Articles de revues sur le sujet « Seagrass wrack »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Seagrass wrack.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 27 meilleurs articles de revues pour votre recherche sur le sujet « Seagrass wrack ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Joyce, Matthew A., Sinead M. Crotty, Christine Angelini, Orlando Cordero, Collin Ortals, Davide de Battisti et John N. Griffin. « Wrack enhancement of post-hurricane vegetation and geomorphological recovery in a coastal dune ». PLOS ONE 17, no 8 (31 août 2022) : e0273258. http://dx.doi.org/10.1371/journal.pone.0273258.

Texte intégral
Résumé :
Coastal ecosystems such as sand dunes, mangrove forests, and salt marshes provide natural storm protection for vulnerable shorelines. At the same time, storms erode and redistribute biological materials among coastal systems via wrack. Yet how such cross-ecosystem subsidies affect post-storm recovery is not well understood. Here, we report an experimental investigation into the effect of storm wrack on eco-geomorphological recovery of a coastal embryo dune in north-eastern Florida, USA, following hurricane Irma. We contrasted replicated 100-m2 wrack-removal and unmanipulated (control) plots, measuring vegetation and geomorphological responses over 21 months. Relative to controls, grass cover was reduced 4-fold where diverse storm wrack, including seagrass rhizomes, seaweed, and wood, was removed. Wrack removal was also associated with a reduction in mean elevation, which persisted until the end of the experiment when removal plots had a 14% lower mean elevation than control plots. These results suggest that subsides of wrack re-distributed from other ecosystem types (e.g. seagrasses, macroalgae, uplands): i) enhances the growth of certain dune-building grasses; and ii) boosts the geomorphological recovery of coastal dunes. Our study also indicates that the practice of post-storm beach cleaning to remove wrack–a practice widespread outside of protected areas–may undermine the resilience of coastal dunes and their services.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Baring, Ryan J., Rebecca E. Lester et Peter G. Fairweather. « Trophic relationships among animals associated with drifting wrack ». Marine and Freshwater Research 69, no 8 (2018) : 1248. http://dx.doi.org/10.1071/mf17274.

Texte intégral
Résumé :
Wrack accumulates commonly in surf zones of sandy beaches and can be a semipermanent feature. Very few studies have investigated the trophic pathways associated with wrack accumulations in sandy beach surf zones, despite their potential importance to nearshore food webs. In the present study, we were specifically interested in determining the fish–wrack trophic associations in the nearshore. Macrophytes, macroinvertebrates and fish were sampled from drifting wrack at two sites with different macrophyte compositions (i.e. algae v. an algae–seagrass mix) in South Australia. The gut contents of fish were sampled, and the δ13C and δ15N stable isotope signatures of fish, macroinvertebrates and macrophytes were analysed. Using both the stable isotope and diet data, we identified that fish are feeding among wrack accumulations, but some unexplained trophic pathways suggest that fish are also likely to be foraging over multiple habitats elsewhere for food. In contrast, there was more evidence that grazing macroinvertebrates may be feeding on and around macrophytes within the accumulations, as well as using them as habitat. Thus, the present study established some baseline trophic pathways associated with wrack accumulations in sandy beach surf zones. Given the modest evidence for use of wrack as a food source, the lower trophic levels of the food webs identified remain unknown and should be an area for future research.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cucco, Andrea, Giovanni Quattrocchi, Walter Brambilla, Augusto Navone, Pieraugusto Panzalis et Simone Simeone. « The Management of the Beach-Cast Seagrass Wracks—A Numerical Modelling Approach ». Journal of Marine Science and Engineering 8, no 11 (3 novembre 2020) : 873. http://dx.doi.org/10.3390/jmse8110873.

Texte intégral
Résumé :
Seagrass wrack are commonly found on the beach face of the sandy shore all around the world and often persists in situ during the whole year, favouring the emergence of conflicts for the use of the sandy coasts for bathing or for other recreational purposes. As a consequence, these deposits are often removed from the beach during the summer months, temporary stocked, and relocated on the shore face in the next autumn or winter season. The selection of the sites on the shoreline where the leaves should be released before the storms season is often an issue, considering the optimization needs between the transportation costs and the oceanographic features of the dumping site. In this study, a numerical approach was proposed to identify the most suitable areas for the autumnal repositioning of the seagrass wracks for two beaches of Sardinia, an island located in the Western Mediterranean Sea where Posidonia oceanica (L. Delile, 1813) is the most widespread seagrass species. The method is based on the use of hydrodynamic, wave, and particle tracking models and provides important indications useful for the management of this type of practice that can be extended to all different type of beaches along the Mediterranean coasts.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chapman, M. G., et D. E. Roberts. « Use of seagrass wrack in restoring disturbed Australian saltmarshes ». Ecological Management and Restoration 5, no 3 (décembre 2004) : 183–90. http://dx.doi.org/10.1111/j.1442-8903.2004.00207.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Baring, Ryan J., Peter G. Fairweather et Rebecca E. Lester. « Nearshore drift dynamics of natural versus artificial seagrass wrack ». Estuarine, Coastal and Shelf Science 202 (mars 2018) : 164–71. http://dx.doi.org/10.1016/j.ecss.2017.12.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Liu, Songlin, Stacey M. Trevathan-Tackett, Carolyn J. Ewers Lewis, Quinn R. Ollivier, Zhijian Jiang, Xiaoping Huang et Peter I. Macreadie. « Beach-cast seagrass wrack contributes substantially to global greenhouse gas emissions ». Journal of Environmental Management 231 (février 2019) : 329–35. http://dx.doi.org/10.1016/j.jenvman.2018.10.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Beltran, Rafel, Pedro Beca-Carretero, Núria Marbà, Maria Antònia Jiménez et Anna Traveset. « Spatio-temporal variation in macrofauna community structure in Mediterranean seagrass wrack ». Food Webs 25 (décembre 2020) : e00178. http://dx.doi.org/10.1016/j.fooweb.2020.e00178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hemminga, M. A., et J. Nieuwenhuize. « Seagrass wrack-induced dune formation on a tropical coast (Banc d'Arguin, Mauritania) ». Estuarine, Coastal and Shelf Science 31, no 4 (octobre 1990) : 499–502. http://dx.doi.org/10.1016/0272-7714(90)90040-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lavery, PS, K. McMahon, J. Weyers, MC Boyce et CE Oldham. « Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity ». Marine Ecology Progress Series 494 (4 décembre 2013) : 121–33. http://dx.doi.org/10.3354/meps10554.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Poore, Alistair G. B., et Kimberly M. Gallagher. « Strong consequences of diet choice in a talitrid amphipod consuming seagrass and algal wrack ». Hydrobiologia 701, no 1 (1 août 2012) : 117–27. http://dx.doi.org/10.1007/s10750-012-1263-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Breithaupt, Joshua L., Evan Duga, Megan Witt, Rebecca Filyaw, Noah Friedland, Melinda J. Donnelly, Linda J. Walters et Lisa G. Chambers. « Carbon and nutrient fluxes from seagrass and mangrove wrack are mediated by soil interactions ». Estuarine, Coastal and Shelf Science 229 (novembre 2019) : 106409. http://dx.doi.org/10.1016/j.ecss.2019.106409.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mainardis, Matia, Francesca Magnolo, Carmen Ferrara, Charlene Vance, Gloria Misson, Giovanni De Feo, Stijn Speelman, Fionnuala Murphy et Daniele Goi. « Alternative seagrass wrack management practices in the circular bioeconomy framework : A life cycle assessment approach ». Science of The Total Environment 798 (décembre 2021) : 149283. http://dx.doi.org/10.1016/j.scitotenv.2021.149283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Macreadie, Peter I., Stacey M. Trevathan-Tackett, Jeffrey A. Baldock et Jeffrey J. Kelleway. « Converting beach-cast seagrass wrack into biochar : A climate-friendly solution to a coastal problem ». Science of The Total Environment 574 (janvier 2017) : 90–94. http://dx.doi.org/10.1016/j.scitotenv.2016.09.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Misson, Gloria, Matia Mainardis, Fabio Marroni, Alessandro Peressotti et Daniele Goi. « Environmental methane emissions from seagrass wrack and evaluation of salinity effect on microbial community composition ». Journal of Cleaner Production 285 (février 2021) : 125426. http://dx.doi.org/10.1016/j.jclepro.2020.125426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hanley, Torrance C., David L. Kimbro et Anne Randall Hughes. « Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure ». Ecology 98, no 7 (14 juin 2017) : 1884–95. http://dx.doi.org/10.1002/ecy.1862.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Balestri, E., F. Vallerini et C. Lardicci. « Storm-generated fragments of the seagrass Posidonia oceanica from beach wrack – A potential source of transplants for restoration ». Biological Conservation 144, no 5 (mai 2011) : 1644–54. http://dx.doi.org/10.1016/j.biocon.2011.02.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Balestri, Elena, Flavia Vallerini, Maurizia Seggiani, Patrizia Cinelli, Virginia Menicagli, Claudia Vannini et Claudio Lardicci. « Use of bio-containers from seagrass wrack with nursery planting to improve the eco-sustainability of coastal habitat restoration ». Journal of Environmental Management 251 (décembre 2019) : 109604. http://dx.doi.org/10.1016/j.jenvman.2019.109604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Oldham, Carolyn, Kathryn McMahon, Eloise Brown, Cyprien Bosserelle et Paul Lavery. « A preliminary exploration of the physical properties of seagrass wrack that affect its offshore transport, deposition, and retention on a beach ». Limnology and Oceanography : Fluids and Environments 4, no 1 (avril 2014) : 120–35. http://dx.doi.org/10.1215/21573689-2844703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Misson, Gloria, Matia Mainardis, Guido Incerti, Daniele Goi et Alessandro Peressotti. « Preliminary evaluation of potential methane production from anaerobic digestion of beach-cast seagrass wrack : The case study of high-adriatic coast ». Journal of Cleaner Production 254 (mai 2020) : 120131. http://dx.doi.org/10.1016/j.jclepro.2020.120131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Dierssen, H. M., A. Chlus et B. Russell. « Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing ». Remote Sensing of Environment 167 (septembre 2015) : 247–58. http://dx.doi.org/10.1016/j.rse.2015.01.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kelleway, J. J., S. M. Trevathan-Tackett, J. Baldock et L. P. Critchley. « Plant litter composition and stable isotope signatures vary during decomposition in blue carbon ecosystems ». Biogeochemistry 158, no 2 (1 février 2022) : 147–65. http://dx.doi.org/10.1007/s10533-022-00890-3.

Texte intégral
Résumé :
AbstractThe ratio of isotopes of carbon (13C:12C or δ13C) and nitrogen (15N:14N or δ15N) are common indicators of the flow and storage of organic matter in coastal wetland research. Effective use of these indicators requires quantification and understanding of: (1) the variability of isotope signatures of potential organic matter source materials; and (2) the influence of organic matter decomposition on isotopic signatures. While it is well-established that organic matter characteristics change during the decomposition process, there has been little direct quantification of any concurrent shifts in isotope signatures for coastal detritus. In this study, we addressed this by quantifying: (1) shifts in sample composition using solid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy; and (2) shifts in δ13C and δ15N signatures of coastal plant tissues from field litterbag experiments. We observed significant shifts in 13C NMR spectra across the course of deployment for all four plant tissues assessed (leaves of mangrove Avicennia marina; branchlets of supratidal tree Casuarina glauca; leaf wrack and roots/rhizomes of the seagrass Zostera muelleri), driven largely by the preferential loss of labile constituents and concentration of more resistant macromolecules, such as lignin and leaf waxes. While there were shifts in isotope ratios for all species, these varied in direction and magnitude among species, tissue type and isotopes. This included δ13C enrichments of up to 3.1‰ and 2.4‰ in leaves of A. marina, and branchlets of C. glauca, respectively, but δ13C depletions of up to 4.0‰ for Z. muelleri. Shifts in δ15N varied among species and tissue types, with few clear temporal patterns. Partial least squares regression analyses showed that some tissue isotope signatures can be reliably predicted on the basis of sample composition (13C NMR spectra), however, multiple inter- and intra-species variations preclude a simple explanation of isotopic signature shifts on the basis of plant-material molecular shifts alone. Further, we cannot preclude the potential influence of microbe-associated organic matter on sample composition or isotopic signatures. Our findings emphasise the importance of considering decomposition effects on stable isotope signatures in blue carbon ecosystems. Isotope approaches will remain a valuable tool in coastal ecosystem research, but require robust experimental approaches (including appropriate use of decomposed end-members or fractionation correction factors; quantification of microbial organic matter) and quantification of decomposition dynamics for specific plant tissues and environmental settings.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kuqo, Aldi, et Carsten Mai. « Seagrass Leaves : An Alternative Resource for the Production of Insulation Materials ». Materials 15, no 19 (6 octobre 2022) : 6933. http://dx.doi.org/10.3390/ma15196933.

Texte intégral
Résumé :
Seagrass wracks, the remains of dead leaves accumulated on seashores, are important ecosystems and beneficial for the marine environment. Their presence on the touristic beaches, however, is a problem for the tourism industry due to the lack of aesthetics and safety reasons. At the present time, seagrass leaves are landfilled, although this is not considered an ecological waste management practice. Among other proposed practices for more sustainable and environmentally friendly management, such as composting and biogas or energy generation, in this study we aim to use seagrass leaves for the production of insulation materials. Insulation boards from two types of seagrass leaves (Posidonia oceanica and Zostera marina) at densities varying from 80 to 200 kg m−3 were prepared and their physical and mechanical properties were examined and compared to those of wood fiber insulation boards. The thermal conductivity of seagrass-based insulation boards varied from 0.042 to 0.050 W m−1 K−1, which was up to 12% lower compared to the latter. The cone calorimetry analysis revealed that seagrass-based insulation boards are more fire resistant than those from wood fibers, as they release very low amounts of heat during combustion and do not ignite when exposed to a single flame (Bunsen burner). A simplified cost analysis showed that insulation boards made from seagrass leaves can be up to 30% cheaper compared to those made from wood fibers. After their end of life, seagrass leaves can again be considered a valuable resource and be further utilized by adopting other management strategies.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Perry, Rachel A., Jamie M. P. Vaudrey et Heidi M. Dierssen. « Long range transport and carbon and nitrogen dynamics of floating seagrass wracks in Greater Florida Bay ». Estuarine, Coastal and Shelf Science 209 (septembre 2018) : 7–17. http://dx.doi.org/10.1016/j.ecss.2018.05.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Penna, Marina, Paola Gennaro, Tiziano Bacci, Benedetta Trabucco, Enrico Cecchi, Cecilia Mancusi, Luigi Piazzi, Francesco Sante Rende, Fabrizio Serena et Anna Maria Cicero. « Multiple environmental descriptors to assess ecological status of sensitive habitats in the area affected by the Costa Concordia shipwreck (Giglio Island, Italy) ». Journal of the Marine Biological Association of the United Kingdom 98, no 1 (22 août 2017) : 51–59. http://dx.doi.org/10.1017/s0025315417001485.

Texte intégral
Résumé :
The aim of the study was to evaluate the effectiveness of the application of multiple environmental descriptors through an asymmetrical sampling design to detect possible impacts related to the Costa Concordia event on the coastal marine environment. The Costa Concordia shipwreck occurred on a submerged rocky reef in the north-western Mediterranean Sea and the wreck was removed 2 years later. To achieve the proposed objective two main coastal ecosystems, the seagrass Posidonia oceanica and coralligenous assemblages were studied using two ecological indices, PREI and ESCA, respectively. Both indices show a lower ecological quality in the disturbed sites compared with the control ones. Differences between the disturbed and control sites observed in both studied ecosystems would seem to indicate an increase of turbidity around the shipwreck as the most plausible cause of impact. The concurrent use of different ecological indices and asymmetrical sampling designs allowed detection of differences in ecological quality of the disturbed sites compared with the controls. This approach may represent an interesting tool to be employed in impact evaluation studies.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Karstens, Svenja, Joshua Kiesel, Lennart Petersen, Kilian Etter, Jens Schneider von Deimling, Athanasios T. Vafeidis et Felix Gross. « Human-Induced Hydrological Connectivity : Impacts of Footpaths on Beach Wrack Transport in a Frequently Visited Baltic Coastal Wetland ». Frontiers in Marine Science 9 (26 juillet 2022). http://dx.doi.org/10.3389/fmars.2022.929274.

Texte intégral
Résumé :
Coastal wetlands depend on vertical accretion to keep up with sea level rise in cases where embankment restricts accommodation space and landward migration. For coastal wetland survival, autogenic productivity (litter, root decay) as well as allogenic matter input are crucial. Beach wrack composed of seagrass and algae can serve as an important allogenic matter source, increase surface roughness, elevate the backshore, and influence the blue carbon budget. The objective of this study is to understand how human footpaths in a frequently accessed Baltic coastal wetland influence beach wrack transport and accumulation. Beach wrack monitoring during the winter storm season 2021/2022 was conducted in high spatial and temporal resolution with bi-weekly UAV flights. Object-based identification, segmentation, and classification of orthophotos with open-source software allowed the detection of beach wrack patches with a mean area of 0.6–2.7 m². Three major storm events occurred during the monitoring period (Arwen, Malik, Eunice). Regardless of wind speed or direction, the main accumulation zones remained stable. The east-west footpath that crosses the coastal wetland and connects the tourist hotspots served as a “highway” for water-mediated transport of beach wrack. Total area covered by beach wrack fluctuated between 1,793 and 2,378 m² with a peak after storm Malik in January 2022. The densely accumulated beach wrack along the main east-west footpath formed an elongated micro-cliff-like structure and limited landward transport. Additional aerial image analysis for the last 15 years showed that the position of the footpaths remained stable. This pioneering study offers first insights into the fate of beach wrack in an anthropogenically influenced Baltic coastal wetland where larger tidal channels that usually generate hydrological connectivity are missing. The identified transport patterns and accumulation hotspots are a starting point for further research on how beach wrack behaves in (waterlogged) coastal wetlands compared to decomposition on sandy beaches.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Tomasello, Agostino, Alessandro Bosman, Geraldina Signa, Sante Francesco Rende, Cristina Andolina, Giovanna Cilluffo, Federica Paola Cassetti et al. « 3D-Reconstruction of a Giant Posidonia oceanica Beach Wrack (Banquette) : Sizing Biomass, Carbon and Nutrient Stocks by Combining Field Data With High-Resolution UAV Photogrammetry ». Frontiers in Marine Science 9 (23 juin 2022). http://dx.doi.org/10.3389/fmars.2022.903138.

Texte intégral
Résumé :
Beach wracks are temporary accumulations of vegetal detritus that can be found along coastlines all over the world. Although beach wracks are often perceived as a nuisance for beach users, they play a crucial ecological role in carbon and nutrient connectivity across ecosystem boundaries, especially when they reach a relevant size, as in the case of the wedge-shaped seagrass accumulations called banquette. In this study, three-dimensional mapping of a giant Posidonia oceanica banquette was carried out for the first time using high-resolution UAV photogrammetry combined with field sampling and compositional and chemical analysis. The combined approach allowed a reliable estimation of the amount and spatial distribution of both vegetal biomass and sedimentary mass, as well as of total carbon, nitrogen and phosphorus content, revealing that i) banquette act as a sediment trap and represent hot spots of seagrass biomass and carbon accumulation; ii) banquette thickness, rather than the distance from the sea, influences the spatial distribution of all variables. Moreover, high-resolution digital elevation models (DEM) revealed discontinuous patterns in detritus accumulation resulting in an unknown banquette type here termed “Multiple Mega-Ridge banquette” (MMR banquette). On the one hand, this study highlighted the high potential of the UAV approach in very accurately 3D mapping and monitoring of these structures, with relevant implications for ecosystem service estimation and coastal zone management. On the other hand, it opened new questions about the role played by temporary beach wracks and, in particular, by P. oceanica banquette in the blue carbon exchange across land-ocean boundaries.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Vance, Charlene, Matia Mainardis, Francesca Magnolo, Joseph Sweeney et Fionnuala Murphy. « Modeling the effects of ecosystem changes on seagrass wrack valorization : Merging system dynamics with life cycle assessment ». Journal of Cleaner Production, août 2022, 133454. http://dx.doi.org/10.1016/j.jclepro.2022.133454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie