Littérature scientifique sur le sujet « Secondary low-energy electrons »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Secondary low-energy electrons ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Secondary low-energy electrons"
Merli, P. G., et V. Morandi. « Low-Energy STEM of Multilayers and Dopant Profiles ». Microscopy and Microanalysis 11, no 1 (28 janvier 2005) : 97–104. http://dx.doi.org/10.1017/s1431927605050063.
Texte intégralHowie, A. « Threshold Energy Effects in Secondary Electron Emission ». Microscopy and Microanalysis 6, no 4 (juillet 2000) : 291–96. http://dx.doi.org/10.1017/s1431927602000521.
Texte intégralHowie, A. « Threshold Energy Effects in Secondary Electron Emission ». Microscopy and Microanalysis 6, no 4 (juillet 2000) : 291–96. http://dx.doi.org/10.1007/s100050010042.
Texte intégralHembree, G. G., J. Unguris, R. J. Celotta et D. T. Pierce. « Magnetic microstructure imaging by secondary electron spin polarization analysis ». Proceedings, annual meeting, Electron Microscopy Society of America 44 (août 1986) : 634–35. http://dx.doi.org/10.1017/s0424820100144619.
Texte intégralTivol, William F. « How to Calculate the Temperature Rise Due to Beam Heating ». Microscopy Today 7, no 7 (septembre 1999) : 24–27. http://dx.doi.org/10.1017/s1551929500064774.
Texte intégralCipriani, Maicol, Styrmir Svavarsson, Filipe Ferreira da Silva, Hang Lu, Lisa McElwee-White et Oddur Ingólfsson. « The Role of Low-Energy Electron Interactions in cis-Pt(CO)2Br2 Fragmentation ». International Journal of Molecular Sciences 22, no 16 (20 août 2021) : 8984. http://dx.doi.org/10.3390/ijms22168984.
Texte intégralSuga, Hiroshi, Takafumi Fujiwara, Nobuhiro Kanai et Masatoshi Kotera. « Secondary Electron Image Contrast in the Scanning Electron Microscope ». Proceedings, annual meeting, Electron Microscopy Society of America 48, no 1 (12 août 1990) : 410–11. http://dx.doi.org/10.1017/s042482010018080x.
Texte intégralMikmeková, Šárka, Haruo Nakamichi et Masayasu Nagoshi. « Contrast of positively charged oxide precipitate in out-lens, in-lens and in-column SE image ». Microscopy 67, no 1 (8 décembre 2017) : 11–17. http://dx.doi.org/10.1093/jmicro/dfx117.
Texte intégralTURTON, S., M. KADODWALA et ROBERT G. JONES. « POSSIBLE "HOT" MOLECULE DESORPTION BY ELECTRON STIMULATED DECOMPOSITION OF DIHALOETHANES ON Cu(111) ». Surface Review and Letters 01, no 04 (décembre 1994) : 535–38. http://dx.doi.org/10.1142/s0218625x94000606.
Texte intégralHembree, Gary G., Frank C. H. Luo et John A. Venables. « Auger electron spectroscopy and microscopy in STEM ». Proceedings, annual meeting, Electron Microscopy Society of America 49 (août 1991) : 464–65. http://dx.doi.org/10.1017/s0424820100086623.
Texte intégralThèses sur le sujet "Secondary low-energy electrons"
Sedmidubská, Barbora. « The role of the low-energy electrons in the process of radiosensitization ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF069.
Texte intégralIn concomitant chemoradiotherapy (CCRT), there is an effort to increase its effectiveness and alleviate toxicity for healthy cells. It may be achieved via synergism and targeted drug delivery (TDD). TDD is the selective drug transport to sites of interest, protecting healthy tissue from chemotherapeutic toxicity. The synergism, the highest chemoradioterapeutic effect, results from complex interactions between both treatment modalities, as the interaction of the radiosensitizing chemo-drug with secondary low-energy electrons (LEEs) arising in irradiated tissue. In light of that work focuses on the radiosensitization process to investigate the radiosensitizing potential and mechanisms of selected molecules based on interaction with LEE; there is an aim to obtain new information to design more effective radiosensitizers with lower toxicity. The theoretical part deals with existing radiosensitizers and their model compounds from the point of view of interaction with LEEs. The experimental part combines electron attachment experiments in the gas phase and ab initio calculations of electron affinities of studied molecules, pulse radiolysis experiments in solution, and microtron irradiation with NMR spectroscopic evaluation. Based on the study of interaction with (secondary) LEEs, the radiosensitizing potential was confirmed for the antiviral agent favipiravir; significant interaction was proven for radiosensitizing chemotherapeutic RRx-001 as well, so as a strong interaction of solvated electrons with fullerenols as a radiosensitizing carrier drug for TGM in CCRT
Konkomitantní chemoradioterapie je jedna z důležitých metod léčby rakoviny. Stále existuje snaha zvýšit její účinnost a udržet toxicitu pro zdravé buňky na snesitelné úrovni. Její největší výhodou je synergický efekt plynoucí z mnoha komplexních interakcí mezi oběma léčebnými přístupy (tzn. chemoterapie a radioterapie). Bylo ukázáno, že jednou z příčin synergismu může být interakce chemosložky (tzv. radiosensitizéru) se sekundárními nízkoenergetickými elektrony vznikajícími v hojném počtu během radiolýzy v ozářené tkáni. V této práci se zaměřuji na proces radiosensitizace s cílem prozkoumat radiosensitizační potenciál molekul a odhalit radiosensitizační mechanismy na bázi jejich interakce s nízkoenergetickými elektrony. Motivací této práce bylo získat nové informace pro návrh nových a více účinných radiosensitizérů s menší toxicitou. Práce sestává z teoretické a experimentální části. Teoretická část je postavena na rešerši již existujících radiosensitizérů a jejich modelových sloučenin z pohledu interakce s nízkoenergetickými elektrony. Experimentální část kombinuje experimenty elektronového záchytu v plynné fázi na dvou experimentálních zařízeních, experimenty pulsní radiolýzy v roztoku, dále ozařování na mikrotronu s NMR spektroskopickým vyhodnocením a ab-initio výpočty elektronových afinit studovaných molekul a jejích fragmentů. V této práci bylo studováno antivirotikum favipiravir, pro který jsme na základě interakce s nízkoenergetickými elektrony potvrdili jeho radiosensitizační potenciál. Také byl zkoumán mechanismus radiosensitizace již potvrzeného radiosensitizéru a zároveň chemoterapeutika RRx-001 z pohledu jeho možné interakce se sekundárními nízkoenergetickými elektrony, která byla v této práci potvrzena. Nakonec byla odhalena silná interakce solvatovaných elektronů s fullerenoly studovanými pro použití v rámci platformy, která by prokazovala citlivost na nízkoenergetické elektrony a užívala by se pro dodávání léků v rámci konkomitantní chemoradiační terapii
Pierron, Juliette. « Modèle de transport d'électrons à basse énergie (~10 eV- 2 keV) pour applications spatiales (OSMOSEE, GEANT4) ». Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0024/document.
Texte intégralSpace is a hostile environment for embedded electronic devices on board satellites. The high fluxes of energetic electrons that impact these satellites may continuously penetrate inside their electronic components and cause malfunctions. Taking into account the effects of these particles requires high-performant 3D numerical tools, such as codes dedicated to electrons transport using the Monte Carlo statistical method, valid down to a few eV. In this context, ONERA has developed, in collaboration with CNES, the code OSMOSEE for aluminum. For its part, CEA has developed for silicon the low-energy electron module MicroElec for the code GEANT4. The aim of this thesis, in a collaborative effort between ONERA, CNES and CEA, is to extend those two codes to different materials. To describe the interactions between electrons, we chose to use the dielectric function formalism that enables to overcome of the disparity of electronic band structures in solids, which play a preponderant role at low energy. From the validation of the codes, for aluminum, silver and silicon, by comparison with measurements from the experimental set-up DEESSE at ONERA, we obtained a better understanding of the transport of low energy electrons in solids. This result enables us to study the effect of the surface roughness. This parameter, which may have a significant impact on the electron emission yield, is not usually taken into account in Monte Carlo transport codes, which only simulate ideally flat materials. In this sense, the results of this thesis offer interesting perspectives for space applications
Lemelin, Vincent. « Mesure de sections efficaces absolues vibrationnelles pour la collision d’électrons de basse énergie (1-19 eV) avec le tétrahydrofurane (THF) condensé ». Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9467.
Texte intégralAbstract: This master’s thesis is a study of interactions probabilities (cross sections) of low-energy electrons with an important biomolecule. The studied molecule is tetrahydrofuran (THF) which is a good model for the DNA backbone constituent deoxyribose. Knowing the important quantity of secondary electrons generated by the radiations passage through the biological matter and knowing that these low-energy electrons are responsible for the majority of the energy deposited, the study of their interactions with DNA constituents becomes rapidly important. Cross sections measurements are performed with a high-resolution electron energy loss spectrometer. The electron energy loss spectra obtained from this spectrometer allow cross sections calculations for each vibration mode as a function of electron incident energy. The article presented in this master thesis describes in details the experimental methods, it presents energy loss spectra and it shows and discusses results obtained in this project. The energy dependence of the cross sections allows the observation of multiple resonances in many vibration modes of THF. Effectively, this study allows the energy localisation of 4 resonances, which have all been confirmed by previous experimental and theoretical studies on the electron-THF collisions. Additionally, these resonances have never been observed simultaneously in the same study and the resonance found at low incident energy has never been observed with as much intensity as this present work. This study allowed a better understanding of the fundamental processes occurring in collisions of low-energy electrons with THF. The cross sections values are highly prized by theorists and they are essential for Monte Carlo simulations. These values will be used in models for energy distribution and deposition in biological matter at nanoscopic scales, thereby they will eventually improve the efficiency of radiotherapeutic modalities.
Chapitres de livres sur le sujet "Secondary low-energy electrons"
Gomati, M. M. El, A. M. D. Assa’d, T. El Gomati et M. Zadrazil. « On the measurement of low energy backscattered and secondary electron coefficients ». Dans Electron Microscopy and Analysis 1997, 265–68. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-68.
Texte intégralJoy, David C. « Secondary Electrons and Imaging ». Dans Monte Carlo Modeling for Electron Microscopy and Microanalysis, 134–73. Oxford University PressNew York, NY, 1995. http://dx.doi.org/10.1093/oso/9780195088748.003.0008.
Texte intégralRiviere, J. C. « Electron excitation : electron energy loss spectroscopy (ELS), core electron energy loss spectroscopy (CEELS), and high resolution electron energy loss spectroscopy (HREELS) ». Dans Surface Analytical Techniques, 125–66. Oxford University PressOxford, 1990. http://dx.doi.org/10.1093/oso/9780198513704.003.0005.
Texte intégralKrishnan, Kannan M. « Probes : Sources and Their Interactions with Matter ». Dans Principles of Materials Characterization and Metrology, 277–344. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0005.
Texte intégralMadhavan, Jayachandran. « Transition metal oxides-MXene nanocomposite : The next frontier in supercapacitors ». Dans Materials Research Foundations, 117–44. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903292-6.
Texte intégralTraynor, C. A., et J. B. Anderson. « Parallel Monte Carlo calculations to determine energy differences among similar molecular structures ». Dans Quantum Monte Carlo, 59. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.0062.
Texte intégralPappu, Samhita, Tata N. Rao, Sarada V. Bulusu et Katchala Nanaji. « Introduction to Green Supercapacitors : Fundamentals, Design, Challenges, and Future Prospects ». Dans Low-carbon Supercapacitors, 1–33. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837672479-00001.
Texte intégralFatima, Tatheer, Tanzeela Fazal et Nusrat Shaheen. « Electro-Peroxone and Photoelectro-Peroxone Hybrid Approaches : An Emerging Paradigm for Wastewater Treatment ». Dans Wastewater Treatment [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102921.
Texte intégralMohanbabu, A., S. Maheswari, N. Vinodhkumar, P. Murugapandiyan et R. Saravana Kumar. « Advancements in GaN Technologies : Power, RF, Digital and Quantum Applications ». Dans Nanoelectronic Devices and Applications, 1–28. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815238242124010003.
Texte intégralZhuang, Yanling, Shujuan Liu et Qiang Zhao. « Organic Resistive Memories for Neuromorphic Electronics ». Dans Advanced Memory Technology, 60–120. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169946-00060.
Texte intégralActes de conférences sur le sujet "Secondary low-energy electrons"
Nyyssonen, Diana. « Collection of low-energy secondary electrons and imaging in a low-voltage SEM ». Dans SPIE's 1996 International Symposium on Microlithography, sous la direction de Susan K. Jones. SPIE, 1996. http://dx.doi.org/10.1117/12.240145.
Texte intégralKunz, R. R., T. E. Allen et T. M. Mayer. « Thin Film Growth and Deposition by Low Energy Electron Stimulated Surface Chemistry ». Dans Microphysics of Surfaces, Beams, and Adsorbates. Washington, D.C. : Optica Publishing Group, 1987. http://dx.doi.org/10.1364/msba.1987.tua2.
Texte intégralKash, J. A., et J. C. Tsang. « Non-equilibrium Carriers in GaAs : Secondary Emission During the First Four Picoseconds ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.tuc2.
Texte intégralRolsma, Peter B., John N. Lee et Tae-Kwan Oh. « Experimental Investigation of Photoemitter Membrane Spatial Light Modulator Performance Limit ». Dans Spatial Light Modulators and Applications. Washington, D.C. : Optica Publishing Group, 1988. http://dx.doi.org/10.1364/slma.1988.the7.
Texte intégralRykaczewski, Konrad, Ben White, Jenna Browning, Andrew D. Marshall et Andrei G. Fedorov. « Dynamic Model of Electron Beam Induced Deposition (EBID) of Residual Hydrocarbons in Electron Microscopy ». Dans ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14955.
Texte intégralFeschenko, A. V. « Bunch shape monitors using low energy secondary electron emission ». Dans Accelerator instrumentation fourth annual workshop. AIP, 1992. http://dx.doi.org/10.1063/1.44336.
Texte intégralTao, Runming, Bryan Steinhoff, Yang-Tse Cheng et Jianlin Li. « Manufacturing Cathodes via Dry-Processing for Lithium-Ion Batteries ». Dans ASME 2024 19th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/msec2024-125340.
Texte intégralFukamachi, Asuna, Masato Watanabe, Akitoshi Okino, Kwang-Cheol Ko et Eiki Hotta. « Application of low-energy secondary emission electron gun for VOC treatment ». Dans 2006 International Symposium on Discharges and Electrical Insulation in Vacuum. IEEE, 2006. http://dx.doi.org/10.1109/deiv.2006.357387.
Texte intégralMiyake, Hiroaki, Kumi Nitta, Shinichiro Michizono et Yoshio Saito. « Secondary electron emission on degradation sample and development of new measurement system with low electron energy ». Dans 2008 XXIII International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV 2008). IEEE, 2008. http://dx.doi.org/10.1109/deiv.2008.4676853.
Texte intégralToliyat, Amir, et Alexis Kwasinski. « Energy storage sizing for effective primary and secondary control of low-inertia microgrids ». Dans 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2015. http://dx.doi.org/10.1109/pedg.2015.7223077.
Texte intégral