Articles de revues sur le sujet « Scorpionate complexes »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Scorpionate complexes.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Scorpionate complexes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Harb, Carmen, Pavel Kravtsov, Mohommad Choudhuri, Eric R. Sirianni, Glenn P. A. Yap, A. B. P. Lever et Robert J. Crutchley. « Phenylcyanamidoruthenium Scorpionate Complexes ». Inorganic Chemistry 52, no 3 (22 janvier 2013) : 1621–30. http://dx.doi.org/10.1021/ic302535h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Andrade, Marta A., et Luísa M. D. R. S. Martins. « Novel Chemotherapeutic Agents - The Contribution of Scorpionates ». Current Medicinal Chemistry 26, no 41 (8 janvier 2020) : 7452–75. http://dx.doi.org/10.2174/0929867325666180914104237.

Texte intégral
Résumé :
: The development of safe and effective chemotherapeutic agents is one of the uppermost priorities and challenges of medicinal chemistry and new transition metal complexes are being continuously designed and tested as anticancer agents. Scorpionate ligands have played a great role in coordination chemistry, since their discovery by Trofimenko in the late 1960s, with significant contributions in the fields of catalysis and bioinorganic chemistry. Scorpionate metal complexes have also shown interesting anticancer properties, and herein, the most recent (last decade) and relevant scorpionate complexes reported for application in medicinal chemistry as chemotherapeutic agents are reviewed. The current progress on the anticancer properties of transition metal complexes bearing homo- or hetero- scorpionate ligands, derived from bis- or tris-(pyrazol-1-yl)-borate or -methane moieties is highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Martini, Petra, Micol Pasquali, Alessandra Boschi, Licia Uccelli, Melchiore Giganti et Adriano Duatti. « Technetium Complexes and Radiopharmaceuticals with Scorpionate Ligands ». Molecules 23, no 8 (15 août 2018) : 2039. http://dx.doi.org/10.3390/molecules23082039.

Texte intégral
Résumé :
Scorpionate ligands have played a crucial role in the development of technetium chemistry and, recently, they have also fueled important advancements in the discovery of novel diagnostic imaging agents based on the γ-emitting radionuclide technetium-99m. The purpose of this short review is to provide an illustration of the most general and relevant results in this field, however without being concerned with the details of the analytical features of the various compounds. Thus, emphasis will be given to the description of the general features of technetium complexes with scorpionate ligands including coordination modes, structural properties and an elementary bonding description. Similarly, the most relevant examples of technetium-99m radiopharmaceuticals derived from scorpionate ligands and their potential interest for nuclear imaging will be summarized.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Da Costa, Rosenildo Correa, Benjamin W. Rawe, Nikolaos Tsoureas, Mairi F. Haddow, Hazel A. Sparkes, Graham J. Tizzard, Simon J. Coles et Gareth R. Owen. « Preparation and reactivity of rhodium and iridium complexes containing a methylborohydride based unit supported by two 7-azaindolyl heterocycles ». Dalton Transactions 47, no 32 (2018) : 11047–57. http://dx.doi.org/10.1039/c8dt02311e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tăbăcaru, Aurel, Rais Ahmad Khan, Giulio Lupidi et Claudio Pettinari. « Synthesis, Characterization and Assessment of the Antioxidant Activity of Cu(II), Zn(II) and Cd(II) Complexes Derived from Scorpionate Ligands ». Molecules 25, no 22 (13 novembre 2020) : 5298. http://dx.doi.org/10.3390/molecules25225298.

Texte intégral
Résumé :
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+·), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2−) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).
Styles APA, Harvard, Vancouver, ISO, etc.
6

Albertin, Gabriele, Stefano Antoniutti, Marco Bortoluzzi, Jesús Castro et Lidia Marzaro. « Diazoalkane complexes of ruthenium with tris(pyrazolyl)borate and bis(pyrazolyl)acetate ligands ». Dalton Transactions 44, no 35 (2015) : 15470–80. http://dx.doi.org/10.1039/c5dt02113h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Olyshevets, Iryna, Vladimir Ovchynnikov, Nataliia Kariaka, Viktoriya Dyakonenko, Svitlana Shishkina, Tatiana Sliva, Małgorzata Ostrowska, Aleksandra Jedyńczuk, Elżbieta Gumienna-Kontecka et Vladimir Amirkhanov. « Lanthanide complexes based on a new bis-chelating carbacylamidophosphate (CAPh) scorpionate-like ligand ». RSC Advances 10, no 42 (2020) : 24808–16. http://dx.doi.org/10.1039/d0ra04714g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Matveeva, Anna G., Anna V. Vologzhanina, Evgenii I. Goryunov, Rinat R. Aysin, Margarita P. Pasechnik, Sergey V. Matveev, Ivan A. Godovikov, Alfiya M. Safiulina et Valery K. Brel. « Extraction and coordination studies of a carbonyl–phosphine oxide scorpionate ligand with uranyl and lanthanide(iii) nitrates : structural, spectroscopic and DFT characterization of the complexes ». Dalton Transactions 45, no 12 (2016) : 5162–79. http://dx.doi.org/10.1039/c5dt04963f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Silva, Telma F. S., Bruno G. M. Rocha, M. Fátima C. Guedes da Silva, Luísa M. D. R. S. Martins et Armando J. L. Pombeiro. « V(iv), Fe(ii), Ni(ii) and Cu(ii) complexes bearing 2,2,2-tris(pyrazol-1-yl)ethyl methanesulfonate : application as catalysts for the cyclooctane oxidation ». New Journal of Chemistry 40, no 1 (2016) : 528–37. http://dx.doi.org/10.1039/c5nj01865j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sirianni, Eric R., Daniel C. Cummins, Glenn P. A. Yap et Klaus H. Theopold. « FcTp(R) (R=iPr ortBu) : third-generation ferrocenyl scorpionates ». Acta Crystallographica Section C Structural Chemistry 72, no 11 (5 octobre 2016) : 813–18. http://dx.doi.org/10.1107/s205322961601202x.

Texte intégral
Résumé :
Scorpionate (or trispyrazolylborate) ligands have seen much structural variation due to the relative ease of modifying their electronic and steric effects. Second-generation scorpionates were created by increasing the bulk in the 3-position of the pyrazole (pz) ring. A new class of third-generation scorpionates was obtained by modifying the remaining boron substituent. A series of thallium(I) and cobalt(II) complexes of the ferrocenyltris(3-R-pyrazolyl)borate ligand [FcTpR;R= isopropyl (iPr) ortert-butyl (tBu)] have been synthesized in order to expand the range of redox-active third-generation scorpionates. These are [ferrocenyltris(3-tert-butylpyrazol-1-yl-κN2)borato]thallium(I), [FeTl(C5H5)(C26H37BN6)], [ferrocenyltris(3-isopropylpyrazol-1-yl-κN2)borato]thallium(I), [FeTl(C5H5)(C23H31BN6)], chlorido[ferrocenyltris(3-tert-butylpyrazol-1-yl-κN2)borato]cobalt(II), [CoFe(C5H5)(C26H37BN6)Cl], [ferrocenyltris(3-tert-butylpyrazol-1-yl-κN2)borato]iodidocobalt(II) benzene disolvate, [CoFe(C5H5)(C26H37BN6)I]·2C6H6, and [ferrocenyltris(3-isopropylpyrazol-1-yl-κN2)borato]iodidocobalt(II), [CoFe(C5H5)(C23H31BN6)I]. The structures demonstrate that the metal coordination site can easily be modified by using bulkier substituents at the pz 3-position.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Suter, Riccardo, Mona Wagner, Lorenzo Querci, Riccardo Conti, Zoltán Benkő et Hansjörg Grützmacher. « 1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes ». Dalton Transactions 49, no 24 (2020) : 8201–8. http://dx.doi.org/10.1039/d0dt01864c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Sobrino, Sonia, Marta Navarro, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Agustín Lara-Sánchez, Andrés Garcés, José A. Castro-Osma et Ana M. Rodríguez. « Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes ». Polymers 12, no 9 (21 septembre 2020) : 2148. http://dx.doi.org/10.3390/polym12092148.

Texte intégral
Résumé :
New mono- and dinuclear chiral alkoxide/thioalkoxide NNO-scorpinate zinc complexes were easily synthesized in very high yields, and characterized by spectroscopic methods. X-ray diffraction analysis unambiguously confirmed the different nuclearity of the new complexes as well as the variety of coordination modes of the scorpionate ligands. Scorpionate zinc complexes 2, 4 and 6 were assessed as catalysts for polycarbonate production from epoxide and carbon dioxide with no need for a co-catalyst or activator under mild conditions. Interestingly, at 70 °C, 10 bar of CO2 pressure and 1 mol % of loading, the dinuclear thioaryloxide [Zn(bpzaepe)2{Zn(SAr)2}] (4) behaves as an efficient and selective one-component initiator for the synthesis of poly(cyclohexene carbonate) via ring-opening copolymerization of cyclohexene oxide (CHO) and CO2, affording polycarbonate materials with narrow dispersity values.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Naktode, Kishor, Th Dhileep N. Reddy, Hari Pada Nayek, Bhabani S. Mallik et Tarun K. Panda. « Heavier group 2 metal complexes with a flexible scorpionate ligand based on 2-mercaptopyridine ». RSC Advances 5, no 63 (2015) : 51413–20. http://dx.doi.org/10.1039/c5ra04696c.

Texte intégral
Résumé :
Synthetic and structural details of flexible scorpionate ligand based on 2-mercaptopyridine (Bmp) supported heavier alkaline earth metal complexes with metal–sulfur bonds (metal = Sr, Ba) have been presented.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Fischer, Nina, Gazi Turkoglu et Nicolai Burzlaff. « Scorpionate Complexes Suitable for Enzyme Inhibitor Studies ». Current Bioactive Compounds 5, no 4 (1 décembre 2009) : 277–95. http://dx.doi.org/10.2174/157340709789816438.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Gómez-Sal, P., A. Sánchez-Méndez, E. de Jesús et J. C. Flores. « Structural study of dendronized palladium scorpionate complexes ». Acta Crystallographica Section A Foundations of Crystallography 63, a1 (22 août 2007) : s168—s169. http://dx.doi.org/10.1107/s0108767307096201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Martins, Luísa M. D. R. S. « C-scorpionate complexes : Ever young catalytic tools ». Coordination Chemistry Reviews 396 (octobre 2019) : 89–102. http://dx.doi.org/10.1016/j.ccr.2019.06.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Young, Charles G. « Scorpionate Complexes as Models for Molybdenum Enzymes ». European Journal of Inorganic Chemistry 2016, no 15-16 (29 mars 2016) : 2357–76. http://dx.doi.org/10.1002/ejic.201501387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Artem'ev, Alexander V., Alexey V. Kashevskii, Artem S. Bogomyakov, Alexander Yu Safronov, Anastasiya O. Sutyrina, Anton A. Telezhkin et Irina V. Sterkhova. « Variable coordination of tris(2-pyridyl)phosphine and its oxide toward M(hfac)2 : a metal-specifiable switching between the formation of mono- and bis-scorpionate complexes ». Dalton Transactions 46, no 18 (2017) : 5965–75. http://dx.doi.org/10.1039/c7dt00339k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Batten, Stuart R., Martin B. Duriska, Paul Jensen et Jinzhen Lu. « Synthesis and Complexes of the New Scorpionate Ligand Tris[3-(4-benzonitrile)-pyrazol-1-yl]borate ». Australian Journal of Chemistry 60, no 1 (2007) : 72. http://dx.doi.org/10.1071/ch06329.

Texte intégral
Résumé :
A new scorpionate ligand, hydro-tris[3-(4-benzonitrile)-pyrazol-1-yl]borate (Tp4bz), was synthesized and the crystal structures of its potassium salt and its MnII, CoII, NiII, and CdII complexes were determined.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Denan, James R. Gardinier et Sergey V. Lindeman. « Iron(ii) tetrafluoroborate complexes of new tetradentate C-scorpionates as catalysts for the oxidative cleavage of trans-stilbene with H2O2 ». Dalton Transactions 48, no 38 (2019) : 14478–89. http://dx.doi.org/10.1039/c9dt02829c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Goura, Joydeb, James McQuade, Daisuke Shimoyama, Roger A. Lalancette, John B. Sheridan et Frieder Jäkle. « Electrophilic and nucleophilic displacement reactions at the bridgehead borons of tris(pyridyl)borate scorpionate complexes ». Chemical Communications 58, no 7 (2022) : 977–80. http://dx.doi.org/10.1039/d1cc06181j.

Texte intégral
Résumé :
A ruthenium tris(pyridyl)borate complex is subjected to electrophilic and nucleophilic reactions at the bridgehead borons. These transformations allow for facile tuning of the properties and open up new pathways to functional scorpionate complexes.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sobrino, Sonia, Marta Navarro, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Andrés Garcés, Agustín Lara-Sánchez et José A. Castro-Osma. « Efficient CO2 fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes ». Dalton Transactions 48, no 28 (2019) : 10733–42. http://dx.doi.org/10.1039/c9dt01844a.

Texte intégral
Résumé :
Chiral bifunctional and bicomponent NNO-scorpionate zinc-based catalysts have been developed for the fixation of CO2 into cyclic carbonates with broad substrate scope and functional group tolerance under mild and solvent-free conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Heyer, Alexander J., Philip J. Shivokevich, Shelby L. Hooe, Kevin D. Welch, W. Dean Harman et Charles W. Machan. « Reversible modulation of the redox characteristics of acid-sensitive molybdenum and tungsten scorpionate complexes ». Dalton Transactions 47, no 18 (2018) : 6323–32. http://dx.doi.org/10.1039/c8dt00598b.

Texte intégral
Résumé :
The large-scale synthesis of the scorpionate ligand Ttz (hydrotris(1,2,4-triazol-1-yl)borate) is reported, as well as syntheses of Group VI complexes K[M(L)(CO)3] and M(L)(NO)(CO)2, (M = Mo or W).
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ehweiner, Madeleine A., Carina Vidovič, Ferdinand Belaj et Nadia C. Mösch-Zanetti. « Bioinspired Tungsten Complexes Employing a Thioether Scorpionate Ligand ». Inorganic Chemistry 58, no 12 (29 mai 2019) : 8179–87. http://dx.doi.org/10.1021/acs.inorgchem.9b00973.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Rajasekharan-Nair, Rajeev, Dean Moore, Alan R. Kennedy, John Reglinski et Mark D. Spicer. « The Stability of Mercaptobenzothiazole Based Soft Scorpionate Complexes ». Inorganic Chemistry 53, no 19 (10 septembre 2014) : 10276–82. http://dx.doi.org/10.1021/ic5013236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ribeiro, Ana P. C., Peter Goodrich et Luísa M. D. R. S. Martins. « Efficient and Reusable Iron Catalyst to Convert CO2 into Valuable Cyclic Carbonates ». Molecules 26, no 4 (19 février 2021) : 1089. http://dx.doi.org/10.3390/molecules26041089.

Texte intégral
Résumé :
The production of cyclic carbonates from CO2 cycloaddition to epoxides, using the C-scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}] (pz = 1H-pyrazol-1-yl) as a catalyst, is achieved in excellent yields (up to 98%) in a tailor-made ionic liquid (IL) medium under mild conditions (80 °C; 1–8 bar). A favorable synergistic catalytic effect was found in the [FeCl2{κ3-HC(pz)3}]/IL system. Notably, in addition to exhibiting remarkable activity, the catalyst is stable during ten consecutive cycles, the first decrease (11%) on the cyclic carbonate yield being observed during the 11th cycle. The use of C-scorpionate complexes in ionic liquids to afford cyclic carbonates is presented herein for the first time.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bussey, Katherine A., Annie R. Cavalier, Jennifer R. Connell, Margaret E. Mraz, Kayode D. Oshin, Tomislav Pintauer, Danielle L. Gray et Sean Parkin. « Crystal structure of orthorhombic {bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine-κ3N,N′,N′′}chloridocopper(II) perchlorate ». Acta Crystallographica Section E Crystallographic Communications 71, no 7 (27 juin 2015) : 847–51. http://dx.doi.org/10.1107/s2056989015011792.

Texte intégral
Résumé :
In the title compound, [CuCl(C17H19Cl4N3)]ClO4, the CuIIion adopts a distorted square-planar geometry defined by one chloride ligand and the three nitrogen atoms from the bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine ligand. The perchlorate counter-ion is disordered over three sets of sites with refined occupancies 0.0634 (17), 0.221 (16) and 0.145 (7). In addition, the hetero-scorpionate arm of the bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine ligand is disordered over two sets of sites with refined occupancies 0.839 (2) and 0.161 (2). In the crystal, weak Cu...Cl interactions between symmetry-related molecules create a dimerization with a chloride occupying the apical position of the square-pyramidal geometry typical of many copper(II) chloride hetero-scorpionate complexes.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Owen, Gareth R., P. Hugh Gould, Alexandra Moore, Gavin Dyson, Mairi F. Haddow et Alex Hamilton. « Copper and silver complexes bearing flexible hybrid scorpionate ligandmpBm ». Dalton Trans. 42, no 31 (2013) : 11074–81. http://dx.doi.org/10.1039/c3dt51286j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Sánchez-Méndez, Alberto, Juan C. Flores et Pilar Gómez-Sal. « Nickel scorpionate complexes containing poly(aryl ether) dendritic substituents ». Journal of Organometallic Chemistry 819 (septembre 2016) : 201–8. http://dx.doi.org/10.1016/j.jorganchem.2016.07.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Giorgetti, Marco, Maura Pellei, Giancarlo Gioia Lobbia et Carlo Santini. « XAFS studies on copper(I) complexes containing scorpionate ligands ». Journal of Physics : Conference Series 190 (1 novembre 2009) : 012146. http://dx.doi.org/10.1088/1742-6596/190/1/012146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Naglav, Dominik, Briac Tobey, Christoph Wölper, Dieter Bläser, Georg Jansen et Stephan Schulz. « On the Stability of Trimeric Beryllium Hydroxide Scorpionate Complexes ». European Journal of Inorganic Chemistry 2016, no 15-16 (22 février 2016) : 2424–31. http://dx.doi.org/10.1002/ejic.201501433.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Martins, Luísa M. D. R. S., et Armando J. L. Pombeiro. « Water-Soluble C-Scorpionate Complexes - Catalytic and Biological Applications ». European Journal of Inorganic Chemistry 2016, no 15-16 (31 mars 2016) : 2236–52. http://dx.doi.org/10.1002/ejic.201600053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Schwalbe, Matthias, Prokopis C. Andrikopoulos, David R. Armstrong, John Reglinski et Mark D. Spicer. « Structural and Theoretical Insights into Metal–Scorpionate Ligand Complexes ». European Journal of Inorganic Chemistry 2007, no 10 (avril 2007) : 1351–60. http://dx.doi.org/10.1002/ejic.200601175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kühling, Marcel, Robert McDonald, Phil Liebing, Liane Hilfert, Michael J. Ferguson, Josef Takats et Frank T. Edelmann. « Stabilization of molecular lanthanide polysulfides by bulky scorpionate ligands ». Dalton Transactions 45, no 25 (2016) : 10118–21. http://dx.doi.org/10.1039/c6dt01439a.

Texte intégral
Résumé :
The first well-defined lanthanide polysulfide complexes containing S42− and S52− ligands have been synthesized and structurally characterized by single-crystal X-ray diffraction.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Abernethy, Robyn J., Mark R. St J. Foreman, Anthony F. Hill, Matthew K. Smith et Anthony C. Willis. « Relative hemilabilities of H2B(az)2 (az = pyrazolyl, dimethylpyrazolyl, methimazolyl) chelates in the complexes [M(η-C3H5)(CO)2{H2B(az)2}] (M = Mo, W) ». Dalton Transactions 49, no 3 (2020) : 781–96. http://dx.doi.org/10.1039/c9dt03744f.

Texte intégral
Résumé :
The question of B–H–Mo hemilability in a range of dihydrobis(azolyl)borate scorpionate ligands is discussed with reference to η3-allyl complexes [Mo(η3-C3H5)(CO)2{H2B(az)2}] [az = pyrazolyl (pz), dimethylpyrazolyl (pz*), mercaptoimidazolyl (mt)].
Styles APA, Harvard, Vancouver, ISO, etc.
36

Demyanov, Yan V., Evgeniy H. Sadykov, Marianna I. Rakhmanova, Alexander S. Novikov, Irina Yu Bagryanskaya et Alexander V. Artem’ev. « Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes ». Molecules 27, no 18 (16 septembre 2022) : 6059. http://dx.doi.org/10.3390/molecules27186059.

Texte intégral
Résumé :
The coordination behavior of tris(2-pyridyl)arsine (Py3As) has been studied for the first time on the example of the reactions with CuI, CuBr and AgClO4. When treated with CuI in CH2Cl2 medium, Py3As unexpectedly affords the scorpionate complex [Cu(Py3As)I]∙CH2Cl2 only, while this reaction in MeCN selectively leads to the dimer [Cu2(Py3As)2I2]. At the same time, the interaction of CuBr with Py3As exclusively gives the dimer [Cu2(Py3As)2Br2]. It is interesting to note that the scorpionate [Cu(Py3As)I]∙CH2Cl2, upon fuming with a MeCN vapor (r.t., 1 h), undergoes quantitative dimerization into the dimer [Cu2(Py3As)2I2]. The reaction of Py3As with AgClO4 produces complex [Ag@Ag4(Py3As)4](CIO4)5 featuring a Ag-centered Ag4 tetrahedral kernel. At ambient temperature, the obtained Cu(I) complexes exhibit an unusually short-lived photoluminescence, which can be tentatively assigned to the thermally activated delayed fluorescence of (M + X) LCT type (M = Cu, L = Py3As; X = halogen). For the title Ag(I) complexes, QTAIM calculations reveal the pronounced argentophilic interactions for all short Ag∙∙∙Ag contacts (3.209–3.313 Å).
Styles APA, Harvard, Vancouver, ISO, etc.
37

Garner, Mark, Mario-Alexander Lehmann, John Reglinski et Mark D. Spicer. « Soft (S3-Donor) Scorpionate Complexes of Molybdenum and Tungsten Carbonyls ». Organometallics 20, no 24 (novembre 2001) : 5233–36. http://dx.doi.org/10.1021/om010559n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Spagna, R., C. Santini, M. Pellei, G. Gioia Lobbia, M. Pallotta, S. Alidori et M. Camalli. « Scorpionate complexes with the main group elements Ca, Ba, Sr ». Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 août 2005) : c298—c299. http://dx.doi.org/10.1107/s0108767305087271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Dodds, Christopher A., Mark Garner, John Reglinski et Mark D. Spicer. « Coinage Metal Complexes of a Boron-Substituted Soft Scorpionate Ligand ». Inorganic Chemistry 45, no 6 (mars 2006) : 2733–41. http://dx.doi.org/10.1021/ic052032z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Serrano, Angel L., Miguel A. Casado, José A. López et Cristina Tejel. « Rhodium and Iridium Complexes with a New Scorpionate Phosphane Ligand ». Inorganic Chemistry 52, no 13 (13 juin 2013) : 7593–607. http://dx.doi.org/10.1021/ic400684s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Huang, Ling, Kevin J. Seward, B. Patrick Sullivan, Wayne E. Jones, John J. Mecholsky et Walter J. Dressick. « Luminescent α-diimine complexes of ruthenium(II) containing scorpionate ligands ». Inorganica Chimica Acta 310, no 2 (décembre 2000) : 227–36. http://dx.doi.org/10.1016/s0020-1693(00)00301-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Otero, Antonio, Juan Fernández-Baeza, Antonio Antiñolo, Juan Tejeda, Agustín Lara-Sánchez, Luis F. Sánchez-Barba, Isabel López-Solera et Ana M. Rodríguez. « Lithium, Titanium, and Zirconium Complexes with Novel Amidinate Scorpionate Ligands ». Inorganic Chemistry 46, no 5 (mars 2007) : 1760–70. http://dx.doi.org/10.1021/ic062093c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Tüchler, Michael, Stefan Holler, Sarah Rendl, Natascha Stock, Ferdinand Belaj et Nadia C. Mösch-Zanetti. « Zinc Scorpionate Complexes with a Hybrid (Thiopyridazinyl)(thiomethimidazolyl)borate Ligand ». European Journal of Inorganic Chemistry 2016, no 15-16 (13 avril 2016) : 2609–14. http://dx.doi.org/10.1002/ejic.201501366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rajesekharan-Nair, Rajeev, Samuel T. Lutta, Alan R. Kennedy, John Reglinski et Mark D. Spicer. « Soft scorpionate coordination at alkali metals ». Acta Crystallographica Section C Structural Chemistry 70, no 5 (8 avril 2014) : 421–27. http://dx.doi.org/10.1107/s2053229614005737.

Texte intégral
Résumé :
Reported here are the single-crystal X-ray structure analyses of bis-μ-methanol-κ4 O:O-bis{[hydrotris(3-phenyl-2-sulfanylidene-2,3-dihydro-1H-1,3-imidazol-1-yl)borato-κ3 H,S,S′](methanol-κO)sodium(I)}, [Na2(C27H22BN6S3)2(CH4O)4] (NaTmPh), bis-μ-methanol-κ4 O:O-bis{[hydrotris(3-isopropyl-2-sulfanylidene-2,3-dihydro-1H-1,3-imidazol-1-yl)borato-κ3 H,S,S′](methanol-κO)sodium(I)}–diethyl ether–methanol (1/0.3333/0.0833), [Na2(C18H28BN6S3)2(CH4O)4]·0.3333C4H10O·0.0833CH3OH (NaTmiPr), and a novel anhydrous form of sodium hydrotris(methylthioimidazolyl)borate, poly[[μ-hydrotris(3-methyl-2-sulfanylidene-2,3-dihydro-1H-1,3-imidazol-1-yl)borato]sodium(I)], [Na(C12H16BN6S3)] ([NaTmMe] n ). NaTmiPr and NaTmPh have similar dimeric molecular structures with κ3 H,S,S′-bonding, but they differ in that NaTmPh is crystallographically centrosymmetric (Z′ = 0.5) while NaTmiPr contains one crystallographically centrosymmetric dimer and one dimer positioned on a general position (Z′ = 1.5). [NaTmMe] n is a one-dimensional coordination polymer that extends along the a direction and which contains a hitherto unseen side-on η2-C=S-to-Na bond type. An overview of the structural preferences of alkali metal soft scorpionate complexes is presented. This analysis suggests that these thione-based ligands will continue to be a rich source of interesting alkali metal motifs worthy of isolation and characterization.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gardinier, James R., Alex R. Treleven, Kristin J. Meise et Sergey V. Lindeman. « Accessing spin-crossover behaviour in iron(ii) complexes of N-confused scorpionate ligands ». Dalton Transactions 45, no 32 (2016) : 12639–43. http://dx.doi.org/10.1039/c6dt01898j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Fujisawa, Kiyoshi, Masaya Shimizu et Robert K. Szilagyi. « Comparison of thallium(I) complexes with mesityl-substituted tris(pyrazolyl)hydroborate ligands, [Tl{HB(3-Ms-5-Mepz)3}] and [Tl{HB(3-Ms-5-Mepz)2(3-Me-5-Mspz)}] ». Acta Crystallographica Section C Structural Chemistry 72, no 11 (5 octobre 2016) : 786–90. http://dx.doi.org/10.1107/s2053229615023797.

Texte intégral
Résumé :
Tris(pyrazolyl)borate (scorpionate) ligands can be considered as the most prolific ligands in contemporary coordination chemistry due to the availability of various steric and electronic substituents at the pyrazolyl rings that allow fine-tuning of the open-coordination site for metal centres. The thallium(I) complexes of anionic tridentate-chelating scorpionate ligands, namely [tris(3-mesityl-5-methyl-1H-pyrazol-1-yl-κN2)hydroborato]thallium(I) monohydrate, [Tl(C39H46BN6)]·H2O, (I), and [bis(3-mesityl-5-methyl-1H-pyrazol-1-yl-κN2)(5-mesityl-3-methyl-1H-pyrazol-1-yl-κN2)hydroborato]thallium(I), [Tl(C39H46BN6)], (II), show a {TlIN3} coordination, with average TlI—N bond lengths of 2.53 and 2.55 Å in (I) and (II), respectively. The overall TlIcoordination geometry is distorted trigonal pyramidal, with the average N—TlI—N angle being approximately 73° for both. The dihedral angle between the planes of the pyrazolyl and benzene rings of the mesityl group is 82° in (I), while the corresponding angles in (II) are in the range 64–104°. The structural differences between the two ligands are expected to contribute to the different reactivities of the transition metal coordination complexes towards activation of small molecules such as dioxygen and ethylene.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tüchler, Michael, Melanie Ramböck, Simon Glanzer, Klaus Zangger, Ferdinand Belaj et Nadia Mösch-Zanetti. « Mono- and Hexanuclear Zinc Halide Complexes with Soft Thiopyridazine Based Scorpionate Ligands ». Inorganics 7, no 2 (19 février 2019) : 24. http://dx.doi.org/10.3390/inorganics7020024.

Texte intégral
Résumé :
Scorpionate ligands with three soft sulfur donor sites have become very important in coordination chemistry. Despite its ability to form highly electrophilic species, electron-deficient thiopyridazines have rarely been used, whereas the chemistry of electron-rich thioheterocycles has been explored rather intensively. Here, the unusual chemical behavior of a thiopyridazine (6-tert-butylpyridazine-3-thione, HtBuPn) based scorpionate ligand towards zinc is reported. Thus, the reaction of zinc halides with tris(6-tert-butyl-3-thiopyridazinyl)borate Na[TntBu] leads to the formation of discrete torus-shaped hexameric zinc complexes [TntBuZnX]6 (X = Br, I) with uncommonly long zinc halide bonds. In contrast, reaction of the sterically more demanding ligand K[TnMe,tBu] leads to decomposition, forming Zn(HPnMe,tBu)2X2 (X = Br, I). The latter can be prepared independently by reaction of the respective zinc halides and two equiv of HPnMe,tBu. The bromide compound was used as precursor which further reacts with K[TnMe,tBu] forming the mononuclear complex [TnMe,tBu]ZnBr(HPnMe,tBu). The molecular structures of all compounds were elucidated by single-crystal X-ray diffraction analysis. Characterization in solution was performed by means of 1H, 13C and DOSY NMR spectroscopy which revealed the hexameric constitution of [TntBuZnBr]6 to be predominant. In contrast, [TnMe,tBu]ZnBr(HPnMe,tBu) was found to be dynamic in solution.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Navarro, Marta, Andrés Garcés, Luis F. Sánchez-Barba, Felipe de la Cruz-Martínez, Juan Fernández-Baeza et Agustín Lara-Sánchez. « Efficient Bulky Organo-Zinc Scorpionates for the Stereoselective Production of Poly(rac-lactide)s ». Polymers 13, no 14 (19 juillet 2021) : 2356. http://dx.doi.org/10.3390/polym13142356.

Texte intégral
Résumé :
The direct reaction of the highly sterically demanding acetamidinate-based NNN′-scorpionate protioligand Hphbptamd [Hphbptamd = N,N′-di-p-tolylbis(3,5-di-tertbutylpyrazole-1-yl)acetamidine] with one equiv. of ZnMe2 proceeds in high yield to the mononuclear alkyl zinc complex [ZnMe(κ3-phbptamd)] (1). Alternatively, the treatment of the corresponding lithium precursor [Li(phbptamd)(THF)] with ZnCl2 yielded the halide complex [ZnCl(κ3-phbptamd)] (2). The X-ray crystal structure of 1 confirmed unambiguously a mononuclear entity in these complexes, with the zinc centre arranged with a pseudotetrahedral environment and the scorpionate ligand in a κ3-coordination mode. Interestingly, the inexpensive, low-toxic and easily prepared complexes 1 and 2 resulted in highly efficient catalysts for the ring-opening polymerisation of lactides, a sustainable bio-resourced process industrially demanded. Thus, complex 1 behaved as a single-component robust initiator for the living and immortal ROP of rac-lactide under very mild conditions after a few hours, reaching a TOF value up to 5520 h−1 under bulk conditions. Preliminary kinetic studies revealed apparent zero-order dependence on monomer concentration in the absence of a cocatalyst. The PLA materials produced exhibited narrow dispersity values, good agreement between the experimental Mn values and monomer/benzyl alcohol ratios, as well as enhanced levels of heteroselectivity, reaching Ps values up to 0.74.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dias, H. V. Rasika, Simone Alidori, Giancarlo Gioia Lobbia, Grazia Papini, Maura Pellei et Carlo Santini. « Small Scorpionate Ligands : Silver(I)-Organophosphane Complexes of 5-CF3-Substituted Scorpionate Ligand Combining a B−H···Ag Coordination Motif ». Inorganic Chemistry 46, no 23 (novembre 2007) : 9708–14. http://dx.doi.org/10.1021/ic701041k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Stevens, Matthew P., Emily Spray, Iñigo J. Vitorica-Yrezabal, Kuldip Singh, Vanessa M. Timmermann, Lia Sotorrios et Fabrizio Ortu. « Structural Investigation of Magnesium Complexes Supported by a Thiopyridyl Scorpionate Ligand ». Molecules 27, no 14 (18 juillet 2022) : 4564. http://dx.doi.org/10.3390/molecules27144564.

Texte intégral
Résumé :
Herein, we report the synthesis of a series of heteroleptic magnesium complexes stabilized with the scorpionate ligand tris(2-pyridylthio)methanide (Tptm). The compounds of the general formula [Mg(Tptm)(X)] (1-X; X = Cl, Br, I) were obtained via protonolysis reaction between the proligand and selected Grignard reagents. Attempts to isolate the potassium derivative K(Tptm) lead to decomposition of Tptm and formation of the alkene (C5H4N-S)2C=C(C5H4N-S)2, and this degradation was also modelled using DFT methods. Compound 1-I was treated with K(CH2Ph), affording the degradation product [Mg(Bptm)2] (2; Bptm = {CH(S-C5NH3)2}−). We analyzed and quantified the steric properties of the Tptm ligand using the structural information of the compounds obtained in this study paired with buried volume calculations, also adding the structural data of HTptm and its CF3-substituted congener (HTptmCF3). These studies highlight the highly flexible nature of this ligand scaffold and its ability to stabilize various coordination motifs and geometries, which is a highly desirable feature in the design of novel organometallic reagents and catalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie