Articles de revues sur le sujet « Second order transport »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Second order transport.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Second order transport ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Megías, Eugenio, et Manuel Valle. « Anomalous transport in second order hydrodynamics ». EPJ Web of Conferences 126 (2016) : 04032. http://dx.doi.org/10.1051/epjconf/201612604032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yates, S. R., et C. G. Enfield. « Transport of dissolved substances with second-order reaction ». Water Resources Research 25, no 7 (juillet 1989) : 1757–62. http://dx.doi.org/10.1029/wr025i007p01757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhang, Hua, et H. Magdi Selim. « Second-order modeling of arsenite transport in soils ». Journal of Contaminant Hydrology 126, no 3-4 (novembre 2011) : 121–29. http://dx.doi.org/10.1016/j.jconhyd.2011.08.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cosner, Chris, Suzanne M. Lenhart et Vladimir Protopopescu. « Transport Equations with Second-Order Differential Collision Operators ». SIAM Journal on Mathematical Analysis 19, no 4 (juillet 1988) : 797–813. http://dx.doi.org/10.1137/0519055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shalchi, A. « Second-order quasilinear theory of cosmic ray transport ». Physics of Plasmas 12, no 5 (mai 2005) : 052905. http://dx.doi.org/10.1063/1.1895805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Megías, Eugenio, et Francisco Pena-Benitez. « Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly »,. EPJ Web of Conferences 66 (2014) : 04018. http://dx.doi.org/10.1051/epjconf/20146604018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jiang, Yuchen, Ruo Li et Shuonan Wu. « A Second Order Time Homogenized Model for Sediment Transport ». Multiscale Modeling & ; Simulation 14, no 3 (janvier 2016) : 965–96. http://dx.doi.org/10.1137/15m1041778.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Keanini, Russell G. « Structure and particle transport in second-order Stokes flow ». Physical Review E 61, no 6 (1 juin 2000) : 6606–20. http://dx.doi.org/10.1103/physreve.61.6606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sandu, Adrian, et Lin Zhang. « Discrete second order adjoints in atmospheric chemical transport modeling ». Journal of Computational Physics 227, no 12 (juin 2008) : 5949–83. http://dx.doi.org/10.1016/j.jcp.2008.02.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ryblewski, Radoslaw. « Transport coefficients in second-order non-conformal viscous hydrodynamics ». Journal of Physics : Conference Series 612 (19 mai 2015) : 012058. http://dx.doi.org/10.1088/1742-6596/612/1/012058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zheng, Qiong, Duan Chen et Guo-Wei Wei. « Second-order Poisson–Nernst–Planck solver for ion transport ». Journal of Computational Physics 230, no 13 (juin 2011) : 5239–62. http://dx.doi.org/10.1016/j.jcp.2011.03.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Selim, H. M., Liwang Ma et Hongxia Zhu. « Predicting Solute Transport in Soils Second-Order Two-Site Models ». Soil Science Society of America Journal 63, no 4 (juillet 1999) : 768–77. http://dx.doi.org/10.2136/sssaj1999.634768x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Heck, E. L., A. S. Dickinson et V. Vesovic. « Second-order corrections for transport properties of pure diatomic gases ». Molecular Physics 83, no 5 (10 décembre 1994) : 907–32. http://dx.doi.org/10.1080/00268979400101661.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Olson, Gordon L. « Second-order time evolution of PN equations for radiation transport ». Journal of Computational Physics 228, no 8 (mai 2009) : 3072–83. http://dx.doi.org/10.1016/j.jcp.2009.01.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Anto-Sztrikacs, Nicholas, Felix Ivander et Dvira Segal. « Quantum thermal transport beyond second order with the reaction coordinate mapping ». Journal of Chemical Physics 156, no 21 (7 juin 2022) : 214107. http://dx.doi.org/10.1063/5.0091133.

Texte intégral
Résumé :
Standard quantum master equation techniques, such as the Redfield or Lindblad equations, are perturbative to second order in the microscopic system–reservoir coupling parameter λ. As a result, the characteristics of dissipative systems, which are beyond second order in λ, are not captured by such tools. Moreover, if the leading order in the studied effect is higher-than-quadratic in λ, a second-order description fundamentally fails even at weak coupling. Here, using the reaction coordinate (RC) quantum master equation framework, we are able to investigate and classify higher-than-second-order transport mechanisms. This technique, which relies on the redefinition of the system–environment boundary, allows for the effects of system–bath coupling to be included to high orders. We study steady-state heat current beyond second-order in two models: The generalized spin-boson model with non-commuting system–bath operators and a three-level ladder system. In the latter model, heat enters in one transition and is extracted from a different one. Crucially, we identify two transport pathways: (i) System’s current, where heat conduction is mediated by transitions in the system, with the heat current scaling as j q ∝ λ2 to the lowest order in λ. (ii) Inter-bath current, with the thermal baths directly exchanging energy between them, facilitated by the bridging quantum system. To the lowest order in λ, this current scales as j q ∝ λ4. These mechanisms are uncovered and examined using numerical and analytical tools. We contend that the RC mapping brings, already at the level of the mapped Hamiltonian, much insight into transport characteristics.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Moeng, Chin-Hoh, et John C. Wyngaard. « Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling ». Journal of the Atmospheric Sciences 46, no 14 (juillet 1989) : 2311–30. http://dx.doi.org/10.1175/1520-0469(1989)046<2311:eottad>2.0.co;2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ponte Castañeda, P. « Strongly nonlinear composites : A second-order theory for estimating transport properties ». Physics Letters A 224, no 3 (janvier 1997) : 163–68. http://dx.doi.org/10.1016/s0375-9601(96)00781-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhang, Yunhuang, Jim E. Morel et Jean C. Ragusa. « Convergence behavior of second-order transport equations in near-void problems ». Journal of Quantitative Spectroscopy and Radiative Transfer 244 (mars 2020) : 106843. http://dx.doi.org/10.1016/j.jqsrt.2020.106843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Haack, Michael, et Amos Yarom. « Universality of second order transport coefficients from the gauge–string duality ». Nuclear Physics B 813, no 1-2 (mai 2009) : 140–55. http://dx.doi.org/10.1016/j.nuclphysb.2008.12.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Naff, R. L. « An Eulerian scheme for the second-order approximation of subsurface transport moments ». Water Resources Research 30, no 5 (mai 1994) : 1439–55. http://dx.doi.org/10.1029/94wr00220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ma, Liwang, et H. M. Selim. « Predicting the transport of atrazine in soils : Second-order and multireaction approaches ». Water Resources Research 30, no 12 (décembre 1994) : 3489–98. http://dx.doi.org/10.1029/94wr02229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Elbana, Tamer A., et H. M. Selim. « Copper Transport in Calcareous Soils : Miscible Displacement Experiments and Second-Order Modeling ». Vadose Zone Journal 11, no 2 (mai 2012) : vzj2011.0110. http://dx.doi.org/10.2136/vzj2011.0110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Di Ventra, M., C. J. Fall, Department Editors:, Harvey Gould et Jan Tobochnik. « General solution scheme for second-order differential equations : application to quantum transport ». Computers in Physics 12, no 3 (1998) : 248. http://dx.doi.org/10.1063/1.168679.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Pasdunkorale A., Jayantha, et Ian W. Turner. « A second order finite volume technique for simulating transport in anisotropic media ». International Journal of Numerical Methods for Heat & ; Fluid Flow 13, no 1 (février 2003) : 31–56. http://dx.doi.org/10.1108/09615530310456750.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lai, C. H., G. S. Bodvarsson et P. A. Witherspoon. « SECOND-ORDER UPWIND DIFFERENCING METHOD FOR NONISOTHERMAL CHEMICAL TRANSPORT IN POROUS MEDIA ». Numerical Heat Transfer 9, no 4 (avril 1986) : 453–71. http://dx.doi.org/10.1080/10407788608913488.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Lai, C. H., G. S. Bodvarsson et P. A. Witherspoon. « Second-Order Upwind Differencing Method for Nonisothermal Chemical Transport in Porous Media ». Numerical Heat Transfer, Part B : Fundamentals 9, no 4 (1986) : 453–71. http://dx.doi.org/10.1080/10407798608552149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Montas, Hubert J., Adel Shirmohammadi, Kamyar Haghighi et Bernie Engel. « Equivalence of bicontinuum and second-order transport in heterogeneous soils and aquifers ». Water Resources Research 36, no 12 (décembre 2000) : 3427–46. http://dx.doi.org/10.1029/2000wr900251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yeh, Kao-San. « The streamline subgrid integration method : I. Quasi-monotonic second-order transport schemes ». Journal of Computational Physics 225, no 2 (août 2007) : 1632–52. http://dx.doi.org/10.1016/j.jcp.2007.02.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Akimenko, V. V. « Simulation of Two-Dimensional Transport Processes Using Nonlinear Monotone Second-Order Schemes ». Cybernetics and Systems Analysis 39, no 6 (novembre 2003) : 839–53. http://dx.doi.org/10.1023/b:casa.0000020226.13800.28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Variansyah, Ilham, Edward W. Larsen et William R. Martin. « A ROBUST SECOND-ORDER MULTIPLE BALANCE METHOD FOR TIME-DEPENDENT NEUTRON TRANSPORT SIMULATIONS ». EPJ Web of Conferences 247 (2021) : 03024. http://dx.doi.org/10.1051/epjconf/202124703024.

Texte intégral
Résumé :
A second-order “Time-Dependent Multiple Balance” (TDMB) method for solving neutron transport problems is introduced and investigated. TDMB consists of solving two coupled equations: (i) the original balance equation (the transport equation integrated over a time step) and (ii) the “balance-like” auxiliary equation (an approximate neutron balance equation). Simple analysis shows that TDMB is second-order accurate and robust (unconditionally free from spurious oscillation). A source iteration (SI) method with diffusion synthetic acceleration (DSA) is formulated to solve these equations. A Fourier analysis reveals that the convergence rates of the proposed iteration schemes for TDMB are similar to those of the common (SI + DSA) schemes for Backward Euler (BE); however, TDMB requires about twice the computational effort per iteration. To demonstrate the theory—accuracy, robustness, and convergence rate—and investigate the efficiency of TDMB, we present results from a discrete ordinates (Sn) research code. Results are discussed, and future work is proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Selim, H. M., et M. C. Amacher. « A second-order kinetic approach for modeling solute retention and transport in soils ». Water Resources Research 24, no 12 (décembre 1988) : 2061–75. http://dx.doi.org/10.1029/wr024i012p02061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Benamou, Jean-David, Thomas O. Gallouët et François-Xavier Vialard. « Second-Order Models for Optimal Transport and Cubic Splines on the Wasserstein Space ». Foundations of Computational Mathematics 19, no 5 (8 août 2019) : 1113–43. http://dx.doi.org/10.1007/s10208-019-09425-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Pavan, S., J. M. Hervouet, M. Ricchiuto et R. Ata. « A second order residual based predictor–corrector approach for time dependent pollutant transport ». Journal of Computational Physics 318 (août 2016) : 122–41. http://dx.doi.org/10.1016/j.jcp.2016.04.053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Li, Yang, Zhe Gao et Jiale Chen. « Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence ». Physics of Plasmas 23, no 8 (août 2016) : 082512. http://dx.doi.org/10.1063/1.4960827.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Muroya, Shin. « Transport Coefficients of the Second Order Hydrodynamics and the Applicability of Hydrodynamic Model ». Progress of Theoretical Physics Supplement 193 (2012) : 327–30. http://dx.doi.org/10.1143/ptps.193.327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Abd elmaboud, Y., et Kh S. Mekheimer. « Non-linear peristaltic transport of a second-order fluid through a porous medium ». Applied Mathematical Modelling 35, no 6 (juin 2011) : 2695–710. http://dx.doi.org/10.1016/j.apm.2010.11.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Pastukhov, E. A., N. I. Sidorov, Valery A. Polukhin et V. P. Chentsov. « Short Order and Hydrogen Transport in Amorphous Palladium Materials ». Defect and Diffusion Forum 283-286 (mars 2009) : 149–54. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.149.

Texte intégral
Résumé :
Molecular dynamics simulation was used for investigating hydrogen migration in Pd-Si alloy at a temperature Т = 300 K. The strong affect of hydrogen dynamics and its defects creation to structure of palladium matrix is stated. The partial radial distribution function calculation for silicon specifies a preferable arrangement of silicon atoms relative to each other in the second coordination sphere. Model calculations have shown that not only silicon atoms can affect hydrogen mobility. Hydrogen itself also can significantly change the diffusion of the other components in the alloy.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Harutyunyan, Arus, et Armen Sedrakian. « Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids ». Symmetry 15, no 2 (13 février 2023) : 494. http://dx.doi.org/10.3390/sym15020494.

Texte intégral
Résumé :
In this work, we perform a phenomenological derivation of the first- and second-order relativistic hydrodynamics of dissipative fluids. To set the stage, we start with a review of the ideal relativistic hydrodynamics from energy–momentum and particle number conservation equations. We then go on to discuss the matching conditions to local thermodynamical equilibrium, symmetries of the energy–momentum tensor, decomposition of dissipative processes according to their Lorentz structure, and, finally, the definition of the fluid velocity in the Landau and Eckart frames. With this preparatory work, we first formulate the first-order (Navier–Stokes) relativistic hydrodynamics from the entropy flow equation, keeping only the first-order gradients of thermodynamical forces. A generalized form of diffusion terms is found with a matrix of diffusion coefficients describing the relative diffusion between various flavors. The procedure of finding the dissipative terms is then extended to the second order to obtain the most general form of dissipative function for multiflavor systems up to the second order in dissipative fluxes. The dissipative function now includes in addition to the usual second-order transport coefficients of Israel–Stewart theory also second-order diffusion between different flavors. The relaxation-type equations of second-order hydrodynamics are found from the requirement of positivity of the dissipation function, which features the finite relaxation times of various dissipative processes that guarantee the causality and stability of the fluid dynamics. These equations contain a complete set of nonlinear terms in the thermodynamic gradients and dissipative fluxes arising from the entropy current, which are not present in the conventional Israel–Stewart theory.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Baird, Graham, Raimund Bürger, Paul E. Méndez et Ricardo Ruiz-Baier. « Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters ». Numerische Mathematik 147, no 2 (26 janvier 2021) : 431–79. http://dx.doi.org/10.1007/s00211-020-01169-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Elbana, Tamer A., Donald L. Sparks et H. Magdi Selim. « Transport of Tin and Lead in Soils : Miscible Displacement Experiments and Second-Order Modeling ». Soil Science Society of America Journal 78, no 3 (mai 2014) : 701–12. http://dx.doi.org/10.2136/sssaj2013.07.0265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Aristova, E. N., et G. O. Astafurov. « Second-order short characteristic method for solving the transport equation on a tetrahedron mesh ». Mathematical Models and Computer Simulations 9, no 1 (janvier 2017) : 40–47. http://dx.doi.org/10.1134/s2070048217010045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Olson, Gordon L. « Second order time evolution of the multigroup diffusion and P1 equations for radiation transport ». Journal of Computational Physics 230, no 20 (août 2011) : 7548–66. http://dx.doi.org/10.1016/j.jcp.2011.06.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Choi, Byeongyeob, Jehyun Baek et Donghyun You. « A realizable second-order advection method with variable flux limiters for moment transport equations ». Journal of Computational Physics 473 (janvier 2023) : 111767. http://dx.doi.org/10.1016/j.jcp.2022.111767.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lukinskiy, Valery, Vladislav Lukinskiy et Yuri Merkuryev. « MODELLING OF TRANSPORT OPERATIONS IN SUPPLY CHAINS IN OBEDIENCE TO “JUST-IN-TIME” CONCEPTION ». Transport 33, no 5 (18 décembre 2018) : 1162–72. http://dx.doi.org/10.3846/transport.2018.7112.

Texte intégral
Résumé :
Transportation is a key logistics function, which determines the dynamic nature of material flows in logistics systems. At the same time, transportation is a source of uncertainty of logistics operations performance in the supply chain. Obviously, the development of a new approach for evaluation of the duration of delivery “Just-In-Time” (JIT) will improve the efficiency of supply chains in accordance with one of the major criteria, namely customer satisfaction. One of the basic approaches to make effective management decisions in transportation and other logistic operations is the JIT concept. In the majority of examined sources the JIT concept is described on the verbal level without any usage of calculation dependences. The paper is devoted to the formation of analytical and simulation models, which allow obtaining the probabilistic evaluation of the implementation of unimodal and multimodal international transportation JIT. The first model where the order of the operations implementation does not affect final result is formed on the basis of the probability theory: distribution laws composition, theorems of numerical characteristics of random variables, formula of complete probability. The second model accounts the impact of operations implementation order in transportation and their interconnection and is based on the simulation (the method of statistic experiments) and shown as a corresponding algorithm, which allows to consider different limitations (technical, organizational and so on). Considered analytical dependences give the possibility to obtain the necessary estimations of the transport operations implementation according to JIT: mean transportation time, delivery implementation probability by the set moment or the delivery time with the set probability. To carry out some comparative calculations and clarify the algorithm, two international routes have been chosen: the first one is a unimodal road transportation, the second one is a multimodal transportation (road and marine transport). All the data, which is necessary for calculation has been collected on the basis of official information (in particular, the data of tachograph, special questionnaires filled in by the drivers, the survey results of the managers). For unimodal transportations analytical dependences and modelling results give close results. For the combined multimodal transportations taking into account various limitations the preference must be given to the simulation. The modelled indexes take into consideration their intercommunication and definitely estimate the supply chains reliability, and this allows decreasing the uncertainty of the logistic system.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Chi, Ronghua, Leilei Li, Sang Gui, Fei Wang, Zijian Mao, Xiaohan Sun et Ning Cao. « Design of ultra-long-distance optical transport networks based on high-order remotely pumped amplifier ». Journal of High Speed Networks 28, no 3 (29 juillet 2022) : 157–65. http://dx.doi.org/10.3233/jhs-220688.

Texte intégral
Résumé :
In order to further increase the span length of the Optical Transport Network (OTN) transmission system, a combination of Raman amplifier and remotely optical pumped amplifier (ROPA) configuration scheme is recommended. Optimal EDF length, optimal ROPA position and OTN span limitation are obtained through simulations. A field-trial with 8*10 Gb/s in 380 km span system is carried out with the amplifier configuration of Raman amplifier plus first-order and second-order remotely pumped amplifier. By adding a second-order remote pump laser, the transmission limit is increased from 77.5 dB to 80.7 dB. Through detailed analysis of the system, it is concluded that the second-order remote pump can effectively transfer the pump power to the first-order remote pump wavelength, which greatly increases the pump power at the gain module, thereby increasing the gain of the RGU and reduce its noise. Moreover, the introduction of the second-order remote pump effectively weakened the self-excited effect and overcomes the shortcomings of the low pump power threshold of the first-order remote pump.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Skamarock, William C., et Maximo Menchaca. « Conservative Transport Schemes for Spherical Geodesic Grids : High-Order Reconstructions for Forward-in-Time Schemes ». Monthly Weather Review 138, no 12 (1 décembre 2010) : 4497–508. http://dx.doi.org/10.1175/2010mwr3390.1.

Texte intégral
Résumé :
Abstract The finite-volume transport scheme of Miura, for icosahedral–hexagonal meshes on the sphere, is extended by using higher-order reconstructions of the transported scalar within the formulation. The use of second- and fourth-order reconstructions, in contrast to the first-order reconstruction used in the original scheme, results in significantly more accurate solutions at a given mesh density, and better phase and amplitude error characteristics in standard transport tests. The schemes using the higher-order reconstructions also exhibit much less dependence of the solution error on the time step compared to the original formulation. The original scheme of Miura was only tested using a nondeformational time-independent flow. The deformational time-dependent flow test used to examine 2D planar transport in Blossey and Durran is adapted to the sphere, and the schemes are subjected to this test. The results largely confirm those generated using the simpler tests. The results also indicate that the scheme using the second-order reconstruction is most efficient and its use is recommended over the scheme using the first-order reconstruction. The second-order reconstruction uses the same computational stencil as the first-order reconstruction and thus does not create any additional parallelization issues.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Miura, Hiroaki, et William C. Skamarock. « An Upwind-Biased Transport Scheme Using a Quadratic Reconstruction on Spherical Icosahedral Grids ». Monthly Weather Review 141, no 2 (1 février 2013) : 832–47. http://dx.doi.org/10.1175/mwr-d-11-00355.1.

Texte intégral
Résumé :
Abstract Several transport schemes developed for spherical icosahedral grids are based on the piecewise linear approximation. The simplest one among them uses an algorithm where the tracer distribution in the upwind side of a cell face is reconstructed using a linear surface. Recently, it was demonstrated that using second- or fourth-order reconstructions instead of the linear one produces better results. The computational cost of the second-order reconstruction method was not much larger than the linear one, while that of the fourth-order one was significantly larger. In this work, the authors propose another second-order reconstruction scheme on the spherical icosahedral grids, motivated by some ideas from the piecewise parabolic method. The second-order profile of a tracer is reconstructed under two constraints: (i) the area integral of the profile is equal to the cell-averaged value times the cell area and (ii) the profile is the least squares fit to the cell-vertex values. The new scheme [the second upwind-biased quadratic approximation (UQA-2)] is more accurate than the preceding second-order reconstruction scheme [the first upwind-biased quadratic approximation (UQA-1)] in most of the tests in this work. Solutions of UQA-2 are sharper than those of UQA-1, although with slightly larger phase errors. The computational cost of UQA-2 is comparable to UQA-1.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhou, Zhaojie, Weiwei Wang et Huanzhen Chen. « AnH1-Galerkin Expanded Mixed Finite Element Approximation of Second-Order Nonlinear Hyperbolic Equations ». Abstract and Applied Analysis 2013 (2013) : 1–12. http://dx.doi.org/10.1155/2013/657952.

Texte intégral
Résumé :
We investigate anH1-Galerkin expanded mixed finite element approximation of nonlinear second-order hyperbolic equations, which model a wide variety of phenomena that involve wave motion or convective transport process. This method possesses some features such as approximating the unknown scalar, its gradient, and the flux function simultaneously, the finite element space being free of LBB condition, and avoiding the difficulties arising from calculating the inverse of coefficient tensor. The existence and uniqueness of the numerical solution are discussed. Optimal-order error estimates for this method are proved without introducing curl operator. A numerical example is also given to illustrate the theoretical findings.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Amirsom, Nur Ardiana, Md Jashim Uddin, Md Faisal Md Basir, Ali Kadir, O. Anwar Bég et Ahmad Izani Md. Ismail. « Computation of Melting Dissipative Magnetohydrodynamic Nanofluid Bioconvection with Second-order Slip and Variable Thermophysical Properties ». Applied Sciences 9, no 12 (19 juin 2019) : 2493. http://dx.doi.org/10.3390/app9122493.

Texte intégral
Résumé :
This paper studies the combined effects of viscous dissipation, first and second-order slip and variable transport properties on phase-change hydromagnetic bio-nanofluid convection flow from a stretching sheet. Nanoscale materials possess a much larger surface to volume ratio than bulk materials, significantly modifying their thermodynamic and thermal properties and substantially lowering the melting point. Gyrotactic non-magnetic micro-organisms are present in the nanofluid. The transport properties are assumed to be dependent on concentration and temperature. Via appropriate similarity variables, the governing equation with boundary conditions are converted to nonlinear ordinary differential equations and are solved using the BVP4C subroutine in the symbolic software MATLAB. The non-dimensional boundary value features a melting (phase change) parameter, temperature-dependent thermal conductive parameter, first as well as second-order slip parameters, mass diffusivity parameter, Schmidt number, microorganism diffusivity parameter, bioconvection Schmidt number, magnetic body force parameter, Brownian motion and thermophoresis parameters. Extensive computations are visualized for the influence of these parameters. The present simulation is of relevance in the fabrication of bio-nanomaterials for bio-inspired fuel cells.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mathooko, Jude M., et Kenneth M. Mavuti. « Diel dynamics of organic drift transport in a second-order, high-altitude river in Kenya ». African Journal of Ecology 32, no 3 (septembre 1994) : 259–63. http://dx.doi.org/10.1111/j.1365-2028.1994.tb00576.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie