Thèses sur le sujet « Sensitivity indices »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 40 meilleures thèses pour votre recherche sur le sujet « Sensitivity indices ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
GIOIA, PAOLA. « Towards more accurate measures of global sensitivity analysis. Investigation of first and total order indices ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/45695.
Texte intégralFernandez, Chas Margarita. « Insulin sensitivity estimates from a linear model of glucose disappearance ». Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341544.
Texte intégralMoore, Alan D. « Reproducibility and sensitivity of Doppler echocardiographic indices of left ventricular function during exercise ». Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/53648.
Texte intégralPh. D.
Wajahat, Qazi Hassan. « Development of Sensitivity Based Indices for Optimal Placement of UPFC to Minimize Load Curtailment Requirements ». Thesis, KTH, Elektriska energisystem, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119252.
Texte intégralChastaing, Gaëlle. « Indices de Sobol généralisés par variables dépendantes ». Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM046.
Texte intégralA mathematical model aims at characterizing a complex system or process that is too expensive to experiment. However, in this model, often strongly non linear, input parameters can be affected by a large uncertainty including errors of measurement of lack of information. Global sensitivity analysis is a stochastic approach whose objective is to identify and to rank the input variables that drive the uncertainty of the model output. Through this analysis, it is then possible to reduce the model dimension and the variation in the output of the model. To reach this objective, the Sobol indices are commonly used. Based on the functional ANOVA decomposition of the output, also called Hoeffding decomposition, they stand on the assumption that the incomes are independent. Our contribution is on the extension of Sobol indices for models with non independent inputs. In one hand, we propose a generalized functional decomposition, where its components is subject to specific orthogonal constraints. This decomposition leads to the definition of generalized sensitivity indices able to quantify the dependent inputs' contribution to the model variability. On the other hand, we propose two numerical methods to estimate these constructed indices. The first one is well-fitted to models with independent pairs of dependent input variables. The method is performed by solving linear system involving suitable projection operators. The second method can be applied to more general models. It relies on the recursive construction of functional systems satisfying the orthogonality properties of summands of the generalized decomposition. In parallel, we illustrate the two methods on numerical examples to test the efficiency of the techniques
Horiguchi, Akira. « Bayesian Additive Regression Trees : Sensitivity Analysis and Multiobjective Optimization ». The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1606841319315633.
Texte intégralMasinde, Brian. « Birds' Flight Range. : Sensitivity Analysis ». Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166248.
Texte intégralSeol, Huynsoo. « Sensitivity of five Rasch-model-based fit indices to selected person and item aberrances : a simulation study / ». The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487949508369046.
Texte intégralHeredia, Guzman Maria Belen. « Contributions to the calibration and global sensitivity analysis of snow avalanche numerical models ». Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALU028.
Texte intégralSnow avalanche is a natural hazard defined as a snow mass in fast motion. Since the thirties, scientists have been designing snow avalanche models to describe snow avalanches. However, these models depend on some poorly known input parameters that cannot be measured. To understand better model input parameters and model outputs, the aims of this thesis are (i) to propose a framework to calibrate input parameters and (ii) to develop methods to rank input parameters according to their importance in the model taking into account the functional nature of outputs. Within these two purposes, we develop statistical methods based on Bayesian inference and global sensitivity analyses. All the developments are illustrated on test cases and real snow avalanche data.First, we propose a Bayesian inference method to retrieve input parameter distribution from avalanche velocity time series having been collected on experimental test sites. Our results show that it is important to include the error structure (in our case the autocorrelation) in the statistical modeling in order to avoid bias for the estimation of friction parameters.Second, to identify important input parameters, we develop two methods based on variance based measures. For the first method, we suppose that we have a given data sample and we want to estimate sensitivity measures with this sample. Within this purpose, we develop a nonparametric estimation procedure based on the Nadaraya-Watson kernel smoother to estimate aggregated Sobol' indices. For the second method, we consider the setting where the sample is obtained from acceptance/rejection rules corresponding to physical constraints. The set of input parameters become dependent due to the acceptance-rejection sampling, thus we propose to estimate aggregated Shapley effects (extension of Shapley effects to multivariate or functional outputs). We also propose an algorithm to construct bootstrap confidence intervals. For the snow avalanche model application, we consider different uncertainty scenarios to model the input parameters. Under our scenarios, the release avalanche position and volume are the most crucial inputs.Our contributions should help avalanche scientists to (i) account for the error structure in model calibration and (ii) rankinput parameters according to their importance in the models using statistical methods
Tissot, Jean-yves. « Sur la décomposition ANOVA et l'estimation des indices de Sobol'. Application à un modèle d'écosystème marin ». Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM064/document.
Texte intégralIn the fields of modelization and numerical simulation, simulators generally depend on several input parameters whose impact on the model outputs are not always well known. The main goal of sensitivity analysis is to better understand how the model outputs are sensisitive to the parameters variations. One of the most competitive method to handle this problem when complex and potentially highly non linear models are considered is based on the ANOVA decomposition and the Sobol' indices. More specifically the latter allow to quantify the impact of each parameters on the model response. In this thesis, we are interested in the issue of the estimation of the Sobol' indices. In the first part, we revisit in a rigorous way existing methods in light of discrete harmonic analysis on cyclic groups and randomized orthogonal arrays. It allows to study theoretical properties of this method and to intriduce generalizations. In a second part, we study the Monte Carlo method for the Sobol' indices and we introduce a new approach to reduce the number of simulations of this method. In parallel with this theoretical work, we apply these methods on a marine ecosystem model
Nasralla, Eman Abdulwahhab. « Metabolic syndrome and relation of obesity indices to biomarkers of insulin sensitivity and inflammation among Qatari men and women : the Qatar Biobank Project ». Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/34919.
Texte intégralLu, Rong. « Statistical Methods for Functional Genomics Studies Using Observational Data ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1467830759.
Texte intégralBroto, Baptiste. « Sensitivity analysis with dependent random variables : Estimation of the Shapley effects for unknown input distribution and linear Gaussian models ». Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS119.
Texte intégralSensitivity analysis is a powerful tool to study mathematical models and computer codes. It reveals the most impacting input variables on the output variable, by assigning values to the the inputs, that we call "sensitivity indices". In this setting, the Shapley effects, recently defined by Owen, enable to handle dependent input variables. However, one can only estimate these indices in two particular cases: when the distribution of the input vector is known or when the inputs are Gaussian and when the model is linear. This thesis can be divided into two parts. First, the aim is to extend the estimation of the Shapley effects when only a sample of the inputs is available and their distribution is unknown. The second part focuses on the linear Gaussian framework. The high-dimensional problem is emphasized and solutions are suggested when there are independent groups of variables. Finally, it is shown how the values of the Shapley effects in the linear Gaussian framework can estimate of the Shapley effects in more general settings
Christian, Steve Clarence. « A sensitivity analysis of a heuristic model used for the placement allocation of utilities in transportation right-of-way corridors ». [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000501.
Texte intégralGilquin, Laurent. « Échantillonnages Monte Carlo et quasi-Monte Carlo pour l'estimation des indices de Sobol' : application à un modèle transport-urbanisme ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM042/document.
Texte intégralLand Use and Transportation Integrated (LUTI) models have become a norm for representing the interactions between land use and the transportation of goods and people in a territory. These models are mainly used to evaluate alternative planning scenarios, simulating their impact on land cover and travel demand.LUTI models and other mathematical models used in various fields are most of the time based on complex computer codes. These codes often involve poorly-known inputs whose uncertainty can have significant effects on the model outputs.Global sensitivity analysis methods are useful tools to study the influence of the model inputs on its outputs. Among the large number of available approaches, the variance based method introduced by Sobol' allows to calculate sensitivity indices called Sobol' indices. These indices quantify the influence of each model input on the outputs and can detect existing interactions between inputs.In this framework, we favor a particular method based on replicated designs of experiments called replication method. This method appears to be the most suitable for our application and is advantageous as it requires a relatively small number of model evaluations to estimate first-order or second-order Sobol' indices.This thesis focuses on extensions of the replication method to face constraints arising in our application on the LUTI model Tranus, such as the presence of dependency among the model inputs, as far as multivariate outputs.Aside from that, we propose a recursive approach to sequentially estimate Sobol' indices. The recursive approach is based on the iterative construction of stratified designs, latin hypercubes and orthogonal arrays, and on the definition of a new stopping criterion. With this approach, more accurate Sobol' estimates are obtained while recycling previous sets of model evaluations. We also propose to combine such an approach with quasi-Monte Carlo sampling.An application of our contributions on the LUTI model Tranus is presented
Derennes, Pierre. « Mesures de sensibilité de Borgonovo : estimation des indices d'ordre un et supérieur, et application à l'analyse de fiabilité ». Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30039.
Texte intégralIn many disciplines, a complex system is modeled by a black box function whose purpose is to mimic the real system behavior. Then, the system is represented by an input-output model, i.e, a relationship between the output Y (the observation made on the system) and a set of external parameters Xi (typically representing physical variables). These parameters are usually assumed to be random in order to take phenomenological uncertainties into account. Then, global sensitivity analysis (GSA) plays a crucial role in the handling of these uncertainties and in the understanding of the system behavior. This study is based on the estimation of importance measures which aim at identifying and ranking the different inputs with respect to their influence on the model output. Variance-based sensitivity indices are one of the most widely used GSA measures. They are based on Sobol's indices which express the share of variance of the output that is due to a given input or input combination. However, by definition they only study the impact on the second-order moment of the output which may a restrictive representation of the whole output distribution. The central subject of this thesis is an alternative method, introduced by Emanuele Borgonovo, which is based on the analysis of the whole output distribution. Borgonovo's importance measures present very convenient properties that justify their recent gain of interest, but their estimation is a challenging task. Indeed, the initial definition of the Borgonovo's indices involves the unconditional and conditional densities of the model output, which are unfortunately unknown in practice. Thus, the first proposed methods led to a high computational burden especially since the black box function may be very costly-to-evaluate. The first contribution of this thesis consists in proposing new methodologies for estimating first order Borgonovo importance measures which quantify the influence of the output Y relatively to a scalar input Xi. First, we choose to adopt the reinterpretation of the Borgonovo indices in term of measure of dependence, i.e, as a distance between the joint density of Xi and Y and the product distribution. In addition, we develop an estimation procedure combining an importance sampling procedure and Gaussian kernel approximation of the output density and the joint density. This approach allows the computation of all first order Borgonovo with a low budget simulation, independent to the model dimension. However, the use of Gaussian kernel estimation may provide inaccurate estimates for heavy tail distributions. To overcome this problem, we consider an alternative definition of the Borgonovo indices based on the copula formalism
Naimi, Foued. « Nouveaux indices de suppression de la lipolyse par l'insuline déterminés lors de l'hyperglycémie provoquée par voie orale : comparaisons avec le clamp euglycémique-hyperinsulinémique et les paramètres métaboliques chez les femmes ». Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9546.
Texte intégralAbstract : It has been shown that a dysfunctional regulation of adipose-tissue lipolysis could conduct to non-adipose tissues overexpos ure to non exterified fatty acids (NEFA), leading to lipotoxicity. Lipotoxicity is considered as a key factor in the development of insulin resistance and type 2 diabetes. Insulin regulates glucose metabolism but also NEFA storage and release. To our knowledge, there is no gold standard for evaluating insulin sensitivity for lipolysis. The gold standard to measure insulin sensitivity for glucose is the euglycemic-hyperinsulinemic clamp. This method is simple to interpret because it achieves static levels of metabolic parameters at the end of each step of the clamp. The major limit of the clamp is that it is time-consuming, expensive and cannot be used on large population. On the other hand, the oral glucose tolerance test (OGTT) consists in a dynamic test also used to estimate insulin mediated glucose disappearance after ingestion of 75 g of glucose. Since the OGTT is easier to use, less expensive and can be suggested in large cohort studies, its potential use has been suggested to estimate insulin sensitivity for lipolysis, as well. T his work is the first to validate the use of simple indices derived from OGTT to estimate insulin sensitivity for lipolysis against the euglycemic clamp and adipose-tissue dysfunction in women. The results of this study clearly show in a group of 29 women (15 normal and 14 with polycystic ovary syndrome, who are used to increase the range of insulin resistance) that T50[subscript NEFA] (time to suppress 50% of NEFA baseline levels) during OGTT is the best index associated with glucose insulin clamp indices and clinical markers related to adipose tissue dysfunction and metabolic parameters. T50[subscript NEFA] (OGTT) was also better associated with central adiposity and metabolic parameters than clamp-derived indices. Since the OGTT is much easier to perform and is less expensive than the clamp technique, the use of OGTT to calculate T50[subscript NEFA] seems to be a valid method to assess antilipolytic action of insulin in large cohorts.
Nzang, Essono Francine. « Approche géomatique de la variabilité spatio-temporelle de la contamination microbienne des eaux récréatives ». Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/10211.
Texte intégralAbstract : The aim of this study was to predict water faecal contamination from a bayesian probabilistic model, on a watershed scale in a farming area and on a factual scale. This project aims to better understand the influence of hydrological, environmental and temporal factors involved in the explanation of microbial contamination episodes of recreational waters. First, a bayesian probabilistic model: Weight of Evidence was developed to identify and map the probability of water levels to be contaminated by agricultural effluents, on the basis of spectrals data and geomorphologic variables. By this method, we were able to calculate weighted relationships between concentrations of Escherichia coli and distribution of key agronomic, pedologic and climatic parameters that influence the spread of these microorganisms. The results showed that the Bayesian model that was developed can be used as a prediction of microbial contamination of recreational waters. This model, with a success rate of 71%, highlighted the significant role played by the rain, which is the main cause of pollution transport. Secondly, the Bayesian probabilistic model has been the subject of a sensitivity analysis related to spatial parameters, using Sobol indications. This allowed (1) quantification of uncertainties on soil variables, land use and distance and (2) the spread of these uncertainties in the probabilistic model that is to say, the calculation of induced error in the output by the uncertainties of spatial inputs. Lastly, simulation sensitivity analysis to the various sources of uncertainty was performed to assess the contribution of each factor on the overall uncertainty taking into account their interactions. It appears that of all the scenarios, the uncertainty of the microbial contamination is directly dependent on the variability of clay soils. Sobol prime indications analysis showed that among the most likely to influence the microbial factors, the area of farmland is the first important factor in assessing the coliforms. Importance must be given on this parameter in the context of preparation for microbial contamination. Then, the second most important variable is the urban area with sensitivity shares of approximately 30%. Furthermore, estimates of the total indications are better than those of the first order, which means that the impact of parametric interaction is clearly significant for the modeling of microbial contamination. Thirdly, we propose to implement a temporal variability model of microbiological contamination on the watershed of Lake Massawippi, based on the AVSWAT model. This is a model that couples the temporal and spatial components that characterize the dynamics of coliforms. The synthesis of the main results shows that concentrations of Escherichia coli in different sub-watersheds are influenced by rain intensity. Research also concluded that best performance is obtained by multi-objective optimization. The results of these studies show the prospective of operationally providing a comprehensive understanding of the dynamics of microbial contamination of surface water.
Solís, Maikol. « Conditional covariance estimation for dimension reduction and sensivity analysis ». Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2354/.
Texte intégralThis thesis will be focused in the estimation of conditional covariance matrices and their applications, in particular, in dimension reduction and sensitivity analyses. In Chapter 2, we are in a context of high-dimensional nonlinear regression. The main objective is to use the sliced inverse regression methodology. Using a functional operator depending on the joint density, we apply a Taylor decomposition around a preliminary estimator. We will prove two things: our estimator is asymptotical normal with variance depending only the linear part, and this variance is efficient from the Cramér-Rao point of view. In the Chapter 3, we study the estimation of conditional covariance matrices, first coordinate-wise where those parameters depend on the unknown joint density which we will replace it by a kernel estimator. We prove that the mean squared error of the nonparametric estimator has a parametric rate of convergence if the joint distribution belongs to some class of smooth functions. Otherwise, we get a slower rate depending on the regularity of the model. For the estimator of the whole matrix estimator, we will apply a regularization of type "banding". Finally, in Chapter 4, we apply our results to estimate the Sobol or sensitivity indices. These indices measure the influence of the inputs with respect to the output in complex models. The advantage of our implementation is that we can estimate the Sobol indices without use computing expensive Monte-Carlo methods. Some illustrations are presented in the chapter showing the capabilities of our estimator
Abily, Morgan. « Modélisation hydraulique à surface libre haute-résolution : utilisation de données topographiques haute-résolution pour la caractérisation du risque inondation en milieux urbains et industriels ». Thesis, Nice, 2015. http://www.theses.fr/2015NICE4121/document.
Texte intégralHigh Resolution (infra-metric) topographic data, including LiDAR photo-interpreted datasets, are becoming commonly available at large range of spatial extent, such as municipality or industrial site scale. These datasets are promising for High-Resolution (HR) Digital Elevation Model (DEM) generation, allowing inclusion of fine aboveground structures that influence overland flow hydrodynamic in urban environment. DEMs are one key input data in Hydroinformatics to perform free surface hydraulic modelling using standard 2D Shallow Water Equations (SWEs) based numerical codes. Nonetheless, several categories of technical and numerical challenges arise from this type of data use with standard 2D SWEs numerical codes. Objective of this thesis is to tackle possibilities, advantages and limits of High-Resolution (HR) topographic data use within standard categories of 2D hydraulic numerical modelling tools for flood hazard assessment purpose. Concepts of HR topographic data and 2D SWE based numerical modelling are recalled. HR modelling is performed for : (i) intense runoff and (ii) river flood event using LiDAR and photo-interpreted datasets. Tests to encompass HR surface elevation data in standard modelling tools ranges from industrial site scale to a megacity district scale (Nice, France). Several standard 2D SWEs based codes are tested (Mike 21, Mike 21 FM, TELEMAC-2D, FullSWOF_2D). Tools and methods for assessing uncertainties aspects with 2D SWE based models are developed to perform a spatial Global Sensitivity Analysis related to HR topographic data use. Results show the importance of modeller choices regarding ways to integrate the HR topographic information in models
Novák, Lukáš. « Pravděpodobnostní modelování smykové únosnosti předpjatých betonových nosníků : Citlivostní analýza a semi-pravděpodobnostní metody návrhu ». Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372051.
Texte intégralWu, QiongLi. « Sensitivity Analysis for Functional Structural Plant Modelling ». Phd thesis, Ecole Centrale Paris, 2012. http://tel.archives-ouvertes.fr/tel-00719935.
Texte intégralRiahi, Hassen. « Analyse de structures à dimension stochastique élevée : application aux toitures bois sous sollicitation sismique ». Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00881187.
Texte intégralBaidya, Suman K. « Trace gas and particulate matter emissions from road transportation in India quantification of current and future levels, uncertainties and sensitivity analysis ». Berlin mbv, Mensch-und-Buch-Verl, 2008. http://d-nb.info/995878560/04.
Texte intégralNoto, Raffaella. « Flussi in mezzi porosi a saturazione variabile generati da canali superficiali disperdenti : analisi numerica bidimensionale ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Trouver le texte intégralNiang, Ibrahima. « Quantification et méthodes statistiques pour le risque de modèle ». Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1015/document.
Texte intégralIn finance, model risk is the risk of loss resulting from using models. It is a complex risk which recover many different situations, and especially estimation risk and risk of model misspecification. This thesis focuses: on model risk inherent in yield and credit curve construction methods and the analysis of the consistency of Sobol indices with respect to stochastic ordering of model parameters. it is divided into three chapters. Chapter 1 focuses on model risk embedded in yield and credit curve construction methods. We analyse in particular the uncertainty associated to the construction of yield curves or credit curves. In this context, we derive arbitrage-free bounds for discount factor and survival probability at the most liquid maturities. In Chapter 2 of this thesis, we quantify the impact of parameter risk through global sensitivity analysis and stochastic orders theory. We analyse in particular how Sobol indices are transformed further to an increase of parameter uncertainty with respect to the dispersive or excess wealth orders. Chapter 3 of the thesis focuses on contrast quantile index. We link this latter with the risk measure CTE and then we analyse on the other side, in which circumstances an increase of a parameter uncertainty in the sense of dispersive or excess wealth orders implies and increase of contrast quantile index. We propose finally an estimation procedure for this index. We prove under some conditions that our estimator is consistent and asymptotically normal
Ahmed, Anwar. « COST AND ACCURACY COMPARISONS IN MEDICAL TESTING USING SEQUENTIAL TESTING STRATEGIES ». VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/103.
Texte intégralMannschatz, Theresa. « Site evaluation approach for reforestations based on SVAT water balance modeling considering data scarcity and uncertainty analysis of model input parameters from geophysical data ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175309.
Texte intégralUmfangreiche Abholzungen, besonders in den (Sub-)Tropen, habe zu intensiver Bodendegradierung und Erosion mit einhergehendem Verlust der Bodenfruchtbarkeit geführt. Eine wirksame Maßnahme zur Vermeidung fortschreitender Bodendegradierung und Erosion sind Aufforstungen auf diesen Flächen, die bisweilen zu einer verbesserten Bodenqualität führen können. Eine Umwandlung von Grünland zu Wald kann jedoch einen entscheidenden Einfluss auf den Wasserhaushalt haben. Selbst unter humid-tropischen Klimabedingungen, wo Wasser in der Regel kein begrenzender Faktor ist, können sich Aufforstungen negativ auf die Wasserverfügbarkeit auswirken. In diesem Zusammenhang muss auch berücksichtigt werden, dass Klimamodelle eine Abnahme der Niederschläge in einigen dieser Regionen prognostizieren. Um die Probleme, die mit dem Klimawandel in Verbindung stehen zu mildern (z.B. Zunahme von Erosion und Dürreperioden), wurden und werden bereits umfangreiche Aufforstungsmaßnahmen durchgeführt. Viele dieser Maßnahmen waren nicht immer umfassend erfolgreich, weil die Umgebungsbedingungen sowie die pflanzenspezifischen Anforderungen nicht angemessen berücksichtigt wurden. Dies liegt häufig an der schlechten Datengrundlage sowie an den in vielen Entwicklungs- und Schwellenländern begrenzter verfügbarer finanzieller Mittel. Aus diesem Grund werden innovative Ansätze benötigt, die in der Lage sind quasi-kontinuierlich und kostengünstig die Standortbedingungen zu erfassen und zu bewerten. Gleichzeitig sollte eine Überwachung der Wiederaufforstungsmaßnahme erfolgen, um deren Erfolg zu bewerten und potentielle negative Effekte (z.B. Wasserknappheit) zu erkennen und diesen entgegenzuwirken bzw. reduzieren zu können. Um zu vermeiden, dass Wiederaufforstungen fehlschlagen oder negative Auswirkungen auf die Ökosystemdienstleistungen haben, ist es entscheidend, Kenntnisse vom tatsächlichen Wasserhaushalt des Ökosystems zu erhalten und Änderungen des Wasserhaushalts durch Wiederaufforstungen vorhersagen zu können. Die Ermittlung und Vorhersage von Wasserhaushaltsänderungen infolge einer Aufforstung unter Berücksichtigung des Klimawandels erfordert die Berücksichtigung komplex-verzahnter Rückkopplungsprozesse im Boden-Vegetations-Atmosphären Kontinuum. Hydrologische Modelle, die explizit den Einfluss der Vegetation auf den Wasserhaushalt untersuchen sind Soil-Vegetation-Atmosphere-Transfer (SVAT) Modelle. Die vorliegende Studie verfolgte zwei Hauptziele: (i) die Entwicklung und Erprobung einer Methodenkombination zur Standortbewertung unter Datenknappheit (d.h. Grundanforderung des Ansatzes) (Teil I) und (ii) die Untersuchung des Einflusses der mit geophysikalischen Methoden vorhergesagten SVAT-Modeleingangsparameter (d.h. Vorhersageunsicherheiten) auf die Modellierung (Teil II). Eine Wasserhaushaltsmodellierung wurde in den Mittelpunkt der Methodenkombination gesetzt. In dieser Studie wurde das 1D SVAT Model CoupModel verwendet. CoupModel benötigen detaillierte räumliche Bodeninformationen (i) zur Modellparametrisierung, (ii) zum Hochskalierung von Modellergebnissen unter Berücksichtigung lokaler und regionaler Bodenheterogenität, und (iii) zur Beobachtung (Monitoring) der zeitlichen Veränderungen des Bodens und der Vegetation. Traditionelle Ansätze zur Messung von Boden- und Vegetationseigenschaften und deren Monitoring sind jedoch zeitaufwendig, teuer und beschränken sich daher oft auf Punktinformationen. Ein vielversprechender Ansatz zur Überwindung der räumlichen Einschränkung sind die Nutzung geophysikalischer Methoden. Aus diesem Grund wurden vis-NIR Spektroskopie (sichtbarer bis nah-infraroter Wellenlängenbereich) zur quasi-kontinuierlichen Messung von physikalischer und chemischer Bodeneigenschaften und Satelliten-basierte Fernerkundung zur Ableitung von Vegetationscharakteristika (d.h. Blattflächenindex (BFI)) eingesetzt. Da die mit geophysikalisch hergeleiteten Bodenparameter (hier Bodenart) und Pflanzenparameter zur Parametrisierung eines SVAT Models verwendet werden können, wurde die gesamte Prozessierungskette und die damit verbundenen Unsicherheiten und deren potentiellen Auswirkungen auf die Wasserhaushaltsmodellierung mit CoupModel untersucht. Ein Gewächshausexperiment mit Bambuspflanzen wurde durchgeführt, um die zur CoupModel Parametrisierung notwendigen pflanzenphysio- logischen Parameter zu bestimmen. Geoelektrik wurde eingesetzt, um die Bodenschichtung der Untersuchungsfläche zu untersuchen und ein repräsentatives Bodenprofil zur Modellierung zu definieren. Die Bodenstruktur wurde unter Verwendung einer Bildanalysetechnik ausgewertet, die die qualitativen Bewertung und Vergleichbarkeit struktureller Merkmale ermöglicht. Um den Anforderungen des gewählten Standortbewertungsansatzes gerecht zu werden, wurde die Methodik auf einem Standort mit einer Bambusplantage und einem Sekundärregenwald (als Referenzfläche) in NO-Brasilien (d.h. geringe Datenverfügbarkeit) entwickelt und getestet. Das Ziel dieser Arbeit war jedoch nicht die Modellierung dieses konkreten Standortes, sondern die Bewertung der Eignung des gewählten Methodenansatzes zur Standortbewertung für Aufforstungen und deren zeitliche Beobachtung, als auch die Bewertung des Einfluss von Aufforstungen auf den Wasserhaushalt und die Bodenqualität. Die Ergebnisse (Teil III) verdeutlichen, dass es notwendig ist, sich den potentiellen Einfluss der Messunsicherheiten der SVAT Modelleingangsparameter auf die Modellierung bewusst zu sein. Beispielsweise zeigte sich, dass die Vorhersageunsicherheiten der Bodentextur und des BFI einen bedeutenden Einfluss auf die Wasserhaushaltsmodellierung mit CoupModel hatte. Die Arbeit zeigt weiterhin, dass vis-NIR Spektroskopie zur schnellen und kostengünstigen Messung, Kartierung und Überwachung boden-physikalischer (Bodenart) und -chemischer (N, TOC, TIC, TC) Eigenschaften geeignet ist. Die Qualität der Bodenvorhersage hängt vom Instrument (z.B. Sensorauflösung), den Probeneigenschaften (z.B. chemische Zusammensetzung) und den Standortmerkmalen (z.B. Klima) ab. Die Sensitivitätsanalyse mit CoupModel zeigte, dass der Einfluss der spektralen Bodenartvorhersageunsicherheiten auf den mit CoupModel simulierten Oberflächenabfluss, Evaporation, Transpiration und Evapotranspiration ebenfalls von den Standortbedingungen (z.B. Klima, Bodentyp) abhängt. Aus diesem Grund wird empfohlen eine SVAT Model Sensitivitätsanalyse vor der spektroskopischen Feldmessung von Bodenparametern durchzuführen, um die Standort-spezifischen Boden- und Klimabedingungen angemessen zu berücksichtigen. Die Anfertigung einer Bodenkarte unter Verwendung von Kriging führte zu schlechten Interpolationsergebnissen in Folge der Aufsummierung von Mess- und Schätzunsicherheiten (d.h. bei spektroskopischer Feldmessung, Kriging-Fehler) und der kleinskaligen Bodenheterogenität. Anhand des gewählten Bodenbewertungsansatzes (vis-NIR Spektroskopie, Strukturvergleich mit Bildanalysetechnik, traditionelle Laboranalysen) konnte gezeigt werden, dass es bei gleichem Bodentyp (Vertisol) signifikante Unterschiede zwischen den Böden unter Bambus und Sekundärwald gibt. Anhand der wichtigsten Ergebnisse kann festgehalten werden, dass die gewählte Methodenkombination zur detailreicheren und effizienteren Standortuntersuchung und -bewertung für Aufforstungen beitragen kann. Die Ergebnisse dieser Studie geben einen Einblick darauf, wo und wann bei Boden- und Vegetationsmessungen eine besonders hohe Messgenauigkeit erforderlich ist, um Unsicherheiten bei der SVAT Modellierung zu minimieren
Extensos desmatamentos que estão sendo feitos especialmente nos trópicos e sub-trópicos resultam em uma intensa degradação do solo e num aumento da erosão gerando assim uma redução na sua fertilidade. Reflorestamentos ou plantações nestas áreas degradadas podem ser medidas eficazes para atenuar esses problemas e levar a uma melhoria da qualidade do mesmo. No entanto, uma mudança no uso da terra, por exemplo de pastagem para floresta pode ter um impacto crucial no balanço hídrico e isso pode afetar a disponibilidade de água, mesmo sob condições de clima tropical úmido, onde a água normalmente não é um fator limitante. Devemos levar também em consideração que de acordo com projeções de mudanças climáticas, as precipitações em algumas dessas regiões também diminuirão agravando assim, ainda mais o quadro apresentado. Para mitigar esses problemas relacionados com as alterações climáticas, reflorestamentos são frequentemente realizados mas raramente são bem-sucedidos, pois condições ambientais como os requisitos específicos de cada espécie de planta, não são devidamente levados em consideração. Isso é muitas vezes devido, não só pela falta de dados, como também por recursos financeiros limitados, que são problemas comuns em regiões tropicais. Por esses motivos, são necessárias abordagens inovadoras que devam ser capazes de medir as condições ambientais quase continuamente e de maneira rentável. Simultaneamente com o reflorestamento, deve ser feita uma monitoração a fim de avaliar o sucesso da atividade e para prevenir, ou pelo menos, reduzir os problemas potenciais associados com o mesmo (por exemplo, a escassez de água). Para se evitar falhas e reduzir implicações negativas sobre os ecossistemas, é crucial obter percepções sobre o real balanço hídrico e as mudanças que seriam geradas por esse reflorestamento. Por este motivo, esta tese teve como objetivo desenvolver e testar uma combinação de métodos para avaliação de áreas adequadas para reflorestamento. Com esse intuito, foi colocada no centro da abordagem de avaliação a modelagem do balanço hídrico local, que permite a identificação e estimação de possíveis alterações causadas pelo reflorestamento sob mudança climática considerando o sistema complexo de realimentação e a interação de processos do continuum solo-vegetação-atmosfera. Esses modelos hidrológicos que investigam explicitamente a influência da vegetação no equilíbrio da água são conhecidos como modelos Solo-Vegetação-Atmosfera (SVAT). Esta pesquisa focou em dois objetivos principais: (i) desenvolvimento e teste de uma combinação de métodos para avaliação de áreas que sofrem com a escassez de dados (pré-requisito do estudo) (Parte I), e (ii) a investigação das consequências da incerteza nos parâmetros de entrada do modelo SVAT, provenientes de dados geofísicos, para modelagem hídrica (Parte II). A fim de satisfazer esses objetivos, o estudo foi feito no nordeste brasileiro,por representar uma área de grande escassez de dados, utilizando como base uma plantação de bambu e uma área de floresta secundária. Uma modelagem do balanço hídrico foi disposta no centro da metodologia para a avaliação de áreas. Este estudo utilizou o CoupModel que é um modelo SVAT unidimensional e que requer informações espaciais detalhadas do solo para (i) a parametrização do modelo, (ii) aumento da escala dos resultados da modelagem, considerando a heterogeneidade do solo de escala local para regional e (iii) o monitoramento de mudanças nas propriedades do solo e características da vegetação ao longo do tempo. Entretanto, as abordagens tradicionais para amostragem de solo e de vegetação e o monitoramento são demorados e caros e portanto muitas vezes limitadas a informações pontuais. Por esta razão, métodos geofísicos como a espectroscopia visível e infravermelho próximo (vis-NIR) e sensoriamento remoto foram utilizados respectivamente para a medição de propriedades físicas e químicas do solo e para derivar as características da vegetação baseado no índice da área foliar (IAF). Como as propriedades estimadas de solo (principalmente a textura) poderiam ser usadas para parametrizar um modelo SVAT, este estudo investigou toda a cadeia de processamento e as incertezas de previsão relacionadas à textura de solo e ao IAF. Além disso explorou o impacto destas incertezas criadas sobre a previsão do balanço hídrico simulado por CoupModel. O método geoelétrico foi aplicado para investigar a estratificação do solo visando a determinação de um perfil representante. Já a sua estrutura foi explorada usando uma técnica de análise de imagens que permitiu a avaliação quantitativa e a comparabilidade dos aspectos estruturais. Um experimento realizado em uma estufa com plantas de bambu (Bambusa vulgaris) foi criado a fim de determinar as caraterísticas fisiológicas desta espécie que posteriormente seriam utilizadas como parâmetros para o CoupModel. Os resultados do estudo (Parte III) destacam que é preciso estar consciente das incertezas relacionadas à medição de parâmetros de entrada do modelo SVAT. A incerteza presente em alguns parâmetros de entrada como por exemplo, textura de solo e o IAF influencia significantemente a modelagem do balanço hídrico. Mesmo assim, esta pesquisa indica que vis-NIR espectroscopia é um método rápido e economicamente viável para medir, mapear e monitorar as propriedades físicas (textura) e químicas (N, TOC, TIC, TC) do solo. A precisão da previsão dessas propriedades depende do tipo de instrumento (por exemplo da resolução do sensor), da propriedade da amostra (a composição química por exemplo) e das características das condições climáticas da área. Os resultados apontam também que a sensitividade do CoupModel à incerteza da previsão da textura de solo em respeito ao escoamento superficial, transpiração, evaporação, evapotranspiração e ao conteúdo de água no solo depende das condições gerais da área (por exemplo condições climáticas e tipo de solo). Por isso, é recomendado realizar uma análise de sensitividade do modelo SVAT prior a medição espectral do solo no campo, para poder considerar adequadamente as condições especificas do área em relação ao clima e ao solo. Além disso, o mapeamento de propriedades de solo previstas pela espectroscopia usando o kriging, resultou em interpolações de baixa qualidade (variogramas fracos) como consequência da acumulação de incertezas surgidas desde a medição no campo até o seu mapeamento (ou seja, previsão do solo via espectroscopia, erro do kriging) e heterogeneidade especifica de uma pequena escala. Osmétodos selecionados para avaliação das áreas (vis-NIR espectroscopia, comparação da estrutura de solo por meio de análise de imagens, análise de laboratório tradicionais) revelou a existência de diferenças significativas entre o solo sob bambu e o sob floresta secundária, apesar de ambas terem sido estabelecidas no mesmo tipo de solo (vertissolo). Refletindo sobre os principais resultados do estudo, pode-se afirmar que a combinação dos métodos escolhidos e aplicados representam uma forma mais detalhada e eficaz de avaliar se uma determinada área é adequada para ser reflorestada. Os resultados apresentados fornecem percepções sobre onde e quando, durante a medição do solo e da vegetação, é necessário se ter uma precisão mais alta a fim de minimizar incertezas potenciais na modelagem com o modelo SVAT
HU, ZHENG-TAO, et 胡正濤. « Comparison of the sensitivity and specificity of isovolumic phase and ejection phase indices of myocardial intrinsic contractility ». Thesis, 1990. http://ndltd.ncl.edu.tw/handle/47859666399414815245.
Texte intégral« The Sensitivity of Confirmatory Factor Analytic Fit Indices to Violations of Factorial Invariance across Latent Classes : A Simulation Study ». Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9267.
Texte intégralDissertation/Thesis
Ph.D. Psychology 2011
Rodrigues, Diogo Castanhas. « Técnicas de análise de sensibilidade aplicadas ao processo de estampagem de uma taça quadrada ». Master's thesis, 2021. http://hdl.handle.net/10316/96098.
Texte intégralCom o aumento da competitividade industrial é crucial conhecer bem os processos de conformação de chapas metálicas, de modo a que estes possam ser otimizados e consequentemente reduzir os tempos e custos de produção. Assim, nesta dissertação é aplicada uma análise de sensibilidade ao processo de estampagem de uma taça quadrada, com o objetivo de compreender como as propriedades do material e condições do processo podem influenciar a estampagem. É estudada a influência da variabilidade do módulo de Young, do coeficiente de Poisson, dos coeficientes de anisotropia, dos parâmetros constitutivos da lei de Swift, da espessura inicial da chapa, do coeficiente de atrito e da força do cerra chapas. O objetivo é avaliar a influência da variabilidade destes parâmetros de entrada, na deformação plástica equivalente, na alteração de geometria, na redução de espessura, na força do punção e no retorno elástico. A análise de sensibilidade é realizada por duas técnicas distintas, índices de Sobol e índices PAWN.Antes de ser aplicada a análise de sensibilidade, é importante perceber quais as zonas da taça mais sujeitas à variabilidade dos parâmetros de entrada. Concluiu-se que a aba da taça e a zona próxima ao raio de curvatura da matriz são as zonas mais afetadas, sendo a base da taça a zona menos afetada pela variabilidade nos parâmetros de entrada.Posteriormente, avaliou-se a estabilização dos índices de sensibilidade e concluiu-se que, para a mesma precisão de resultados, os índices PAWN requerem apenas 7,7% a 12,8% das simulações utilizadas para avaliar os índices de Sobol. Da análise de sensibilidade constatou-se que os parâmetros de entrada com mais influência na variabilidade dos parâmetros de saída são: o coeficiente de encruamento, o parâmetro C da lei de Swift e o coeficiente de anisotropia a 90º. Ambos os índices de sensibilidade fornecem resultados semelhantes para todos os parâmetros de saída, exceto para o retorno elástico, para o qual se mostrou que os índices PAWN são mais precisos quando aplicados a um conjunto de dados que segue uma distribuição multimodal.
With the industrial competitiveness increasing day by day, it is crucial to have knowledge about the processes of conformation of metallic plates, in order to optimize that process and consequently decrease time and costs of production. In this dissertation it is applied a sensitivity analysis to the stamping process of a square cup with the aim of understanding how the material properties and the process conditions can influence that same process. The variability influence of the Young’s module, Poisson’s coefficient, anisotropy coefficients, constitutive parameters of Swift’s law, sheet thickness, friction coefficient and blank-holder force is studied. The objective is to evaluate the variability influence of these input parameters, on the variability of equivalent plastic strain, geometry change, thickness reduction, punch force and springback. This sensitivity analysis is made using two techniques: PAWN indices and Sobol indices.Before applying the sensitivity analysis, it is important to understand which zones of the square cup were more affected by inputs variability. It was concluded that the cup flange and the region near the curvature radius of the die are the most affected regions, and the cup base is the region least affected by the variability in the input parameters.Afterwards, the stabilization of the sensitivity indices was evaluated and it was concluded that, for the same results precision, the PAWN indices require only 7.7% to 12.8% of the simulations used to evaluate the Sobol indices. The sensitivity analysis showed that the input parameters with more influence on the variability of the output parameters are: the hardening coefficient, the parameter C of Swift’s law and the anisotropy coefficient at 90º. Both sensitivity indices provide similar results for all outputs, except springback, for which we can conclude that PAWN indices are more accurate than Sobol indices when the data follows a multimodal distribution.
Ruivo, Miguel António Fernandes Pereira. « Estudo numérico do processo de estampagem de uma taça quadrada : uma análise estocástica ». Master's thesis, 2020. http://hdl.handle.net/10316/92101.
Texte intégralIn the industry, it is becoming more and more important to guarantee the quality of the produced components. To ensure this quality, it is important to define which parameters should be considered important and which ones’ control must be prioritized. With this goal, in this dissertation is presented a numerical study about the influence of the variability of the parameters associated with the mechanical behavior of the material and the process conditions, in the stamping results of a square cup. In this analysis is assumed variability in the elastic properties, Swift law constitutive parameters, anisotropy coefficients, sheet thickness, friction coefficient and in the blank-holder force. The effect of these parameters’ variability is evaluated in the punch force, equivalent plastic strain, thickness reduction, change of geometry and in the springback.Firstly, the quasi-Monte Carlo method was used to evaluate the average and standard deviation values of the simulation outputs, considering the variability of the input parameters. With this analysis, it was possible to conclude that the change of geometry and the springback are the outputs most sensible to the variability of the input parameters; and that the top of the square cup is the zone where the effect of the variability is more significant.Afterwards, a variance-based sensitivity analysis was done. In this analysis, first order Sobol indices were used to identify the input parameters with more effect in the output’s variability, and total Sobol indices were used to estimate the effect of the interactions between the different input parameters in the outputs’ variability. It was concluded that the input parameters with more effect are the Swift law coefficients, n and C, the anisotropy coefficient r_90 and that the effect of the interactions is only relevant for the geometry change. Furthermore, it was verified that the Sobol indices are not suitable to evaluate the influence of the input parameters in the springback, since this output have a multimodal distribution, thus different sensitivity indices must be used.With the goal to reduce the number of necessary simulations to compute the Sobol indices, a Polynomial Chaos Expansion metamodel is utilized. The values obtained for the Sobol indices using this metamodel were compared to the ones obtained with the quasi-Monte Carlo method. It was concluded that the use of the metamodel allowed to significantly reduce the computation time associated to the sensitivity analysis, without compromising the results.
Na indústria, cada vez mais é dada importância à qualidade final dos componentes produzidos. De forma a garantir esta qualidade, é importante definir quais os parâmetros a considerar como sendo importantes e cujo controlo deve ser prioritário. Com isto em vista, nesta dissertação é apresentado um estudo numérico sobre a influência da variabilidade dos parâmetros associados ao comportamento mecânico do material e às condições do processo, nos resultados da estampagem de uma taça quadrada. Nesta análise assume-se variabilidade nas propriedades elásticas, nos parâmetros constitutivos da lei de Swift, nos coeficientes de anisotropia, na espessura da chapa, no coeficiente de atrito e na força de aperto do cerra-chapas. O efeito da variabilidade destes parâmetros é avaliado na força do punção, na deformação plástica equivalente, na redução de espessura, na alteração de geometria e no retorno elástico. Inicialmente, utilizou-se o método de quase-Monte Carlo para avaliar a média e o desvio padrão dos resultados das simulações, tendo em conta a variabilidade nos parâmetros de entrada. Com base nesta análise foi possível concluir que a alteração de geometria e o retorno elástico são as respostas mais sensíveis à variabilidade nos parâmetros de entrada; sendo que a zona da aba da taça é aquela cujo efeito da variabilidade é mais significativo. Posteriormente, realizou-se uma análise de sensibilidade com base na variância. Nesta análise, foram utilizados índices de Sobol de primeira ordem, para identificar os parâmetros de entrada com maior efeito na variabilidade dos resultados, e também índices de Sobol totais, para estimar o efeito das interações entre os vários parâmetros na variabilidade dos resultados. Concluiu-se que os parâmetros mais importantes são o n e o C da lei de Swift, o coeficiente de anisotropia r_90 e que o efeito das interações apenas é relevante para a alteração de geometria. Para além disso, verificou-se que os índices de Sobol não são adequados para avaliar a influência no retorno elástico, uma vez que esta resposta tem uma distribuição multimodal, pelo que devem ser utilizadas outros índices de sensibilidade.Com o objetivo de reduzir o número de simulações necessário à computação dos índices de Sobol, é utilizado o metamodelo Polynomial Chaos Expansion. Os resultados dos índices de Sobol obtidos com o metamodelo foram comparados com os obtidos através do método de quase-Monte Carlo. Concluiu-se que a utilização do metamodelo permitiu reduzir significativamente o tempo de computação associado à análise de sensibilidade, sem prejudicar os resultados da mesma.
Brito, Miguel Abranches e. Menezes Peixoto de. « Análise de variabilidade na simulação numérica do processo de estampagem de um perfil em U ». Master's thesis, 2020. http://hdl.handle.net/10316/92244.
Texte intégralOs processos de conformação estão entre os mais utilizados na indústria automóvel, aeronáutica e metalomecânica. A procura por produtos com melhor qualidade e menores custos de produção tem incentivado o interesse crescente por um robusto desenvolvimento e otimização destes processos, que tem em conta a variabilidade inerente aos mesmos. De forma a perceber quais as fontes de variabilidade mais importantes na estampagem de um perfil em U, esta tese apresenta um estudo numérico que visa analisar a influência da variabilidade de onze parâmetros de entrada diferentes (módulo de Young, coeficiente de Poisson, coeficientes de anisotropia, parâmetros da lei de Swift, espessura inicial da chapa, coeficiente de atrito e força do cerra-chapas) nos resultados de conformação (Deformação Plástica Equivalente, Redução de Espessura, Retorno Elástico, Alteração de Geometria e Força do Punção).Inicialmente foi utilizado o método de quasi-Monte Carlo com uma sequência de Sobol para analisar a influência da variabilidade dos parâmetros de entrada na variabilidade dos resultados do processo. Nesta fase, conclui-se que a variabilidade dos parâmetros de entrada afeta todos os resultados do perfil em U, principalmente a Alteração de Geometria. De seguida, através do cálculo dos índices de Sobol, é estimada a influência de cada um dos parâmetros de entrada nos valores máximos das variáveis de saída. Com esta análise foi possível concluir que o coeficiente de atrito, a espessura inicial da chapa, o coeficiente de encruamento e a constante C da lei de Swift, são os parâmetros de entrada que mais influenciam os resultados em estudo, sendo que as interações entre parâmetros de entrada só são relevantes na Alteração de Geometria. Por último, foram calculadas as distribuições dos índices de Sobol para todos os nós, de forma a analisar a influência dos parâmetros de entrada nos resultados ao longo do perfil em U. Esta análise permitiu concluir que o coeficiente de atrito, a constante C da lei de Swift e o coeficiente de encruamento são os parâmetros com mais influência na zona da aba e da curvatura superior, que o coeficiente de atrito é o parâmetro com mais influência na zona da curvatura inferior e que a espessura inicial e o coeficiente de atrito são os parâmetros com mais influência na zona da parede do perfil em U.
Forming processes are among the most used in the automotive, aeronautic and metalworking industry. The demand for quality enhanced products and lower production costs has encouraged the growing interest for a robust development and optimization of these processes which takes into account the inherent variability in them. In order to understand which are the most important sources of variability of a U-rail stamping process, this thesis presents a numerical study that aims to analyse the influence of the variability of eleven different input parameters (Young’s modulus, Poisson’s coefficient, anisotropy coefficients, parameters of Swift’s hardening law, initial thickness of the sheet metal, friction coefficient and Blank Holder force) in the forming process results (Equivalent Plastic Strain, Thickness Reduction, Springback, Geometry Modification and Punch Force).Initially the quasi-Monte Carlo method with a Sobol sequence was used to analyse the influence of the variability of the input parameters on the variability of the process results. In this phase, it is concluded that the variability of the input parameters affects all the results of the U-rail, mainly the Geometry Modification. Then the influence of each of the input parameters, for the maximum values of the output variables, is estimated by calculating the Sobol indices. With this analysis it was possible to conclude that the friction coefficient, the initial thickness of the sheet metal, the hardening coefficient and the Swift’s Law constant, C, are the input parameters that most influence the results under study, and the interactions between input parameters are only relevant for the Geometry Modification. Lastly, distributions of the Sobol indices were calculated for all nodes, in order to analyse the influence of the input parameters throughout the U-rail geometry. This analysis allowed to conclude that the friction coefficient, Swift’s law constant C and the hardening coefficient are the parameters with the most influence in the tab and upper curvature areas, that the friction coefficient is the parameter with the most influence in the lower curvature area and that the initial thickness and the friction coefficient are the parameters with the most influence in the wall area of the U-rail.
Câmara, Bernardo Monteiro dos Santos de Aguiar da. « Análise de sensibilidade do ensaio biaxial em provete cruciforme ». Master's thesis, 2021. http://hdl.handle.net/10316/94300.
Texte intégralNeste trabalho é realizada uma análise de sensibilidade para avaliar a influência dos parâmetros do material nos resultados do ensaio biaxial em provete cruciforme. Esta análise é feita com auxílio dos índices de Sobol de 1ª ordem, que permitem quantificar a sensibilidade de cada parâmetro do material, e dos índices de Sobol totais, que permitem avaliar a influência das interações entre esses parâmetros. Nesta análise foram estudados os parâmetros s0, k e n da lei de encruamento de Swift, e F, G e N do critério de plasticidade anisotrópico de Hill’48. A influência desses parâmetros é avaliada nos resultados do ensaio biaxial (variáveis de saída), nomeadamente, as forças máximas segundo 0x e 0y, as deformações principais e1 e e2, a deformação plástica equivalente eeq, a redução de espessura e a trajetória de deformação. Todos estes resultados do ensaio biaxial foram obtidos numericamente, com recurso ao programa de elementos finitos DD3IMP.Inicialmente, recorreu-se à análise de sensibilidade para avaliar a influência dos parâmetros do material nos valores máximos das variáveis de saída. Desta análise concluiu-se que: os parâmetros K e n da lei de Swift são os mais influentes no valor máximo das forças e da deformação principal e1; o valor máximo da deformação plástica equivalente é afetado principalmente pelos parâmetros G e n, embora os restantes parâmetros também tenham uma influência relevante; os valores máximos de e2 e da redução de espessura são essencialmente afetados pelo parâmetro G do critério de Hill’48.Posteriormente analisou-se os parâmetros que mais influenciam os resultados do ensaio em cada região do provete. Desta análise concluiu-se no geral que: G é o parâmetro que mais influencia as variáveis de saída no centro do provete e no braço do eixo 0x; F é o parâmetro que mais influencia as variáveis de saída no braço do eixo 0y; as variáveis de saída na zona do raio de curvatura do provete são mais sensíveis aos parâmetros n, N e G. No geral, pode-se afirmar que os parâmetros do critério de plasticidade Hill’48 são os que mais influenciam os resultados ao longo do provete cruciforme.
In this work, a sensitivity analysis is performed to evaluate the influence of the material parameters on the results of the biaxial test on a cruciform specimen. This analysis is done with the help of 1st order Sobol indices, which quantify the sensitivity of each material parameter, and total Sobol indices, which allow to evaluate the influence of the interactions between these parameters. In this analysis, the parameters s0, K and n of the Swift hardening law, and the parameters F, G and N of the Hill'48 anisotropic yield criterion were studied. The influence of these parameters is evaluated on the results of the biaxial test (output variables, namely, the maximum forces along 0x and 0y, the principal strains e1 and e2, the equivalent plastic strain eeq, the thickness reduction and the strain paths. All these results of the biaxial test were numerically obtained, resorting to the finite element software DD3IMP.Initially, the sensitivity analysis was used to assess the influence of the material parameters on the maximum values of the output parameters. From this analysis, it was concluded that: the parameters K and n of Swift's law are the most influential in the maximum values of the forces and the principal strain e1; the maximum value of the equivalent plastic strain is mainly affected by G and n, although the remaining parameters also have a relevant influence; the maximum values of e2 and thickness reduction are essentially affected by the parameter G of the Hill’48 criterion.Afterwards, the parameters that most influence the test results in each specimen region were analyzed. From this analysis, it was concluded in general that: G is the parameter that most influences the output variables in the center of the specimen and in the 0x arm; F is the parameter that most influences the output variables in the 0y arm; the output variables in the radius of curvature of the specimen are more sensitive to the parameters n, N and G. In general, it can be stated that the parameters of the Hill’48 yield criterion are the ones that most influence the results along the cruciform specimen.
Gouveia, Ana Margarida Lopes. « Inditex croup equity research - multiples and sensitivity analysis ». Master's thesis, 2021. http://hdl.handle.net/10362/122793.
Texte intégralLima, Andréa Romero Esteves. « Laser para clarear dentes vitais : justifica-se indicar esta técnica ? » Master's thesis, 2020. http://hdl.handle.net/10284/9412.
Texte intégralDental bleaching, is a conservative method to "bring teeth to a brighter ton than its natural color"(FDA/USA). The objective of this work is to verify evidences of the two main advantages of this technique in vital teeth, using the Laser as an auxiliary: greater efficacy in the final result of the treatment and less postoperative sensitivity. In this work, a literature review was performed using the Pubmed/Medline databases. It was concluded that the laser (depending on dosimetry and the type of device used), is more effective than techniques without the aid of light sources. However, the evidence does not confirm less sensitivity in the postoperative period.
Pelto, Joan McAlmond. « Field sensitivity of Native American students at Oregon State University, as determined by the group embedded figures test ». Thesis, 1991. http://hdl.handle.net/1957/37426.
Texte intégralGraduation date: 1991
Gohore, Bi Goue D. « Évaluation et contrôle de l'irrégularité de la prise médicamenteuse : proposition et développement de stratégies rationnelles fondées sur une démarche de modélisations pharmacocinétiques et pharmacodynamiques ». Thèse, 2010. http://hdl.handle.net/1866/4535.
Texte intégralThe heterogeneity of PK and/or PD profiles in patients undergoing the same treatment regimen should be avoided during treatment or clinical trials. Two traditional approaches are continually used to achieve this purpose. One builds on the interactive synergy between the health caregiver and the patient to exert the patients to become a whole part of his own compliance. Another attempt is to develop drugs or drug dosing regimens that forgive the poor compliance. The main objective of this thesis was to develop new methodologies for assessing and monitoring the impact of irregular drug intake on the therapeutic outcome. Specifically, the first phase of this research was to develop algorithms for evaluation of the efficacy of a treatment by improving classical breakpoint estimation methods to the situation of variable drug disposition. This method introduces the ``efficiency'' of a PK profile by using the efficacy function as a weight in the area under curve ($AUC$) formula. It gives a more powerful PK/PD link and reveales, through some examples, interesting issues about uniqueness of therapeutic outcome indices and antibiotic resistance problems. The second part of this thesis was to determine the optimal sampling times by accounting for the intervariability in drug disposition in collectively treated pigs. For this, we have developed an advanced mathematical model able to generate different PK profiles for various feed strategies. Three algorithms have been performed to identify the optimal sampling times with the criteria of minimizing the PK intervariability . The median-based method yielded suitable sampling periods in terms of convenience for farm staff and animal welfare. The last part of our research was to establish a rational way to delineate drugs in terms of their ``forgiveness'', based on drugs PK/PD properties. For this, a global sensitivity analysis (GSA) has been performed to identify the most sensitive parameters to dose omissions. Then we have proposed a comparative drug forgiveness index to rank the drugs in terms of their tolerability to non compliance with application to four calcium channel blockers. The classification of these molecules in terms of drug forgiveness is in concordance to what has been reported in experimental studies. The strategies developed in this Ph.D. project and essentially based on the analysis of complex relationships between drug intake history, pharmacokinetic and pharmacodynamic properties are able to assess and regulate noncompliance impact with an acceptable uncertainly. In general, the algorithms that imply these approaches will be undoubtedly efficient tools in patient monitoring during dosing regimen. Moreover, they will contribute to control the harmful impact of non-compliance by developing new drugs able to tolerate sporadic dose omission.
Gohore, Bi Gouê Denis. « Évaluation et contrôle de l'irrégularité de la prise médicamenteuse : proposition et développement de stratégies rationnelles fondées sur une démarche de modélisations pharmacocinétiques et pharmacodynamiques ». Thèse, 2010. http://hdl.handle.net/1866/4535.
Texte intégralThe heterogeneity of PK and/or PD profiles in patients undergoing the same treatment regimen should be avoided during treatment or clinical trials. Two traditional approaches are continually used to achieve this purpose. One builds on the interactive synergy between the health caregiver and the patient to exert the patients to become a whole part of his own compliance. Another attempt is to develop drugs or drug dosing regimens that forgive the poor compliance. The main objective of this thesis was to develop new methodologies for assessing and monitoring the impact of irregular drug intake on the therapeutic outcome. Specifically, the first phase of this research was to develop algorithms for evaluation of the efficacy of a treatment by improving classical breakpoint estimation methods to the situation of variable drug disposition. This method introduces the ``efficiency'' of a PK profile by using the efficacy function as a weight in the area under curve ($AUC$) formula. It gives a more powerful PK/PD link and reveales, through some examples, interesting issues about uniqueness of therapeutic outcome indices and antibiotic resistance problems. The second part of this thesis was to determine the optimal sampling times by accounting for the intervariability in drug disposition in collectively treated pigs. For this, we have developed an advanced mathematical model able to generate different PK profiles for various feed strategies. Three algorithms have been performed to identify the optimal sampling times with the criteria of minimizing the PK intervariability . The median-based method yielded suitable sampling periods in terms of convenience for farm staff and animal welfare. The last part of our research was to establish a rational way to delineate drugs in terms of their ``forgiveness'', based on drugs PK/PD properties. For this, a global sensitivity analysis (GSA) has been performed to identify the most sensitive parameters to dose omissions. Then we have proposed a comparative drug forgiveness index to rank the drugs in terms of their tolerability to non compliance with application to four calcium channel blockers. The classification of these molecules in terms of drug forgiveness is in concordance to what has been reported in experimental studies. The strategies developed in this Ph.D. project and essentially based on the analysis of complex relationships between drug intake history, pharmacokinetic and pharmacodynamic properties are able to assess and regulate noncompliance impact with an acceptable uncertainly. In general, the algorithms that imply these approaches will be undoubtedly efficient tools in patient monitoring during dosing regimen. Moreover, they will contribute to control the harmful impact of non-compliance by developing new drugs able to tolerate sporadic dose omission.
Mannschatz, Theresa. « Site evaluation approach for reforestations based on SVAT water balance modeling considering data scarcity and uncertainty analysis of model input parameters from geophysical data ». Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28829.
Texte intégralUmfangreiche Abholzungen, besonders in den (Sub-)Tropen, habe zu intensiver Bodendegradierung und Erosion mit einhergehendem Verlust der Bodenfruchtbarkeit geführt. Eine wirksame Maßnahme zur Vermeidung fortschreitender Bodendegradierung und Erosion sind Aufforstungen auf diesen Flächen, die bisweilen zu einer verbesserten Bodenqualität führen können. Eine Umwandlung von Grünland zu Wald kann jedoch einen entscheidenden Einfluss auf den Wasserhaushalt haben. Selbst unter humid-tropischen Klimabedingungen, wo Wasser in der Regel kein begrenzender Faktor ist, können sich Aufforstungen negativ auf die Wasserverfügbarkeit auswirken. In diesem Zusammenhang muss auch berücksichtigt werden, dass Klimamodelle eine Abnahme der Niederschläge in einigen dieser Regionen prognostizieren. Um die Probleme, die mit dem Klimawandel in Verbindung stehen zu mildern (z.B. Zunahme von Erosion und Dürreperioden), wurden und werden bereits umfangreiche Aufforstungsmaßnahmen durchgeführt. Viele dieser Maßnahmen waren nicht immer umfassend erfolgreich, weil die Umgebungsbedingungen sowie die pflanzenspezifischen Anforderungen nicht angemessen berücksichtigt wurden. Dies liegt häufig an der schlechten Datengrundlage sowie an den in vielen Entwicklungs- und Schwellenländern begrenzter verfügbarer finanzieller Mittel. Aus diesem Grund werden innovative Ansätze benötigt, die in der Lage sind quasi-kontinuierlich und kostengünstig die Standortbedingungen zu erfassen und zu bewerten. Gleichzeitig sollte eine Überwachung der Wiederaufforstungsmaßnahme erfolgen, um deren Erfolg zu bewerten und potentielle negative Effekte (z.B. Wasserknappheit) zu erkennen und diesen entgegenzuwirken bzw. reduzieren zu können. Um zu vermeiden, dass Wiederaufforstungen fehlschlagen oder negative Auswirkungen auf die Ökosystemdienstleistungen haben, ist es entscheidend, Kenntnisse vom tatsächlichen Wasserhaushalt des Ökosystems zu erhalten und Änderungen des Wasserhaushalts durch Wiederaufforstungen vorhersagen zu können. Die Ermittlung und Vorhersage von Wasserhaushaltsänderungen infolge einer Aufforstung unter Berücksichtigung des Klimawandels erfordert die Berücksichtigung komplex-verzahnter Rückkopplungsprozesse im Boden-Vegetations-Atmosphären Kontinuum. Hydrologische Modelle, die explizit den Einfluss der Vegetation auf den Wasserhaushalt untersuchen sind Soil-Vegetation-Atmosphere-Transfer (SVAT) Modelle. Die vorliegende Studie verfolgte zwei Hauptziele: (i) die Entwicklung und Erprobung einer Methodenkombination zur Standortbewertung unter Datenknappheit (d.h. Grundanforderung des Ansatzes) (Teil I) und (ii) die Untersuchung des Einflusses der mit geophysikalischen Methoden vorhergesagten SVAT-Modeleingangsparameter (d.h. Vorhersageunsicherheiten) auf die Modellierung (Teil II). Eine Wasserhaushaltsmodellierung wurde in den Mittelpunkt der Methodenkombination gesetzt. In dieser Studie wurde das 1D SVAT Model CoupModel verwendet. CoupModel benötigen detaillierte räumliche Bodeninformationen (i) zur Modellparametrisierung, (ii) zum Hochskalierung von Modellergebnissen unter Berücksichtigung lokaler und regionaler Bodenheterogenität, und (iii) zur Beobachtung (Monitoring) der zeitlichen Veränderungen des Bodens und der Vegetation. Traditionelle Ansätze zur Messung von Boden- und Vegetationseigenschaften und deren Monitoring sind jedoch zeitaufwendig, teuer und beschränken sich daher oft auf Punktinformationen. Ein vielversprechender Ansatz zur Überwindung der räumlichen Einschränkung sind die Nutzung geophysikalischer Methoden. Aus diesem Grund wurden vis-NIR Spektroskopie (sichtbarer bis nah-infraroter Wellenlängenbereich) zur quasi-kontinuierlichen Messung von physikalischer und chemischer Bodeneigenschaften und Satelliten-basierte Fernerkundung zur Ableitung von Vegetationscharakteristika (d.h. Blattflächenindex (BFI)) eingesetzt. Da die mit geophysikalisch hergeleiteten Bodenparameter (hier Bodenart) und Pflanzenparameter zur Parametrisierung eines SVAT Models verwendet werden können, wurde die gesamte Prozessierungskette und die damit verbundenen Unsicherheiten und deren potentiellen Auswirkungen auf die Wasserhaushaltsmodellierung mit CoupModel untersucht. Ein Gewächshausexperiment mit Bambuspflanzen wurde durchgeführt, um die zur CoupModel Parametrisierung notwendigen pflanzenphysio- logischen Parameter zu bestimmen. Geoelektrik wurde eingesetzt, um die Bodenschichtung der Untersuchungsfläche zu untersuchen und ein repräsentatives Bodenprofil zur Modellierung zu definieren. Die Bodenstruktur wurde unter Verwendung einer Bildanalysetechnik ausgewertet, die die qualitativen Bewertung und Vergleichbarkeit struktureller Merkmale ermöglicht. Um den Anforderungen des gewählten Standortbewertungsansatzes gerecht zu werden, wurde die Methodik auf einem Standort mit einer Bambusplantage und einem Sekundärregenwald (als Referenzfläche) in NO-Brasilien (d.h. geringe Datenverfügbarkeit) entwickelt und getestet. Das Ziel dieser Arbeit war jedoch nicht die Modellierung dieses konkreten Standortes, sondern die Bewertung der Eignung des gewählten Methodenansatzes zur Standortbewertung für Aufforstungen und deren zeitliche Beobachtung, als auch die Bewertung des Einfluss von Aufforstungen auf den Wasserhaushalt und die Bodenqualität. Die Ergebnisse (Teil III) verdeutlichen, dass es notwendig ist, sich den potentiellen Einfluss der Messunsicherheiten der SVAT Modelleingangsparameter auf die Modellierung bewusst zu sein. Beispielsweise zeigte sich, dass die Vorhersageunsicherheiten der Bodentextur und des BFI einen bedeutenden Einfluss auf die Wasserhaushaltsmodellierung mit CoupModel hatte. Die Arbeit zeigt weiterhin, dass vis-NIR Spektroskopie zur schnellen und kostengünstigen Messung, Kartierung und Überwachung boden-physikalischer (Bodenart) und -chemischer (N, TOC, TIC, TC) Eigenschaften geeignet ist. Die Qualität der Bodenvorhersage hängt vom Instrument (z.B. Sensorauflösung), den Probeneigenschaften (z.B. chemische Zusammensetzung) und den Standortmerkmalen (z.B. Klima) ab. Die Sensitivitätsanalyse mit CoupModel zeigte, dass der Einfluss der spektralen Bodenartvorhersageunsicherheiten auf den mit CoupModel simulierten Oberflächenabfluss, Evaporation, Transpiration und Evapotranspiration ebenfalls von den Standortbedingungen (z.B. Klima, Bodentyp) abhängt. Aus diesem Grund wird empfohlen eine SVAT Model Sensitivitätsanalyse vor der spektroskopischen Feldmessung von Bodenparametern durchzuführen, um die Standort-spezifischen Boden- und Klimabedingungen angemessen zu berücksichtigen. Die Anfertigung einer Bodenkarte unter Verwendung von Kriging führte zu schlechten Interpolationsergebnissen in Folge der Aufsummierung von Mess- und Schätzunsicherheiten (d.h. bei spektroskopischer Feldmessung, Kriging-Fehler) und der kleinskaligen Bodenheterogenität. Anhand des gewählten Bodenbewertungsansatzes (vis-NIR Spektroskopie, Strukturvergleich mit Bildanalysetechnik, traditionelle Laboranalysen) konnte gezeigt werden, dass es bei gleichem Bodentyp (Vertisol) signifikante Unterschiede zwischen den Böden unter Bambus und Sekundärwald gibt. Anhand der wichtigsten Ergebnisse kann festgehalten werden, dass die gewählte Methodenkombination zur detailreicheren und effizienteren Standortuntersuchung und -bewertung für Aufforstungen beitragen kann. Die Ergebnisse dieser Studie geben einen Einblick darauf, wo und wann bei Boden- und Vegetationsmessungen eine besonders hohe Messgenauigkeit erforderlich ist, um Unsicherheiten bei der SVAT Modellierung zu minimieren.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23 2. Motivation, objectives and study approach .... 24 2.1. Introduction and study motivation .... 24 2.1.1. Research objectives and hypotheses ..... 27 2.1.2. Study approach ..... 28 3. Site selection and characterization procedure .... 32 3.1. On large scale – landscape segmentation .... 32 3.2. On local scale - case study site selection and characterization .... 34 3.2.1. Available data and characterization of identified case study site .... 34 3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37 4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50 4.1. Introduction .... 50 4.2. Motivation and objectives ..... 52 4.3. Methods ... 53 4.3.1. Design of greenhouse experiment .... 53 4.3.2. Derivation of climate time-series .... 56 4.3.3. Plant variables and response to water availability .... 59 4.4. Results and discussion .... 62 4.4.1. Soil sample analysis .... 62 4.4.2. Measured time-series .... 63 4.4.3. Plant response to drought stress ..... 67 4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71 4.4.5. Derived SVAT model plant input parameter .... 73 5. Near-surface geophysics .... 75 5.1. Vis-NIR spectroscopy of soils .... 76 5.1.1. Methods and materials .... 77 5.1.2. Results and discussion .... 79 5.2. Geoelectrics ..... 88 5.2.1. Methods and materials .... 89 5.2.2. Results and discussion .... 94 6. Remote sensing of vegetation .... 102 6.1. Introduction .... 102 6.2. Methods and materials .... 103 6.2.1. RapidEye images and ATCOR description .... 103 6.2.2. Satellite image preparation and atmospheric correction .... 104 6.2.3. LAI field measurement and computation of vegetation indices .... 105 6.2.4. Establishment of empirical LAI retrieval model .... 106 6.3. Results and discussion .... 108 6.3.1. Vegetation index ranking .... 108 II. Uncertainty analysis of model input parameters from geophysical data .... 110 7. Deriving soil properties - vis-NIR spectroscopy technique .... 111 7.1. Motivation .... 111 7.2. Materials and methods .... 113 7.2.1. Study sites .... 113 7.2.2. Samples used for uncertainty analysis .... 114 7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116 7.2.4. Assessment statistics .... 118 7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119 7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121 7.3. Results and discussion .... 124 7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124 7.3.2. Effect of spectral resampling .... 125 7.3.3. Accuracy of soil property prediction .... 127 7.3.4. Spectrometer comparison .... 133 7.3.5. Inter-instrument transferability .... 134 7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139 7.4. Conclusion .... 146 8. Deriving vegetation properties - remote sensing techniques .... 149 8.1. Motivation .... 149 8.2. Materials and methods .... 150 8.2.1. Study site .... 150 8.2.2. RapidEye images .... 150 8.2.3. Satellite image preparation .... 152 8.2.4. Atmospheric correction with parameter variation .... 152 8.2.5. Investigation of two successive images .... 154 8.2.6. LAI field measurement and computation of vegetation indices .... 155 8.2.7. Establishment of empirical LAI retrieval model .... 155 8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157 8.3. Results and discussion .... 157 8.3.1. Influence of atmospheric correction on RapidEye bands .... 158 8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161 8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161 8.3.4. LAI variability within one image .... 167 8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171 8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174 8.4. Conclusion .... 176 III. Synthesis .... 178 9. Summary of results and conclusions .... 179 10. Perspectives .... 185
Extensos desmatamentos que estão sendo feitos especialmente nos trópicos e sub-trópicos resultam em uma intensa degradação do solo e num aumento da erosão gerando assim uma redução na sua fertilidade. Reflorestamentos ou plantações nestas áreas degradadas podem ser medidas eficazes para atenuar esses problemas e levar a uma melhoria da qualidade do mesmo. No entanto, uma mudança no uso da terra, por exemplo de pastagem para floresta pode ter um impacto crucial no balanço hídrico e isso pode afetar a disponibilidade de água, mesmo sob condições de clima tropical úmido, onde a água normalmente não é um fator limitante. Devemos levar também em consideração que de acordo com projeções de mudanças climáticas, as precipitações em algumas dessas regiões também diminuirão agravando assim, ainda mais o quadro apresentado. Para mitigar esses problemas relacionados com as alterações climáticas, reflorestamentos são frequentemente realizados mas raramente são bem-sucedidos, pois condições ambientais como os requisitos específicos de cada espécie de planta, não são devidamente levados em consideração. Isso é muitas vezes devido, não só pela falta de dados, como também por recursos financeiros limitados, que são problemas comuns em regiões tropicais. Por esses motivos, são necessárias abordagens inovadoras que devam ser capazes de medir as condições ambientais quase continuamente e de maneira rentável. Simultaneamente com o reflorestamento, deve ser feita uma monitoração a fim de avaliar o sucesso da atividade e para prevenir, ou pelo menos, reduzir os problemas potenciais associados com o mesmo (por exemplo, a escassez de água). Para se evitar falhas e reduzir implicações negativas sobre os ecossistemas, é crucial obter percepções sobre o real balanço hídrico e as mudanças que seriam geradas por esse reflorestamento. Por este motivo, esta tese teve como objetivo desenvolver e testar uma combinação de métodos para avaliação de áreas adequadas para reflorestamento. Com esse intuito, foi colocada no centro da abordagem de avaliação a modelagem do balanço hídrico local, que permite a identificação e estimação de possíveis alterações causadas pelo reflorestamento sob mudança climática considerando o sistema complexo de realimentação e a interação de processos do continuum solo-vegetação-atmosfera. Esses modelos hidrológicos que investigam explicitamente a influência da vegetação no equilíbrio da água são conhecidos como modelos Solo-Vegetação-Atmosfera (SVAT). Esta pesquisa focou em dois objetivos principais: (i) desenvolvimento e teste de uma combinação de métodos para avaliação de áreas que sofrem com a escassez de dados (pré-requisito do estudo) (Parte I), e (ii) a investigação das consequências da incerteza nos parâmetros de entrada do modelo SVAT, provenientes de dados geofísicos, para modelagem hídrica (Parte II). A fim de satisfazer esses objetivos, o estudo foi feito no nordeste brasileiro,por representar uma área de grande escassez de dados, utilizando como base uma plantação de bambu e uma área de floresta secundária. Uma modelagem do balanço hídrico foi disposta no centro da metodologia para a avaliação de áreas. Este estudo utilizou o CoupModel que é um modelo SVAT unidimensional e que requer informações espaciais detalhadas do solo para (i) a parametrização do modelo, (ii) aumento da escala dos resultados da modelagem, considerando a heterogeneidade do solo de escala local para regional e (iii) o monitoramento de mudanças nas propriedades do solo e características da vegetação ao longo do tempo. Entretanto, as abordagens tradicionais para amostragem de solo e de vegetação e o monitoramento são demorados e caros e portanto muitas vezes limitadas a informações pontuais. Por esta razão, métodos geofísicos como a espectroscopia visível e infravermelho próximo (vis-NIR) e sensoriamento remoto foram utilizados respectivamente para a medição de propriedades físicas e químicas do solo e para derivar as características da vegetação baseado no índice da área foliar (IAF). Como as propriedades estimadas de solo (principalmente a textura) poderiam ser usadas para parametrizar um modelo SVAT, este estudo investigou toda a cadeia de processamento e as incertezas de previsão relacionadas à textura de solo e ao IAF. Além disso explorou o impacto destas incertezas criadas sobre a previsão do balanço hídrico simulado por CoupModel. O método geoelétrico foi aplicado para investigar a estratificação do solo visando a determinação de um perfil representante. Já a sua estrutura foi explorada usando uma técnica de análise de imagens que permitiu a avaliação quantitativa e a comparabilidade dos aspectos estruturais. Um experimento realizado em uma estufa com plantas de bambu (Bambusa vulgaris) foi criado a fim de determinar as caraterísticas fisiológicas desta espécie que posteriormente seriam utilizadas como parâmetros para o CoupModel. Os resultados do estudo (Parte III) destacam que é preciso estar consciente das incertezas relacionadas à medição de parâmetros de entrada do modelo SVAT. A incerteza presente em alguns parâmetros de entrada como por exemplo, textura de solo e o IAF influencia significantemente a modelagem do balanço hídrico. Mesmo assim, esta pesquisa indica que vis-NIR espectroscopia é um método rápido e economicamente viável para medir, mapear e monitorar as propriedades físicas (textura) e químicas (N, TOC, TIC, TC) do solo. A precisão da previsão dessas propriedades depende do tipo de instrumento (por exemplo da resolução do sensor), da propriedade da amostra (a composição química por exemplo) e das características das condições climáticas da área. Os resultados apontam também que a sensitividade do CoupModel à incerteza da previsão da textura de solo em respeito ao escoamento superficial, transpiração, evaporação, evapotranspiração e ao conteúdo de água no solo depende das condições gerais da área (por exemplo condições climáticas e tipo de solo). Por isso, é recomendado realizar uma análise de sensitividade do modelo SVAT prior a medição espectral do solo no campo, para poder considerar adequadamente as condições especificas do área em relação ao clima e ao solo. Além disso, o mapeamento de propriedades de solo previstas pela espectroscopia usando o kriging, resultou em interpolações de baixa qualidade (variogramas fracos) como consequência da acumulação de incertezas surgidas desde a medição no campo até o seu mapeamento (ou seja, previsão do solo via espectroscopia, erro do kriging) e heterogeneidade especifica de uma pequena escala. Osmétodos selecionados para avaliação das áreas (vis-NIR espectroscopia, comparação da estrutura de solo por meio de análise de imagens, análise de laboratório tradicionais) revelou a existência de diferenças significativas entre o solo sob bambu e o sob floresta secundária, apesar de ambas terem sido estabelecidas no mesmo tipo de solo (vertissolo). Refletindo sobre os principais resultados do estudo, pode-se afirmar que a combinação dos métodos escolhidos e aplicados representam uma forma mais detalhada e eficaz de avaliar se uma determinada área é adequada para ser reflorestada. Os resultados apresentados fornecem percepções sobre onde e quando, durante a medição do solo e da vegetação, é necessário se ter uma precisão mais alta a fim de minimizar incertezas potenciais na modelagem com o modelo SVAT.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23 2. Motivation, objectives and study approach .... 24 2.1. Introduction and study motivation .... 24 2.1.1. Research objectives and hypotheses ..... 27 2.1.2. Study approach ..... 28 3. Site selection and characterization procedure .... 32 3.1. On large scale – landscape segmentation .... 32 3.2. On local scale - case study site selection and characterization .... 34 3.2.1. Available data and characterization of identified case study site .... 34 3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37 4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50 4.1. Introduction .... 50 4.2. Motivation and objectives ..... 52 4.3. Methods ... 53 4.3.1. Design of greenhouse experiment .... 53 4.3.2. Derivation of climate time-series .... 56 4.3.3. Plant variables and response to water availability .... 59 4.4. Results and discussion .... 62 4.4.1. Soil sample analysis .... 62 4.4.2. Measured time-series .... 63 4.4.3. Plant response to drought stress ..... 67 4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71 4.4.5. Derived SVAT model plant input parameter .... 73 5. Near-surface geophysics .... 75 5.1. Vis-NIR spectroscopy of soils .... 76 5.1.1. Methods and materials .... 77 5.1.2. Results and discussion .... 79 5.2. Geoelectrics ..... 88 5.2.1. Methods and materials .... 89 5.2.2. Results and discussion .... 94 6. Remote sensing of vegetation .... 102 6.1. Introduction .... 102 6.2. Methods and materials .... 103 6.2.1. RapidEye images and ATCOR description .... 103 6.2.2. Satellite image preparation and atmospheric correction .... 104 6.2.3. LAI field measurement and computation of vegetation indices .... 105 6.2.4. Establishment of empirical LAI retrieval model .... 106 6.3. Results and discussion .... 108 6.3.1. Vegetation index ranking .... 108 II. Uncertainty analysis of model input parameters from geophysical data .... 110 7. Deriving soil properties - vis-NIR spectroscopy technique .... 111 7.1. Motivation .... 111 7.2. Materials and methods .... 113 7.2.1. Study sites .... 113 7.2.2. Samples used for uncertainty analysis .... 114 7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116 7.2.4. Assessment statistics .... 118 7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119 7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121 7.3. Results and discussion .... 124 7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124 7.3.2. Effect of spectral resampling .... 125 7.3.3. Accuracy of soil property prediction .... 127 7.3.4. Spectrometer comparison .... 133 7.3.5. Inter-instrument transferability .... 134 7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139 7.4. Conclusion .... 146 8. Deriving vegetation properties - remote sensing techniques .... 149 8.1. Motivation .... 149 8.2. Materials and methods .... 150 8.2.1. Study site .... 150 8.2.2. RapidEye images .... 150 8.2.3. Satellite image preparation .... 152 8.2.4. Atmospheric correction with parameter variation .... 152 8.2.5. Investigation of two successive images .... 154 8.2.6. LAI field measurement and computation of vegetation indices .... 155 8.2.7. Establishment of empirical LAI retrieval model .... 155 8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157 8.3. Results and discussion .... 157 8.3.1. Influence of atmospheric correction on RapidEye bands .... 158 8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161 8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161 8.3.4. LAI variability within one image .... 167 8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171 8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174 8.4. Conclusion .... 176 III. Synthesis .... 178 9. Summary of results and conclusions .... 179 10. Perspectives .... 185