Littérature scientifique sur le sujet « Sensor data semantic annotation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Sensor data semantic annotation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Sensor data semantic annotation"
Sejdiu, Besmir, Florije Ismaili et Lule Ahmedi. « Integration of Semantics Into Sensor Data for the IoT ». International Journal on Semantic Web and Information Systems 16, no 4 (octobre 2020) : 1–25. http://dx.doi.org/10.4018/ijswis.2020100101.
Texte intégralElsaleh, Tarek, Shirin Enshaeifar, Roonak Rezvani, Sahr Thomas Acton, Valentinas Janeiko et Maria Bermudez-Edo. « IoT-Stream : A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services ». Sensors 20, no 4 (11 février 2020) : 953. http://dx.doi.org/10.3390/s20040953.
Texte intégralLlaves, Alejandro, Oscar Corcho, Peter Taylor et Kerry Taylor. « Enabling RDF Stream Processing for Sensor Data Management in the Environmental Domain ». International Journal on Semantic Web and Information Systems 12, no 4 (octobre 2016) : 1–21. http://dx.doi.org/10.4018/ijswis.2016100101.
Texte intégralXu, Hongsheng, et Huijuan Sun. « Application of Rough Concept Lattice Model in Construction of Ontology and Semantic Annotation in Semantic Web of Things ». Scientific Programming 2022 (13 avril 2022) : 1–12. http://dx.doi.org/10.1155/2022/7207372.
Texte intégralAbdel Hakim, Alaa E., et Wael Deabes. « Can People Really Do Nothing ? Handling Annotation Gaps in ADL Sensor Data ». Algorithms 12, no 10 (17 octobre 2019) : 217. http://dx.doi.org/10.3390/a12100217.
Texte intégralSejdiu, Besmir, Florije Ismaili et Lule Ahmedi. « IoTSAS : An Integrated System for Real-Time Semantic Annotation and Interpretation of IoT Sensor Stream Data ». Computers 10, no 10 (11 octobre 2021) : 127. http://dx.doi.org/10.3390/computers10100127.
Texte intégralDesimoni, Federico, Sergio Ilarri, Laura Po, Federica Rollo et Raquel Trillo-Lado. « Semantic Traffic Sensor Data : The TRAFAIR Experience ». Applied Sciences 10, no 17 (25 août 2020) : 5882. http://dx.doi.org/10.3390/app10175882.
Texte intégralPacha, Shobharani, Suresh Ramalingam Murugan et R. Sethukarasi. « Semantic annotation of summarized sensor data stream for effective query processing ». Journal of Supercomputing 76, no 6 (25 novembre 2017) : 4017–39. http://dx.doi.org/10.1007/s11227-017-2183-7.
Texte intégralVedurmudi, Anupam Prasad, Julia Neumann, Maximilian Gruber et Sascha Eichstädt. « Semantic Description of Quality of Data in Sensor Networks ». Sensors 21, no 19 (28 septembre 2021) : 6462. http://dx.doi.org/10.3390/s21196462.
Texte intégralNadim, Ismail, Yassine El Ghayam et Abdelalim Sadiq. « Semantic Annotation of Web of Things Using Entity Linking ». International Journal of Business Analytics 7, no 4 (octobre 2020) : 1–13. http://dx.doi.org/10.4018/ijban.2020100101.
Texte intégralThèses sur le sujet "Sensor data semantic annotation"
Amir, Mohammad. « Semantically-enriched and semi-Autonomous collaboration framework for the Web of Things. Design, implementation and evaluation of a multi-party collaboration framework with semantic annotation and representation of sensors in the Web of Things and a case study on disaster management ». Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14363.
Texte intégralFurno, Domenico. « Hybrid approaches based on computational intelligence and semantic web for distributed situation and context awareness ». Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/927.
Texte intégralThe research work focuses on Situation Awareness and Context Awareness topics. Specifically, Situation Awareness involves being aware of what is happening in the vicinity to understand how information, events, and one’s own actions will impact goals and objectives, both immediately and in the near future. Thus, Situation Awareness is especially important in application domains where the information flow can be quite high and poor decisions making may lead to serious consequences. On the other hand Context Awareness is considered a process to support user applications to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. Despite being slightly different, Situation and Context Awareness involve common problems such as: the lack of a support for the acquisition and aggregation of dynamic environmental information from the field (i.e. sensors, cameras, etc.); the lack of formal approaches to knowledge representation (i.e. contexts, concepts, relations, situations, etc.) and processing (reasoning, classification, retrieval, discovery, etc.); the lack of automated and distributed systems, with considerable computing power, to support the reasoning on a huge quantity of knowledge, extracted by sensor data. So, the thesis researches new approaches for distributed Context and Situation Awareness and proposes to apply them in order to achieve some related research objectives such as knowledge representation, semantic reasoning, pattern recognition and information retrieval. The research work starts from the study and analysis of state of art in terms of techniques, technologies, tools and systems to support Context/Situation Awareness. The main aim is to develop a new contribution in this field by integrating techniques deriving from the fields of Semantic Web, Soft Computing and Computational Intelligence. From an architectural point of view, several frameworks are going to be defined according to the multi-agent paradigm. Furthermore, some preliminary experimental results have been obtained in some application domains such as Airport Security, Traffic Management, Smart Grids and Healthcare. Finally, future challenges is going to the following directions: Semantic Modeling of Fuzzy Control, Temporal Issues, Automatically Ontology Elicitation, Extension to other Application Domains and More Experiments. [edited by author]
XI n.s.
Khan, Imran. « Cloud-based cost-efficient application and service provisioning in virtualized wireless sensor networks ». Thesis, Evry, Institut national des télécommunications, 2015. http://www.theses.fr/2015TELE0019/document.
Texte intégralWireless Sensor Networks (WSNs) are becoming ubiquitous and are used in diverse applications domains. Traditional deployments of WSNs are domain-specific, with applications usually embedded in the WSN, precluding the re-use of the infrastructure by other applications. This can lead to redundant deployments. Now with the advent of IoT, this approach is less and less viable. A potential solution lies in the sharing of a same WSN by multiple applications and services, to allow resource- and cost-efficiency. In this dissertation, three architectural solutions are proposed for this purpose. The first solution consists of two parts: the first part is a novel multilayer WSN virtualization architecture that allows the provisioning of multiple applications and services over the same WSN deployment. The second part of this contribution is the extended architecture that allows virtualized WSN infrastructure to interact with a WSN Platform-as-a-Service (PaaS) at a higher level of abstraction. Both these solutions are implemented and evaluated using two scenario-based proof-of-concept prototypes using Java SunSpot kit. The second architectural solution is a novel data annotation architecture for the provisioning of semantic applications in virtualized WSNs. It is capable of providing in-network, distributed, real-time annotation of raw sensor data and uses overlays as the cornerstone. This architecture is implemented and evaluated using Java SunSpot, AdvanticSys kits and Google App Engine. The third architectural solution is the enhancement to the data annotation architecture on two fronts. One is a heuristic-based genetic algorithm used for the selection of capable nodes for storing the base ontology. The second front is the extension to the proposed architecture to support ontology creation, distribution and management. The simulation results of the algorithm are presented and the ontology management extension is implemented and evaluated using a proof-of-concept prototype using Java SunSpot kit. As another contribution, an extensive state-of-the-art review is presented that introduces the basics of WSN virtualization and motivates its pertinence with carefully selected scenarios. This contribution substantially improves current state-of-the-art reviews in terms of the scope, motivation, details, and future research issues
CUTRONA, VINCENZO. « Semantic Table Annotation for Large-Scale Data Enrichment ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/317044.
Texte intégralData are the new oil, and they represent one of the main value-creating assets. Data analytics has become a crucial component in scientific studies and business decisions in the last years and has brought researchers to define novel methodologies to represent, manage, and analyze data. Simultaneously, the growth of computing power enabled the analysis of huge amounts of data, allowing people to extract useful information from collected data. Predictive analytics plays a crucial role in many applications since it provides more knowledge to support business decisions. Among the statistical techniques available to support predictive analytics, machine learning is the technique that features capabilities to solve many different classes of problems, and that has benefited the most from computing power growth. In the last years, more complex and accurate machine learning models have been proposed, requiring an increasing amount of current and historical data to perform the best. The demand for such a massive amount of data to train machine learning models represents an initial hurdle for data scientists because the information needed is usually scattered in different data sets that have to be manually integrated. As a consequence, data enrichment has become a critical task in the data preparation process, and nowadays, most of all the data science projects involve a time-costly data preparation process aimed at enriching a core data set with additional information from various external sources to improve the sturdiness of resulting trained models. How to ease the design of the enrichment process for data scientists is defying and supporting the enrichment process at a large scale. Despite the growing importance of the enrichment task, it is still supported only to a limited extent by existing solutions, delegating most of the effort to the data scientist, who is in charge of both detecting the data sets that contain the needed information, and integrate them. In this thesis, we introduce a methodology to support the data enrichment task, which focuses on harnessing the semantics as the key factor by providing users with a semantics-aided tool to design the enrichment process, along with a platform to execute the process at a business scale. We illustrate how the data enrichment can be addressed via tabular data transformations exploiting semantic table interpretation methods, discussing implementation techniques to support the enactment of the resulting process on large data sets. We experimentally demonstrate the scalability and run-time efficiency of the proposed solution by employing it in a real-world scenario. Finally, we introduce a new benchmark dataset to evaluate the performance and the scalability of existing semantic table annotation algorithms, and we propose an efficient novel approach to improve the performance of such algorithms.
Anderson, Neil David Alan. « Data extraction & ; semantic annotation from web query result pages ». Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.705642.
Texte intégralPatni, Harshal Kamlesh. « Real Time Semantic Analysis of Streaming Sensor Data ». Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1324181415.
Texte intégralWong, Ping-wai, et 黃炳蔚. « Semantic annotation of Chinese texts with message structures based on HowNet ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38212389.
Texte intégralAlirezaie, Marjan. « Bridging the Semantic Gap between Sensor Data and Ontological Knowledge ». Doctoral thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-45908.
Texte intégralHatem, Muna Salman. « A framework for semantic web implementation based on context-oriented controlled automatic annotation ». Thesis, University of Bradford, 2009. http://hdl.handle.net/10454/3207.
Texte intégralLindberg, Hampus. « Semantic Segmentation of Iron Ore Pellets in the Cloud ». Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86896.
Texte intégralLivres sur le sujet "Sensor data semantic annotation"
Padó, Sebastian. Cross-lingual annotation projection models for role-semantic information. Saarbrücken : Saarland University, 2007.
Trouver le texte intégralSemantics Empowered Web 30 Managing Enterprise Social Sensor And Cloudbased Data And Services For Advanced Applications. MORGAN & CLAYPOOL PUBLISHERS, 2012.
Trouver le texte intégralSemantic Multimedia 4th International Conference On Semantic And Digital Media Technologies Samt 2009 Graz Austria December 24 2009 Proceedings. Springer, 2010.
Trouver le texte intégralDowd, Cate. Digital Journalism, Drones, and Automation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190655860.001.0001.
Texte intégralChapitres de livres sur le sujet "Sensor data semantic annotation"
Wei, Wang, et Payam Barnaghi. « Semantic Annotation and Reasoning for Sensor Data ». Dans Lecture Notes in Computer Science, 66–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04471-7_6.
Texte intégralVijayaprabakaran, K., et K. Sathiyamurthy. « A Framework for Semantic Annotation and Mapping of Sensor Data Streams Based on Multiple Linear Regression ». Dans Advances in Intelligent Systems and Computing, 211–22. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3600-3_20.
Texte intégralWindmann, Stefan, et Christian Kühnert. « Information modeling and knowledge extraction for machine learning applications in industrial production systems ». Dans Machine Learning for Cyber Physical Systems, 73–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62746-4_8.
Texte intégralSejdiu, Besmir, Florije Ismaili et Lule Ahmedi. « A Real-Time Integration of Semantic Annotations into Air Quality Monitoring Sensor Data ». Dans Communications in Computer and Information Science, 98–113. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83007-6_5.
Texte intégralManonmani, M., et Sarojini Balakrishanan. « Semantic Annotation of Healthcare Data ». Dans Handbook of Artificial Intelligence in Biomedical Engineering, 217–32. Series statement : Biomedical engineering : techniques and applications : Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003045564-10.
Texte intégralGil, Yolanda, Varun Ratnakar et Ewa Deelman. « Metadata Catalogs with Semantic Representations ». Dans Provenance and Annotation of Data, 90–100. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11890850_11.
Texte intégralPacifico, Stefano, Janez Starc, Janez Brank, Luka Bradesko et Marko Grobelnik. « Semantic Annotation of Text Using Open Semantic Resources ». Dans Encyclopedia of Machine Learning and Data Mining, 1–6. Boston, MA : Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_903-1.
Texte intégralPacifico, Stefano, Janez Starc, Janez Brank, Luka Bradesko et Marko Grobelnik. « Semantic Annotation of Text Using Open Semantic Resources ». Dans Encyclopedia of Machine Learning and Data Mining, 1132–37. Boston, MA : Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_903.
Texte intégralMozos, Óscar Martínez. « Semantic Information in Sensor Data ». Dans Semantic Labeling of Places with Mobile Robots, 99–108. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11210-2_8.
Texte intégralChen, Liming, et Chris D. Nugent. « Semantic-Based Sensor Data Segmentation ». Dans Human Activity Recognition and Behaviour Analysis, 127–49. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19408-6_6.
Texte intégralActes de conférences sur le sujet "Sensor data semantic annotation"
Yu, Ching-Tzu, Yu-Hui Zou, Hao-Yu Li et Szu-Yin Lin. « Automatic Clustering and Semantic Annotation for Dynamic IoT Sensor Data ». Dans 2018 1st International Cognitive Cities Conference (IC3). IEEE, 2018. http://dx.doi.org/10.1109/ic3.2018.00-30.
Texte intégralKhan, Imran, Rifat Jafrin, Fatima Zahra Errounda, Roch Glitho, Noel Crespi, Monique Morrow et Paul Polakos. « A data annotation architecture for semantic applications in virtualized wireless sensor networks ». Dans 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE, 2015. http://dx.doi.org/10.1109/inm.2015.7140273.
Texte intégralKarthik, N., et VS Ananthanarayana. « A Trust Model for Lightweight Semantic Annotation of Sensor Data in Pervasive Environment ». Dans 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). IEEE, 2018. http://dx.doi.org/10.1109/icis.2018.8466471.
Texte intégralSejdiu, Besmir, Florije Ismaili et Lule Ahmedi. « A Management Model of Real-time Integrated Semantic Annotations to the Sensor Stream Data for the IoT ». Dans 16th International Conference on Web Information Systems and Technologies. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010111500590066.
Texte intégralOliveira, Pedro, et Joao Rocha. « Semantic annotation tools survey ». Dans 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, 2013. http://dx.doi.org/10.1109/cidm.2013.6597251.
Texte intégralBader, Sebastian, et Jan Oevermann. « Semantic Annotation of Heterogeneous Data Sources ». Dans Semantics2017 : Semantics 2017 - 13th International Conference on Semantic Systems. New York, NY, USA : ACM, 2017. http://dx.doi.org/10.1145/3132218.3132221.
Texte intégralAmaral, Pedro, Pedro Oliveira, Márcio Moutinho, Daniel Matado, Ruben Costa et João Sarraipa. « Semantic Annotation of Aquaculture Production Data ». Dans ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67316.
Texte intégralKhurana, Udayan, et Sainyam Galhotra. « Semantic Concept Annotation for Tabular Data ». Dans CIKM '21 : The 30th ACM International Conference on Information and Knowledge Management. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3459637.3482295.
Texte intégralAn, Hyoung-keun, et Jae-jin Koh. « Annotation of Multimedia data using Semantic Metadata ». Dans 2006 International Forum on Strategic Technology. IEEE, 2006. http://dx.doi.org/10.1109/ifost.2006.312304.
Texte intégralLittle, Suzanne, Ovidio Salvetti et Petra Perner. « Semi-Automatic Semantic Annotation of Images ». Dans 2007 Seventh IEEE International Conference on Data Mining - Workshops (ICDM Workshops). IEEE, 2007. http://dx.doi.org/10.1109/icdmw.2007.22.
Texte intégral