosaltres mateixos de la literatura i desprès, hem provat la utilitat biològica de la nostra aproximació, caracteritzant automàticament de forma exitosa les regions activadores de gens humans conservats en altres espècies.
The sequences are very versatile data structures. In a straightforward manner, a sequence of symbols can store any type of information. Systematic analysis of sequences is a very rich area of algorithmics, with lots of successful applications. The comparison by sequence alignment is a very powerful analysis tool. Dynamic programming is one of the most popular and efficient approaches to align two sequences. However, despite their utility, alignments are not always the best option for characterizing the function of two sequences. Sequences often encode information in different levels of organization (meta-information). In these cases, direct sequence comparison is not able to unveil those higher-order structures that can actually explain the relationship between the sequences.
We have contributed with the work presented here to improve the way in which two sequences can be compared, developing a new family of algorithms that align high level information encoded in biological sequences (meta-alignment). Initially, we have redesigned an existent algorithm, based in dynamic programming, to align two sequences of meta-information, introducing later several improvements for a better performance. Next, we have developed a multiple meta-alignment algorithm, by combining the general algorithm with the progressive schema. In addition, we have studied the properties of the resulting meta-alignments, modifying the algorithm to identify non-collinear or permuted configurations.
Molecular life is a great example of the sequence versatility. Comparative genomics provide the identification of numerous biologically functional elements. The nucleotide sequence of many genes, for example, is relatively well conserved between different species. In contrast, the sequences that regulate the gene expression are shorter and weaker. Thus, the simultaneous activation of a set of genes only can be explained in terms of conservation between configurations of higher-order regulatory elements, that can not be detected at the sequence level. We, therefore, have trained our meta-alignment programs in several datasets of regulatory regions collected from the literature. Then, we have tested the accuracy of our approximation to successfully characterize the promoter regions of human genes and their orthologs in other species.
Sandve, Geir Kjetil. « Motif discovery in biological sequences ». Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9270.
Texte intégralThis master thesis is a Ph.D. research plan for motif discovery in biological sequences, and consists of three main parts. Chapter 2 is a survey of methods for motif discovery in DNA regulatory regions, with a special emphasis on computational models. The survey presents an integrated model of the problem that allows systematic and coherent treatment of the surveyed methods. Chapter 3 presents a new algorithm for composite motif discovery in biological sequences. This algorithm has been used with success for motif discovery in protein sequences, and will in future work be extended on to explore properties of the DNA regulatory mechanism. Finally, chapter 4 describes several current research projects, as well as some more general future directions of research. The research focuses on the development of new algorithms for the discovery of composite motifs in DNA. These algorithms will partly be used for systematic exploration of the DNA regulatory mechanism. An increased understanding of this mechanism may lead to more accurate computational models, and hence more sensitive motif discovery methods.
Vázquez, García Ignacio. « Molecular evolution of biological sequences ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284174.
Texte intégralIsa, Mohammad Nazrin. « High performance reconfigurable architectures for biological sequence alignment ». Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7721.
Texte intégralTangirala, Karthik. « Unsupervised feature construction approaches for biological sequence classification ». Diss., Kansas State University, 2015. http://hdl.handle.net/2097/19123.
Texte intégralDepartment of Computing and Information Sciences
Doina Caragea
Recent advancements in biological sciences have resulted in the availability of large amounts of sequence data (DNA and protein sequences). Biological sequence data can be annotated using machine learning techniques, but most learning algorithms require data to be represented by a vector of features. In the absence of biologically informative features, k-mers generated using a sliding window-based approach are commonly used to represent biological sequences. A larger k value typically results in better features; however, the number of k-mer features is exponential in k, and many k-mers are not informative. Feature selection is widely used to reduce the dimensionality of the input feature space. Most feature selection techniques use feature-class dependency scores to rank the features. However, when the amount of available labeled data is small, feature selection techniques may not accurately capture feature-class dependency scores. Therefore, instead of working with all k-mers, this dissertation proposes the construction of a reduced set of informative k-mers that can be used to represent biological sequences. This work resulted in three novel unsupervised approaches to construct features: 1. Burrows Wheeler Transform-based approach, that uses the sorted permutations of a given sequence to construct sequential features (subsequences) that occur multiple times in a given sequence. 2. Community detection-based approach, that uses a community detection algorithm to group similar subsequences into communities and refines the communities to form motifs (group of similar subsequences). Motifs obtained using the community detection-based approach satisfy the ZOMOPS constraint (Zero, One or Multiple Occurrences of a Motif Per Sequence). All possible unique subsequences of the obtained motifs are then used as features to represent the sequences. 3. Hybrid-based approach, that combines the Burrows Wheeler Transform-based approach and the community detection-based approach to allow certain mismatches to the features constructed using the Burrows Wheeler Transform-based approach. To evaluate the predictive power of the features constructed using the proposed approaches, experiments were conducted in three learning scenarios: supervised, semi-supervised, and domain adaptation for both nucleotide and protein sequence classification problems. The performance of classifiers learned using features generated with the proposed approaches was compared with the performance of the classifiers learned using k-mers (with feature selection) and feature hashing (another unsupervised dimensionality reduction technique). Experimental results from the three learning scenarios showed that features constructed with the proposed approaches were typically more informative than k-mers and feature hashing.
Pappas, Nicholas Peter. « Searching Biological Sequence Databases Using Distributed Adaptive Computing ». Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31074.
Texte intégralMaster of Science
Kim, Eagu. « Inverse Parametric Alignment for Accurate Biological Sequence Comparison ». Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/193664.
Texte intégralVerzotto, Davide. « Advanced Computational Methods for Massive Biological Sequence Analysis ». Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3426282.
Texte intégralCon l'avvento delle moderne tecnologie di sequenziamento, massive quantità di dati biologici, da sequenze proteiche fino a interi genomi, sono disponibili per la ricerca. Questo progresso richiede l'analisi e la classificazione automatica di tali collezioni di dati, al fine di migliorare la conoscenza nel campo delle Scienze della Vita. Nonostante finora siano stati proposti molti approcci per modellare matematicamente le sequenze biologiche, ad esempio cercando pattern e similarità tra sequenze genomiche o proteiche, questi metodi spesso mancano di strutture in grado di indirizzare specifiche questioni biologiche. In questa tesi, presentiamo nuovi metodi computazionali per tre problemi fondamentali della biologia molecolare: la scoperta di relazioni evolutive remote tra sequenze proteiche, l'individuazione di segnali biologici complessi in siti funzionali tra loro correlati, e la ricostruzione della filogenesi di un insieme di organismi, attraverso la comparazione di interi genomi. Il principale contributo è dato dall'analisi sistematica dei pattern che possono interessare questi problemi, portando alla progettazione di nuovi strumenti computazionali efficaci ed efficienti. Vengono introdotti così due paradigmi avanzati per la scoperta e il filtraggio di pattern, basati sull'osservazione che i motivi biologici funzionali, o pattern, sono localizzati in differenti regioni delle sequenze in esame. Questa osservazione consente di realizzare approcci parsimoniosi in grado di evitare un conteggio multiplo degli stessi pattern. Il primo paradigma considerato, ovvero irredundant common motifs, riguarda la scoperta di pattern comuni a coppie di sequenze che hanno occorrenze non coperte da altri pattern, la cui copertura è definita da una maggiore specificità e/o possibile estensione dei pattern. Il secondo paradigma, ovvero underlying motifs, riguarda il filtraggio di pattern che hanno occorrenze non sovrapposte a quelle di altri pattern con maggiore priorità, dove la priorità è definita da proprietà lessicografiche dei pattern al confine tra pattern matching e analisi statistica. Sono stati sviluppati tre metodi computazionali basati su questi paradigmi avanzati. I risultati sperimentali indicano che i nostri metodi sono in grado di identificare le principali similitudini tra sequenze biologiche, utilizzando l'informazione presente in maniera non ridondante. In particolare, impiegando gli irredundant common motifs e le statistiche basate su questi pattern risolviamo il problema della rilevazione di omologie remote tra proteine. I risultati evidenziano che il nostro approccio, chiamato Irredundant Class, ottiene ottime prestazioni su un benchmark impegnativo, e migliora i metodi allo stato dell'arte. Inoltre, per individuare segnali biologici complessi utilizziamo la nozione di underlying motifs, definendo così alcune modalità per il confronto e il filtraggio di motivi degenerati ottenuti tramite moderni strumenti di pattern discovery. Esperimenti su grandi famiglie proteiche dimostrano che il nostro metodo riduce drasticamente il numero di motivi che gli scienziati dovrebbero altrimenti ispezionare manualmente, mettendo in luce inoltre i motivi funzionali identificati in letteratura. Infine, combinando i due paradigmi proposti presentiamo una nuova e pratica funzione di distanza tra interi genomi. Con il nostro metodo, chiamato Unic Subword Approach, relazioniamo tra loro le diverse regioni di due sequenze genomiche, selezionando i motivi conservati durante l'evoluzione. I risultati sperimentali evidenziano che il nostro approccio offre migliori prestazioni rispetto ad altri metodi allo stato dell'arte nella ricostruzione della filogenesi di organismi quali virus, procarioti ed eucarioti unicellulari, identificando inoltre le sottoclassi principali di queste specie.
Mohanty, Pragyan Paramita. « Function-based Algorithms for Biological Sequences ». OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1120.
Texte intégralMargolin, Yelena 1977. « Analysis of sequence-selective guanine oxidation by biological agents ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42381.
Texte intégralVita.
Includes bibliographical references.
Oxidatively damaged DNA has been strongly associated with cancer, chronic degenerative diseases and aging. Guanine is the most frequently oxidized base in the DNA, and generation of a guanine radical cation (G'") as an intermediate in the oxidation reaction leads to migration of a resulting cationic hole through the DNA n-stack until it is trapped at the lowest-energy sites. These sites reside at runs of guanines, such as 5'-GG-3' sequences, and are characterized by the lowest sequence-specific ionization potentials (IPs). The charge transfer mechanism suggests that hotspots of oxidative DNA damage induced by electron transfer reagents can be predicted based on the primary DNA sequence. However, preliminary data indicated that nitrosoperoxycarbonate (ONOOCO2"), a mediator of chronic inflammation and a one-electron oxidant, displayed unusual guanine oxidation properties that were the focus of present work. As a first step in our study, we determined relative levels of guanine oxidation, induced by ONOOCO2 in all possible three-base sequence contexts (XGY) within double-stranded oligonucleotides. These levels were compared to the relative oxidation induced within the same guanines by photoactivated riboflavin, a one-electron reagent. We found that, in agreement with previous studies, photoactivated riboflavin was selective for guanines of lowest IPs located within 5'-GG-3' sequences. In contrast, ONOOCO2" preferentially reacted with guanines located within 5'-GC-3' sequences characterized by the highest IPs. This demonstrated that that sequence-specific IP was not a determinant of guanine reactivity with ONOOCO2". Sequence selectivities for both reagents were double-strand specific. Selectivity of ONOOCO2 for 5'-GC-3' sites was also observed in human genomic DNA after ligation-mediated PCR analysis.
(cont.) Relative yields of different guanine lesions produced by both ONOOCO2" and riboflavin varied 4- to 5-fold across all sequence contexts. To assess the role of solvent exposure in mediating guanine oxidation by ONOOCO2", relative reactivities of mismatched guanines with ONOOCO2" were measured. The majority of the mismatches displayed an increased reactivity with ONOOCO2 as compared to the fully matched G-C base-pairs. The extent of reactivity enhancement was sequence context-dependent, and the greatest levels of enhancement were observed for the conformationally flexible guanine- guanine (G-G) mismatches and for guanines located across from a synthetic abasic site. To test the hypothesis that the negative charge of an oxidant influences its reactivity with guanines in DNA, sequence-selective guanine oxidation by a negatively charged reagent, Fe+2-EDTA, was assessed and compared to guanine oxidation produced by a neutral oxidant, y-radiation. Because both of these agents cause high levels of deoxyribose oxidation, a general method to quantify sequence-specific nucleobase oxidation in the presence of direct strand breaks was developed. This method exploited activity of exonuclease III (Exo III), a 3' to 5' exonuclease, and utilized phosphorothioate-modified synthetic oligonucleotides that were resistant to Exo III activity. This method was employed to determine sequence-selective guanine oxidation by Fe+2-EDTA complex and y-radiation and to show that both agents produced identical guanine oxidation pattems and were equally reactive with all guanines, irrespective of their sequence-specific IPs or sequence context.
(cont.) This showed that negative charge was not a determinant of Fe+2-EDTA-mediated guanine oxidation. Finally, the role of oxidant binding on nucleobase damage was assessed by studying sequence-selective oxidation produced by DNA-bound Fe+2 ions in the presence of H202. We found that the major oxidation targets were thymines located within 5'-TGG-3' motifs, demonstrating that while guanines were a required element for coordination of Fe+2 to DNA, they were not oxidized. Our results suggest that factors other than sequence-specific IPs can act as major determinants of sequence-selective guanine oxidation, and that current models of guanine oxidation and charge transfer in DNA cannot be used to adequately predict the location and identity of mutagenic lesions in the genome.
by Yelena Margolin.
Ph.D.
Tångrot, Jeanette. « Structural Information and Hidden Markov Models for Biological Sequence Analysis ». Doctoral thesis, Umeå universitet, Institutionen för datavetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1629.
Texte intégralBioinformatik är ett område där datavetenskapliga och statistiska metoder används för att analysera och strukturera biologiska data. Ett viktigt område inom bioinformatiken försöker förutsäga vilken tredimensionell struktur och funktion ett protein har, utifrån dess aminosyrasekvens och/eller likheter med andra, redan karaktäriserade, proteiner. Det är känt att två proteiner med likande aminosyrasekvenser också har liknande tredimensionella strukturer. Att två proteiner har liknande strukturer behöver dock inte betyda att deras sekvenser är lika, vilket kan göra det svårt att hitta strukturella likheter utifrån ett proteins aminosyrasekvens. Den här avhandlingen beskriver två metoder för att hitta likheter mellan proteiner, den ena med fokus på att bestämma vilken familj av proteindomäner, med känd 3D-struktur, en given sekvens tillhör, medan den andra försöker förutsäga ett proteins veckning, d.v.s. ge en grov bild av proteinets struktur. Båda metoderna använder s.k. dolda Markov modeller (hidden Markov models, HMMer), en statistisk metod som bland annat kan användas för att beskriva proteinfamiljer. Med hjälp en HMM kan man förutsäga om en viss proteinsekvens tillhör den familj modellen representerar. Båda metoderna använder också strukturinformation för att öka modellernas förmåga att känna igen besläktade sekvenser, men på olika sätt. Det mesta av arbetet i avhandlingen handlar om strukturellt förankrade HMMer (structure-anchored HMMs, saHMMer). För att bygga saHMMerna används strukturbaserade sekvensöverlagringar, vilka genereras utifrån hur proteindomänerna kan läggas på varandra i rymden, snarare än utifrån vilka aminosyror som ingår i deras sekvenser. I varje proteinfamilj används bara ett särskilt, representativt urval av domäner. Dessa är valda så att då sekvenserna jämförs parvis, finns det inget par inom familjen med högre sekvensidentitet än ca 20%. Detta urval görs för att få så stor spridning som möjligt på sekvenserna inom familjen. En programvaruserie har utvecklats för att välja ut representanter för varje familj och sedan bygga saHMMer baserade på dessa. Det visar sig att saHMMerna kan hitta rätt familj till en hög andel av de testade sekvenserna, med nästan inga fel. De är också bättre än den ofta använda metoden Pfam på att hitta rätt familj till helt nya proteinsekvenser. saHMMerna finns tillgängliga genom FISH-servern, vilken alla kan använda via Internet för att hitta vilken familj ett intressant protein kan tillhöra. Den andra metoden som presenteras i avhandlingen är sekundärstruktur-HMMer, ssHMMer, vilka är byggda från vanliga multipla sekvensöverlagringar, men också från information om vilka sekundärstrukturer proteinsekvenserna i familjen har. När en proteinsekvens jämförs med ssHMMen används en förutsägelse om sekundärstrukturen, och den beräknade sannolikheten att sekvensen tillhör familjen kommer att baseras både på sekvensen av aminosyror och på sekundärstrukturen. Vid en jämförelse visar det sig att HMMer baserade på flera sekvenser är bättre än sådana baserade på endast en sekvens, när det gäller att hitta rätt veckning för en proteinsekvens. HMMerna blir ännu bättre om man också tar hänsyn till sekundärstrukturen, både då den riktiga sekundärstrukturen används och då man använder en teoretiskt förutsagd.
Jeanette Hargbo.
Budach, Stefan [Verfasser]. « Explainable deep learning models for biological sequence classification / Stefan Budach ». Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1230407413/34.
Texte intégralBuckingham, Lawrence. « K-mer based algorithms for biological sequence comparison and search ». Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/236377/1/Buckingham%2BThesis%281%29.pdf.
Texte intégralValebjørg, Vetle Søraas. « Discovery of approximate composite motifs in biological sequences ». Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10130.
Texte intégralMapping the regulatory system in living organisms is a great challenge, and many methods have been created during the last 15 years to solve this problem. The biological processes are however more flexible and complex than first thought, and many of the methods lack the ability to imitate this exactly. The new method devised here is not a complete solution to this situation, but pose an innovative solution for finding approximate composite patterns in a set of sequences. Motifs are read from any third-party tool represented as either {A,C,G,T}, IUPAC or PWMs, and weighted with significance and support as an estimate to how important the patterns are. Finding combinations with both high significance and support can reveal important properties preserved in the sequences. Based on this, the algorithm use a branch-and-bound approach to traverse every combination while preserving the best solutions in this multiple object optimization problem in a Pareto front. The best patterns found, are investigated further by applying different statistical and experimental method to better support the significance of the patterns found. The three most important tests done on the TransCompel dataset, where (i) to look at the patterns predicted measured against known sites based on nucleotide correlation. (ii) Find the frequency for motifs participating in the combinations, so that the best could be studied manually. And (iii), different test where compared when the significance was based on real background sequences instead of the uniform distribution. Some of the results found where low, but still similar to the accuracy provided by other known methods that have been tested with the same methods. The test results can be biased by the parameters used, a too simple and restrictive test set or by faulty predictions done one the dataset tested. More testing and tuning of parameters might result in better predictions. However, the different tests still proved this method to be a valuable tool in composite motif discovery.
Pethica, Ralph Brian. « Sequences, structures and biological functions of molecular evolution ». Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546211.
Texte intégralMann, Anita. « Structures and biological effects of repeated DNA sequences ». Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263749.
Texte intégralMENES, ALEJANDRO MUSTELIER. « QUALITY EVALUATION FOR FRAGMENTS ASSEMBLY OF BIOLOGICAL SEQUENCES ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33967@1.
Texte intégralCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Nos últimos anos surgiram novas tecnologias de sequenciamento de DNA conhecidas como NGS - Next-Generation Sequencing. Estas são responsáveis por tornar o processo de sequenciamento mais rápido e menos custoso, mas também trazem como resultado fragmentos de DNA muito pequenos, conhecidos como reads. A montagem do genoma a partir destes fragmentos é considerada um problema complexo devido à sua natureza combinatória e ao grande volume de reads produzidos. De maneira geral, os biólogos e bioinformatas escolhem o programa montador de sequências sem levar em consideração informações da eficiência computacional ou da qualidade biológica do resultado. Esta pesquisa tem como objetivo auxiliar aos usuários biólogos a avaliar a qualidade dos resultados da montagem. Primeiramente, foi projetada e desenvolvida uma metodologia para obter informações dos genes presentes na montagem, listando os genes que podem ser identificados, aqueles que têm o tamanho correto e a sequência de pares de bases correta. Em segundo lugar, foram realizados testes experimentais exaustivos envolvendo cinco dos principais montadores de genoma conhecidos na literatura os quais são baseados no uso de grafos de Bruijn e oito genomas de bactérias. Foram feitas comparações estatísticas do resultado usando as ferramentas QUAST e REAPR. Também foram obtidas informações qualitativas dos genes usando o algoritmo proposto e algumas métricas de eficiência. Em função dos resultados coletados, é feita uma análise comparativa que permite aos usuários conhecer melhor o comportamento das ferramentas consideradas nos testes. Por fim, foi desenvolvida uma ferramenta que recebe diferentes resultados de montagens de um mesmo genoma e produz um relatório qualitativo e quantitativo para o usuário interpretar os resultados de maneira integrada.
New DNA sequencing technologies, known as NGS - Next-Generation Sequencing, are responsible for making the sequencing process more efficient. However, they generate a result with very small DNA fragments, known as reads. We consider the genome assembly from these fragments a complex problem due to its combinatorial nature and the large volume of reads produced. In general, biologists and bioinformatics experts choose the sequence assembler program with no regard to the computational efficiency or even the quality of the biological result information. This research aims to assist users in the interpretation of assembly results, including effectiveness and efficiency. In addition, this may sometimes increase the quality of the results obtained. Firstly, we propose an algorithm to obtain information about the genes present in the result assembly. We enumerate the identified genes, those that have the correct size and the correct base pair sequence. Next, exhaustive experimental tests involving five of the main genome assemblers in the literature which are based on the use of graphs of Bruijn and eight bacterial genomes data set were ran. We have performed statistical comparisons of results using QUAST and REAPR tools. We have also obtained qualitative information for the genes using the proposed algorithm and some computational efficiency metrics. Based on the collected results, we present a comparative analysis that allows users to understand further the behavior of the tools considered in the tests. Finally, we propose a tool that receives different assemblies of the same genome and produces a qualitative and quantitative report for the user, enabling the interpretation of the results in an integrated way.
Hu, Xiong. « Examining biological function and recombination using nucleotide sequences / ». The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950153601498.
Texte intégralRobertson, Jeffrey Alan. « Entropy Measurements and Ball Cover Construction for Biological Sequences ». Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/84470.
Texte intégralMaster of Science
Cinar, Ayse Basak. « Preadolescents and their mothers as oral health-promoting actors : non-biologic determinants of oral health among Turkish and Finnish preadolescents / ». Helsinki : University of Helsinki, 2008. https://oa.doria.fi/bitstream/handle/10024/42564/preadole.pdf?sequence=1.
Texte intégralMundhada, Hemanshu [Verfasser]. « Advancements of the Sequence Saturation Mutagenesis (SeSaM) Method to Efficiently Explore Protein Sequence Space / Hemanshu Mundhada ». Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2012. http://d-nb.info/1035211459/34.
Texte intégralWon, Kyoung-Jae. « Exploring the structure of Hidden Markov Models for biological sequence analysis ». Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427702.
Texte intégralYang, Qingwu. « Finding conserved patterns in biological sequences, networks and genomes ». [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2465.
Texte intégralKorol, Oksana. « ModuleInducer : Automating the Extraction of Knowledge from Biological Sequences ». Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20320.
Texte intégralGunewardena, Sumedha S. A. « Computational Tools for Identifying Functional Regions in Biological Sequences ». Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491499.
Texte intégralTRISTAO, CRISTIAN. « AN APPROACH TO MODEL, STORE AND ACCESS BIOLOGICAL SEQUENCES ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21436@1.
Texte intégralFUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
As pesquisas na área da biologia molecular vêm produzindo um grande volume de dados e estes precisam ser bem organizados, estruturados e persistidos. Na sua grande maioria os dados biológicos são armazenados em arquivos no formato texto. Para grandes volumes de dados, o caminho natural seria utilizar SGBDs para gerenciá-los. Contudo, estes sistemas não possuem estruturas adequadas para representar e manipular dados específicos ao domínio. Por exemplo, sequências biológicas normalmente são tratadas como simples cadeias de caracteres (tipo texto/varchar) ou BLOB, e desta forma perde-se todo um conjunto de informações composicionais, posicionais e de conteúdo. Esta tese argumenta que a gerência de dados (estrutura, armazenamento e acesso de dados) se transformou em um dos principais problemas para o domínio de pesquisas da bioinformática. Desta maneira propõe-se um modelo conceitual biológico para representar informações do dogma central da biologia molecular, bem como um tipo abstrato de dado (ADT – do inglês Abstract Data Types) específico para a manipulação de sequências biológicas e seus derivados.
The researches in molecular biology have been producing a large amount of data and they need to be well organized, structured and persisted. Mostly biological data are stored on files in text format. For large volumes of data, the natural way would be to use DBMS to manage them. However, these systems do not have adequate structures to represent and manipulate data specific to the domain. For example, biological sequences are typically treated as simple strings (type text/varchar) or BLOB, and thus lost a whole set of compositional, positional and content information. This thesis argues that the management of data (structure, storage and data access) has become a major problem for researches in bioinformatics. Thus we propose a conceptual model for representing biological information of the central dogma of molecular biology, as well as an Abstract Data Types (ADT) specific for the manipulation of biological sequences and its derivatives.
BERNARDINI, GIULIA. « COMBINATORIAL METHODS FOR BIOLOGICAL DATA ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/305220.
Texte intégralThe main goal of this thesis is to develop new algorithmic frameworks to deal with (i) a convenient representation of a set of similar genomes and (ii) phylogenetic data, with particular attention to the increasingly accurate tumor phylogenies. A “pan-genome” is, in general, any collection of genomic sequences to be analyzed jointly or to be used as a reference for a population. A phylogeny, in turn, is meant to describe the evolutionary relationships among a group of items, be they species of living beings, genes, natural languages, ancient manuscripts or cancer cells. With the exception of one of the results included in this thesis, related to the analysis of tumor phylogenies, the focus of the whole work is mainly theoretical, the intent being to lay firm algorithmic foundations for the problems by investigating their combinatorial aspects, rather than to provide practical tools for attacking them. Deep theoretical insights on the problems allow a rigorous analysis of existing methods, identifying their strong and weak points, providing details on how they perform and helping to decide which problems need to be further addressed. In addition, it is often the case where new theoretical results (algorithms, data structures and reductions to other well-studied problems) can either be directly applied or adapted to fit the model of a practical problem, or at least they serve as inspiration for developing new practical tools. The first part of this thesis is devoted to methods for handling an elastic-degenerate text, a computational object that compactly encodes a collection of similar texts, like a pan-genome. Specifically, we attack the problem of matching a sequence in an elastic-degenerate text, both exactly and allowing a certain amount of errors, and the problem of comparing two degenerate texts. In the second part we consider both tumor phylogenies, describing the evolution of a tumor, and “classical” phylogenies, representing, for instance, the evolutionary history of the living beings. In particular, we present new techniques to compare two or more tumor phylogenies, needed to evaluate the results of different inference methods, and we give a new, efficient solution to a longstanding problem on “classical” phylogenies: to decide whether, in the presence of missing data, it is possible to arrange a set of species in a phylogenetic tree that enjoys specific properties.
Rausch, Tobias [Verfasser]. « Dissecting multiple sequence alignment methods : the analysis, design and development of generic multiple sequence alignment components in SeqAn / Tobias Rausch ». Berlin : Freie Universität Berlin, 2010. http://d-nb.info/1024541460/34.
Texte intégralAbu, Doleh Anas. « High Performance and Scalable Matching and Assembly of Biological Sequences ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469092998.
Texte intégralBehr, Jonathan Robert. « Novel tools for sequence and epitope analysis of glycosaminoglycans ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42383.
Texte intégralIncludes bibliographical references.
Our understanding of glycosaminoglycan (GAG) biology has been limited by a lack of sensitive and efficient analytical tools designed to deal with these complex molecules. GAGs are heterogeneous and often sulfated linear polys accharides found throughout the extracellular environment, and available to researchers only in limited mixtures. A series of sensitive label-free analytical tools were developed to provide sequence information and to quantify whole epitopes from GAG mixtures. Three complementary sets of tools were developed to provide GAG sequence information. Two novel exolytic sulfatases from Flavobacterium heparinum that degrade heparan/heparan sulfate glycosaminoglycans (HSGAGs) were cloned and characterized. These exolytic enzymes enabled the exo-sequencing of a HSGAG oligosaccharide. Phenylboronic acids (PBAs) were specifically reacted with unsulfated chondroitin sulfate (CS) disaccharides from within a larger mixture. The resulting cyclic esters were easily detected in mass spectrometry (MS) using the distinct isotopic abundance of boron. Electrospray ionization tandem mass spectrometry (ESI-MSn) was employed to determine the fragmentation patterns of HSGAG disaccharides. These patterns were used to quantify relative amounts of isomeric disaccharides in a mixture. Fragmentation information is valuable for building methods for oligosaccharide sequencing, and the general method can be applied to quantify any isomers using MSn. Three other tools were developed to quantify GAG epitopes. Two microfluidic devices were characterized as HSGAG sensors. Sensors were functionalized either with protamine to quantify total HSGAGs or with antithrombin-III (AT-III) to quantify a specific anticoagulant epitope.
(cont.) A charge sensitive silicon field effect sensor accurately quantified clinically relevant anticoagulants including low molecular weight heparins (LMWH), even out of serum. A mass sensitive suspended microchannel resonator (SMR) measured the same clinically relevant HSGAGs. When these two sensors were compared, the SMR proved more robust and versatile. The SMR signal is more stable, it can be reused ad infinitum, and surface modifications can be automated and monitored. The field effect sensor provided an advantage in selectivity by preferentially detecting highly charged HSGAGs instead of any massive, non-specifically bound proteins. Lastly, anti-HSGAG single chain variable fragments (scFv) were evolved using yeast surface display towards generating antibodies for HSGAG epitope sensing and clinical GAG neutralization.
by Jonathan Robert Behr.
Ph.D.
Maaskola, Jonas [Verfasser]. « Discriminative Learning for Probabilistic Sequence Analysis / Jonas Maaskola ». Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1074139488/34.
Texte intégralShadrin, Alexey [Verfasser]. « Positional Information Storage in Sequence Patterns / Alexey Shadrin ». Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1060368056/34.
Texte intégralMamer, Thierry. « A sequence-length sensitive approach to learning biological grammars using inductive logic programming ». Thesis, Robert Gordon University, 2011. http://hdl.handle.net/10059/662.
Texte intégralTörnkvist, Maria. « Synovial sarcoma : molecular, biological and clinical implications / ». Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-024-9/.
Texte intégralShenoy, Nalini. « Investigation of the replacement of cysteine residues in DOTA-(Tyr³)-octreotate synthesis, characterization and evaluation of biological activities / ». Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4440.
Texte intégralThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 8, 2007) In the 520 where natIn-DOTA⁰ appears nat should be superscripted. Includes bibliographical references.