Littérature scientifique sur le sujet « Semantic Explainable AI »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Semantic Explainable AI ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Semantic Explainable AI"
Li, Ding, Yan Liu et Jun Huang. « Assessment of Software Vulnerability Contributing Factors by Model-Agnostic Explainable AI ». Machine Learning and Knowledge Extraction 6, no 2 (16 mai 2024) : 1087–113. http://dx.doi.org/10.3390/make6020050.
Texte intégralTurley, Jordan E., Jeffrey A. Dunne et Zerotti Woods. « Explainable AI for trustworthy image analysis ». Journal of the Acoustical Society of America 156, no 4_Supplement (1 octobre 2024) : A109. https://doi.org/10.1121/10.0035277.
Texte intégralThakker, Dhavalkumar, Bhupesh Kumar Mishra, Amr Abdullatif, Suvodeep Mazumdar et Sydney Simpson. « Explainable Artificial Intelligence for Developing Smart Cities Solutions ». Smart Cities 3, no 4 (13 novembre 2020) : 1353–82. http://dx.doi.org/10.3390/smartcities3040065.
Texte intégralMankodiya, Harsh, Dhairya Jadav, Rajesh Gupta, Sudeep Tanwar, Wei-Chiang Hong et Ravi Sharma. « OD-XAI : Explainable AI-Based Semantic Object Detection for Autonomous Vehicles ». Applied Sciences 12, no 11 (24 mai 2022) : 5310. http://dx.doi.org/10.3390/app12115310.
Texte intégralAyoob, Mohamed, Oshan Nettasinghe, Vithushan Sylvester, Helmini Bowala et Hamdaan Mohideen. « Peering into the Heart : A Comprehensive Exploration of Semantic Segmentation and Explainable AI on the MnMs-2 Cardiac MRI Dataset ». Applied Computer Systems 30, no 1 (1 janvier 2025) : 12–20. https://doi.org/10.2478/acss-2025-0002.
Texte intégralTerziyan, Vagan, et Oleksandra Vitko. « Explainable AI for Industry 4.0 : Semantic Representation of Deep Learning Models ». Procedia Computer Science 200 (2022) : 216–26. http://dx.doi.org/10.1016/j.procs.2022.01.220.
Texte intégralSchorr, Christian, Payman Goodarzi, Fei Chen et Tim Dahmen. « Neuroscope : An Explainable AI Toolbox for Semantic Segmentation and Image Classification of Convolutional Neural Nets ». Applied Sciences 11, no 5 (3 mars 2021) : 2199. http://dx.doi.org/10.3390/app11052199.
Texte intégralFutia, Giuseppe, et Antonio Vetrò. « On the Integration of Knowledge Graphs into Deep Learning Models for a More Comprehensible AI—Three Challenges for Future Research ». Information 11, no 2 (22 février 2020) : 122. http://dx.doi.org/10.3390/info11020122.
Texte intégralHindennach, Susanne, Lei Shi, Filip MiletiĆ et Andreas Bulling. « Mindful Explanations : Prevalence and Impact of Mind Attribution in XAI Research ». Proceedings of the ACM on Human-Computer Interaction 8, CSCW1 (17 avril 2024) : 1–43. http://dx.doi.org/10.1145/3641009.
Texte intégralSilva, Vivian S., André Freitas et Siegfried Handschuh. « Exploring Knowledge Graphs in an Interpretable Composite Approach for Text Entailment ». Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 juillet 2019) : 7023–30. http://dx.doi.org/10.1609/aaai.v33i01.33017023.
Texte intégralThèses sur le sujet "Semantic Explainable AI"
Gjeka, Mario. « Uno strumento per le spiegazioni di sistemi di Explainable Artificial Intelligence ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Trouver le texte intégralFUTIA, GIUSEPPE. « Neural Networks forBuilding Semantic Models and Knowledge Graphs ». Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850594.
Texte intégralNaqvi, Syed Muhammad Raza. « Exploration des LLM et de l'XAI sémantique pour les capacités des robots industriels et les connaissances communes en matière de fabrication ». Electronic Thesis or Diss., Université de Toulouse (2023-....), 2025. http://www.theses.fr/2025TLSEP014.
Texte intégralIn Industry 4.0, advanced manufacturing is vital in shaping future factories, enabling enhanced planning, scheduling, and control. The ability to adaptproduction lines swiftly in response to customer demands or unexpected situations is essential to enhance the future of manufacturing. While AI is emerging as a solution, industries still rely on human expertise due to trust issues and a lack of transparency in AI decisions. Explainable AI integrating commonsense knowledge related to manufacturing is crucial for making AI decisions understandable and trustworthy. Within this context, we propose the S-XAI framework, an integrated solution combining machine specifications with MCSK to provide explainable and transparent decision-making. The focus is on providing real-time machine capabilities to ensure precise decision-making while simultaneously explaining the decision-making process to all involved stakeholders. Accordingly, the first objective was formalizing machine specifications, including capabilities, capacities, functions, quality, and process characteristics, focusing on robotics. To do so, we created a Robot Capability ontology formalizing all relevant aspects of machine specifications, such as Capability, Capacity, Function, Quality, and Process Characteristics. On top of this formalization, the RCO allows manufacturing stakeholders to capture robotic capabilities described in specification manuals (advertised capabilities) and compare them with real-world performance (operational capabilities). RCO is based on the Machine Service Description Language, a domain reference ontology created for manufacturing services, and aligned with the Basic Formal Ontology, Industrial Foundry Ontology, Information Artifact Ontology, and Relations Ontology. The second objective was the formalization of MCSK. We introduce MCSK and present a methodology for identifying it, starting with recognizing different CSK patterns in manufacturing and aligning them with manufacturing concepts. Extracting MCSK in a usable form is challenging, so our approach structures MCSK into NL statements utilizing LLMs. to facilitate rule-based reasoning, thereby enhancing decision-making capabilities. The third and final objective is to propose an S-XAI framework utilizing RCO and MCSK to assess if existing machines can perform specific tasks and generate understandable NL explanations. This was achieved by integrating the RCO, which provides operational capabilities like repeatability and precision, with MCSK, which outlines the process requirements. By utilizing MCSK-based semantic reasoning, the S-XAI system seamlessly provides NL explanations that detail each logic and outcome. In the S-XAI framework, an NN predicts the operational capabilities of robots, while symbolic AI incorporates these predictions within an MCSK-based reasoning system grounded in the RCO. This hybrid setup maximizes the strengths of each AI system and ensures that predictions support a transparent decision-making process. Additionally, S-XAI enhances the interpretability of NN predictions through XAI techniques such as LIME, SHAP, and PDP, clarifying NN predictions and enabling detailed insights for better calibration and proactive management, ultimately fostering a resilient and informed manufacturing environment
Chapitres de livres sur le sujet "Semantic Explainable AI"
Sarker, Md Kamruzzaman, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael L. Raymer et William R. Aue. « Wikipedia Knowledge Graph for Explainable AI ». Dans Knowledge Graphs and Semantic Web, 72–87. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65384-2_6.
Texte intégralAsuquo, Daniel Ekpenyong, Patience Usoro Usip et Kingsley Friday Attai. « Explainable Machine Learning-Based Knowledge Graph for Modeling Location-Based Recreational Services from Users Profile ». Dans Semantic AI in Knowledge Graphs, 141–62. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003313267-7.
Texte intégralHofmarcher, Markus, Thomas Unterthiner, José Arjona-Medina, Günter Klambauer, Sepp Hochreiter et Bernhard Nessler. « Visual Scene Understanding for Autonomous Driving Using Semantic Segmentation ». Dans Explainable AI : Interpreting, Explaining and Visualizing Deep Learning, 285–96. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_15.
Texte intégralSabbatini, Federico, Giovanni Ciatto et Andrea Omicini. « Semantic Web-Based Interoperability for Intelligent Agents with PSyKE ». Dans Explainable and Transparent AI and Multi-Agent Systems, 124–42. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15565-9_8.
Texte intégralHong, Seunghoon, Dingdong Yang, Jongwook Choi et Honglak Lee. « Interpretable Text-to-Image Synthesis with Hierarchical Semantic Layout Generation ». Dans Explainable AI : Interpreting, Explaining and Visualizing Deep Learning, 77–95. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_5.
Texte intégralSander, Jennifer, et Achim Kuwertz. « Supplementing Machine Learning with Knowledge Models Towards Semantic Explainable AI ». Dans Advances in Intelligent Systems and Computing, 3–11. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74009-2_1.
Texte intégralHuang, Qi, Emanuele Mezzi, Osman Mutlu, Miltiadis Kofinas, Vidya Prasad, Shadnan Azwad Khan, Elena Ranguelova et Niki van Stein. « Beyond the Veil of Similarity : Quantifying Semantic Continuity in Explainable AI ». Dans Communications in Computer and Information Science, 308–31. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63787-2_16.
Texte intégralMikriukov, Georgii, Gesina Schwalbe, Christian Hellert et Korinna Bade. « Revealing Similar Semantics Inside CNNs : An Interpretable Concept-Based Comparison of Feature Spaces ». Dans Communications in Computer and Information Science, 3–20. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74630-7_1.
Texte intégralMikriukov, Georgii, Gesina Schwalbe, Christian Hellert et Korinna Bade. « Evaluating the Stability of Semantic Concept Representations in CNNs for Robust Explainability ». Dans Communications in Computer and Information Science, 499–524. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44067-0_26.
Texte intégralReed, Stephen K. « Explainable AI ». Dans Cognitive Skills You Need for the 21st Century, 170–79. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780197529003.003.0015.
Texte intégralActes de conférences sur le sujet "Semantic Explainable AI"
Schneider, Sarah, Doris Antensteiner, Daniel Soukup et Matthias Scheutz. « Encoding Semantic Attributes - Towards Explainable AI in Industry ». Dans PETRA '23 : Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments. New York, NY, USA : ACM, 2023. http://dx.doi.org/10.1145/3594806.3596531.
Texte intégralDas, Devleena, et Sonia Chernova. « Semantic-Based Explainable AI : Leveraging Semantic Scene Graphs and Pairwise Ranking to Explain Robot Failures ». Dans 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021. http://dx.doi.org/10.1109/iros51168.2021.9635890.
Texte intégralSarkar, Rajdeep, Mihael Arcan et John McCrae. « KG-CRuSE : Recurrent Walks over Knowledge Graph for Explainable Conversation Reasoning using Semantic Embeddings ». Dans Proceedings of the 4th Workshop on NLP for Conversational AI. Stroudsburg, PA, USA : Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.nlp4convai-1.9.
Texte intégralSampat, Shailaja. « Technical, Hard and Explainable Question Answering (THE-QA) ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/916.
Texte intégralBardozzo, Francesco, Mattia Delli Priscoli, Toby Collins, Antonello Forgione, Alexandre Hostettler et Roberto Tagliaferri. « Cross X-AI : Explainable Semantic Segmentation of Laparoscopic Images in Relation to Depth Estimation ». Dans 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892345.
Texte intégralDavis, Eric, et Katrina Schleisman. « Integrating Episodic and Semantic Memory in Machine Teammates to Enable Explainable After-Action Review and Intervention Planning in HAA Operations ». Dans 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005003.
Texte intégralChen, Yu-Hsuan, Levant Burak Kara et Jonathan Cagan. « Automating Style Analysis and Visualization With Explainable AI - Case Studies on Brand Recognition ». Dans ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-115150.
Texte intégralNguyen, Hung, Tobias Clement, Loc Nguyen, Nils Kemmerzell, Binh Truong, Khang Nguyen, Mohamed Abdelaal et Hung Cao. « LangXAI : Integrating Large Vision Models for Generating Textual Explanations to Enhance Explainability in Visual Perception Tasks ». Dans Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/1025.
Texte intégralDavis, Eric, Sourya Dey, Adam Karvonen, Ethan Lew, Donya Quick, Panchapakesan Shyamshankar, Ted Hille et Matt Lebeau. « Leveraging Manifold Learning and Relationship Equity Management for Symbiotic Explainable Artificial Intelligence ». Dans 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003759.
Texte intégralBasaj, Dominika, Witold Oleszkiewicz, Igor Sieradzki, Michał Górszczak, Barbara Rychalska, Tomasz Trzcinski et Bartosz Zieliński. « Explaining Self-Supervised Image Representations with Visual Probing ». Dans Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/82.
Texte intégral