Littérature scientifique sur le sujet « Second order ODEs »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Second order ODEs ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Second order ODEs"
Kruglikov, Boris. « Symmetries of second order ODEs ». Journal of Mathematical Analysis and Applications 461, no 1 (mai 2018) : 591–94. http://dx.doi.org/10.1016/j.jmaa.2018.01.026.
Texte intégralOla Fatunla, Simeon. « Block methods for second order odes ». International Journal of Computer Mathematics 41, no 1-2 (janvier 1991) : 55–63. http://dx.doi.org/10.1080/00207169108804026.
Texte intégralMcGrath, Peter. « Bases for Second Order Linear ODEs ». American Mathematical Monthly 127, no 9 (20 octobre 2020) : 849. http://dx.doi.org/10.1080/00029890.2020.1803626.
Texte intégralCerda, Patricio, et Pedro Ubilla. « Nonlinear Systems of Second-Order ODEs ». Boundary Value Problems 2008 (2008) : 1–9. http://dx.doi.org/10.1155/2008/236386.
Texte intégralCheb-Terrab, E. S., et A. D. Roche. « Integrating Factors for Second-order ODEs ». Journal of Symbolic Computation 27, no 5 (mai 1999) : 501–19. http://dx.doi.org/10.1006/jsco.1999.0264.
Texte intégralNewman, Ezra T., et Pawel Nurowski. « Projective connections associated with second-order ODEs ». Classical and Quantum Gravity 20, no 11 (12 mai 2003) : 2325–35. http://dx.doi.org/10.1088/0264-9381/20/11/324.
Texte intégralYumaguzhin, Valeriy A. « Differential Invariants of Second Order ODEs, I ». Acta Applicandae Mathematicae 109, no 1 (30 janvier 2009) : 283–313. http://dx.doi.org/10.1007/s10440-009-9454-0.
Texte intégralWone, Oumar. « Second order ODEs under area-preserving maps ». Analysis and Mathematical Physics 5, no 1 (29 juillet 2014) : 87–111. http://dx.doi.org/10.1007/s13324-014-0086-9.
Texte intégralMilson, Robert, et Francis Valiquette. « Point equivalence of second-order ODEs : Maximal invariant classification order ». Journal of Symbolic Computation 67 (mars 2015) : 16–41. http://dx.doi.org/10.1016/j.jsc.2014.08.003.
Texte intégralReyes, M. A., et H. C. Rosu. « Riccati-parameter solutions of nonlinear second-order ODEs ». Journal of Physics A : Mathematical and Theoretical 41, no 28 (19 juin 2008) : 285206. http://dx.doi.org/10.1088/1751-8113/41/28/285206.
Texte intégralThèses sur le sujet "Second order ODEs"
Esposito, Elena. « Numerical treatment of special second order ordinary differential equations : general and exponentially fitted methods ». Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/292.
Texte intégralThe aim of this research is the construction and the analysis of new families of numerical methods for the integration of special second order Ordinary Differential Equations (ODEs). The modeling of continuous time dynamical systems using second order ODEs is widely used in many elds of applications, as celestial mechanics, seismology, molecular dynamics, or in the semidiscretisation of partial differential equations (which leads to high dimensional systems and stiffness). Although the numerical treatment of this problem has been widely discussed in the literature, the interest in this area is still vivid, because such equations generally exhibit typical problems (e.g. stiffness, metastability, periodicity, high oscillations), which must efficiently be overcome by using suitable numerical integrators. The purpose of this research is twofold: on the one hand to construct a general family of numerical methods for special second order ODEs of the type y00 = f(y(t)), in order to provide an unifying approach for the analysis of the properties of consistency, zero-stability and convergence; on the other hand to derive special purpose methods, that follow the oscillatory or periodic behaviour of the solution of the problem...[edited by author]
X n. s.
Krumpal, Ivar, et Heiko Rauhut. « Dominieren Bundes- oder Landesparteien die individuellen Landtagswahlentscheidungen in der BRD ? » Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-208326.
Texte intégralElectoral studies often interpret German regional election results ("Landtagswahlen") as barometers of public opinion on federal governmental parties' performance. However, while interpreting German regional elections as "test-elections" for the national parliament, it is often underemphasised that subnational elections often follow a unique regional dynamics. So far, empirical investigations on the determinants of German regional elections consist either in qualitative case studies or aggregate analyses of official statistics. A quantitative study of individual-level survey data, comparing directly the explanatory power of the federal versus the subnational level, is still lacking. Conducting a repeated survey design, we analyse data from 17 German regional election surveys. Thus, the effects of individual assessments of federal parties versus their subnational counterparts on subnational voting preferences can be directly compared. The conclusion of our analyses can be summarized as follows: In Western Germany, the valuation of subnational parties has a stronger impact on individual voting preferences in subnational elections than the valuation of the federal parties has. However, in Eastern Germany, the federal dimension has a comparatively stronger effect. Hence, the federal – regional ("Länder") party system linkage is clearly stronger in Eastern than in Western Germany
Krumpal, Ivar, et Heiko Rauhut. « Dominieren Bundes- oder Landesparteien die individuellen Landtagswahlentscheidungen in der BRD ? : eine quantitative Analyse zum Ausmaß der bundespolitischen Parteipolitikverflechtung bei Landtagswahlen (1996-2000) ». 2006. https://ul.qucosa.de/id/qucosa%3A14907.
Texte intégralElectoral studies often interpret German regional election results ("Landtagswahlen") as barometers of public opinion on federal governmental parties'' performance. However, while interpreting German regional elections as "test-elections" for the national parliament, it is often underemphasised that subnational elections often follow a unique regional dynamics. So far, empirical investigations on the determinants of German regional elections consist either in qualitative case studies or aggregate analyses of official statistics. A quantitative study of individual-level survey data, comparing directly the explanatory power of the federal versus the subnational level, is still lacking. Conducting a repeated survey design, we analyse data from 17 German regional election surveys. Thus, the effects of individual assessments of federal parties versus their subnational counterparts on subnational voting preferences can be directly compared. The conclusion of our analyses can be summarized as follows: In Western Germany, the valuation of subnational parties has a stronger impact on individual voting preferences in subnational elections than the valuation of the federal parties has. However, in Eastern Germany, the federal dimension has a comparatively stronger effect. Hence, the federal – regional ("Länder") party system linkage is clearly stronger in Eastern than in Western Germany.:Einleitung; Theoretische Grundlagen der bundespolitischen Parteipolitikverflechtung bei Landtagswahlen; Empirischer Test der Parteipolitikverflechtung bei Landtagswahlen; Diskussion und Ausblick
Livres sur le sujet "Second order ODEs"
Paul, Jürgen. The Rise of the Khwajagan-Naqshbandiyya Sufi Order in Timurid Herat. University of California Press, 2017. http://dx.doi.org/10.1525/california/9780520294134.003.0004.
Texte intégralChampion, Craige B. Polybius on ‘Classical Athenian Imperial Democracy’. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748472.003.0007.
Texte intégralKlimchuk, Dennis, Irit Samet et Henry E. Smith, dir. Philosophical Foundations of the Law of Equity. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198817659.001.0001.
Texte intégralChapitres de livres sur le sujet "Second order ODEs"
Awrejcewicz, Jan. « Second-Order ODEs ». Dans Ordinary Differential Equations and Mechanical Systems, 51–165. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07659-1_3.
Texte intégralPeterson, James K. « Linear Second Order ODEs ». Dans Calculus for Cognitive Scientists, 149–70. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-877-9_7.
Texte intégralEshkabilov, Sulaymon L. « Numerical Methods for Second-Order ODEs ». Dans Practical MATLAB Modeling with Simulink, 113–75. Berkeley, CA : Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5799-9_3.
Texte intégralChau, K. T. « Series Solutions of Second Order ODEs ». Dans Theory of Differential Equations in Engineering and Mechanics, 227–320. Boca Raton : CRC Press, [2017] : CRC Press, 2017. http://dx.doi.org/10.1201/9781315164939-4.
Texte intégralMarasco, Addolorata, et Antonio Romano. « Boundary-Value Problems for Second-Order ODEs ». Dans Scientific Computing with Mathematica®, 201–30. Boston, MA : Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0151-9_9.
Texte intégralCheb-Terrab, E. « Second order linear ODEs : Two non-Liouvillian approaches ». Dans Group Theory and Numerical Analysis, 91–101. Providence, Rhode Island : American Mathematical Society, 2005. http://dx.doi.org/10.1090/crmp/039/07.
Texte intégralGavrilyuk, Ivan P., Martin Hermann, Volodymyr L. Makarov et Myroslav V. Kutniv. « Three-point difference schemes for monotone second-order ODEs ». Dans International Series of Numerical Mathematics, 83–119. Basel : Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0107-2_3.
Texte intégralKruglikov, Boris. « Point Classification of Second Order ODEs : Tresse Classification Revisited and Beyond ». Dans Differential Equations - Geometry, Symmetries and Integrability, 199–221. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00873-3_10.
Texte intégralGavrilyuk, Ivan P., Martin Hermann, Volodymyr L. Makarov et Myroslav V. Kutniv. « Three-point difference schemes for systems of monotone second-order ODEs ». Dans International Series of Numerical Mathematics, 121–56. Basel : Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0107-2_4.
Texte intégralWu, Xinyuan, et Bin Wang. « Oscillation-Preserving Integrators for Highly Oscillatory Systems of Second-Order ODEs ». Dans Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 1–45. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_1.
Texte intégralActes de conférences sur le sujet "Second order ODEs"
Ismail, Ainathon, et Faranak Rabiei. « Multivalue-multistage method for second-order ODEs ». Dans PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES : Mathematical Sciences Exploration for the Universal Preservation. Author(s), 2017. http://dx.doi.org/10.1063/1.4995927.
Texte intégralLatypov, Viktor, et Sergei Sokolov. « Taylor Series Method for second-order polynomial ODEs ». Dans 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342059.
Texte intégralChan, L., et E. S. Cheb-Terrab. « Non-liouvillian solutions for second order Linear ODEs ». Dans the 2004 international symposium. New York, New York, USA : ACM Press, 2004. http://dx.doi.org/10.1145/1005285.1005299.
Texte intégralWaeleh, Nazreen, et Zanariah Abdul Majid. « Variable step direct block multistep method for general second order ODEs ». Dans 3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014) : Innovative Research in Applied Sciences for a Sustainable Future. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898463.
Texte intégralKhataybeh, S. N., et I. Hashim. « Direct solution of second-order system of ODEs using Bernstein polynomials ». Dans PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25) : Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041621.
Texte intégralSlavyanov, S. Yu. « The equation for a product of solutions of two second-order linear ODEs ». Dans International Seminar Day on Diffraction Millennium Workshop. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/dd.2000.902370.
Texte intégralOlanegan, O. O., B. G. Ogunware et O. J. Fajulugbe. « Efficient Seventh-Order Hybrid Block Process for Solving Stiff Second Order Ordinary Differential Equationsl. » Dans 27th iSTEAMS-ACity-IEEE International Conference. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v27p37.
Texte intégralZainuddin, Nooraini, Zarina Bibi Ibrahim et Noraini Jamaludin. « On the convergence of two point block backward differentiation formula for second order ODEs ». Dans 4TH INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968155.
Texte intégralPascoletti, Anna, Marina Pireddu et Fabio Zanolin. « Multiple periodic solutions and complex dynamics for second order ODEs via linked twist maps ». Dans The 8'th Colloquium on the Qualitative Theory of Differential Equations. Szeged : Bolyai Institute, SZTE, 2007. http://dx.doi.org/10.14232/ejqtde.2007.7.14.
Texte intégralMohd Yatim, Siti Ainor, Zarina Bibi Ibrahim, Khairil Iskandar Othman et Mohamed Suleiman. « On the derivation of second order variable step variable order block backward differentiation formulae for solving stiff ODEs ». Dans INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013) : Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823931.
Texte intégral