Articles de revues sur le sujet « Salts in »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Salts in.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Salts in ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhang, Cheng-Pan, Ze-Yu Tian et Yu Ma. « Alkylation Reactions with Alkylsulfonium Salts ». Synthesis 54, no 06 (25 octobre 2021) : 1478–502. http://dx.doi.org/10.1055/a-1677-5971.

Texte intégral
Résumé :
AbstractThe application of alkylsulfonium salts as alkyl-transfer reagents in organic synthesis has reemerged over the past few years. Numerous heteroatom- and carbon-centered nucleophiles, alkenes, arenes, alkynes, organometallic reagents, and others are readily alkylated by alkylsulfonium salts under mild conditions. The reactions feature convenience, high efficiency, readily accessible and structurally diversified alkylation reagents, good functional group tolerance, and a wide range of substrate types, allowing the facile synthesis of various useful organic molecules from commercially available building blocks. This review summarizes alkylation reactions using either isolated or in situ formed alkylsulfonium salts via nucleophilic substitution, transition-metal-catalyzed reactions, and photoredox processes.1 Introduction2 General Methods for the Synthesis of Alkylsulfonium Salts3 Electrophilic Alkylation Using Alkylsulfonium Salts4 Transition-Metal-Catalyzed Alkylation Using Alkylsulfonium Salts5 Photoredox-Catalyzed Alkylation Using Alkylsulfonium Salts6 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hassan, Khalida Abdul-Karim, Farhad Ali Hashim et Sarwar Mohammed Rasheed. « Influence of Magnetic Treated Saline Water on Salts Leaching from Salt Affected Soil ». Journal of Zankoy Sulaimani - Part A 18, no 1 (30 août 2015) : 159–66. http://dx.doi.org/10.17656/jzs.10460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hermann Dekpaho Gnahe, Jean Didier Kouassi-Koffi, Hermann Antonin Kouassi et Emma Fernande Assemand. « Survey on the "plant salts" production and consumption in the west of Ivory Coast ». GSC Advanced Research and Reviews 6, no 1 (30 janvier 2021) : 021–29. http://dx.doi.org/10.30574/gscarr.2021.6.1.0002.

Texte intégral
Résumé :
A field survey was carried out to increase knowledge on salts produced from plants in the west of Ivory Coast. This work intends to serve as a basis for a real promotion of "plant salts" as a food additive in domestic and industrial production. It would also like to provide an alternative to severe low-sodium diets. It is produced in the west of Ivory Coast, salty products made from plants and used as a substitute of sodium chloride. These "edible plant salts" are differentiated from each other by the type of plant (and even organ) used and the manufacturing process. Two manufacturing processes, resulting in physically different salts, were identified. The first, used by the non-native Malinke, gives the lumpy "potash" commonly sold at the markets. The second, practiced by the native Dan, Guere an Wobe peoples, gives a better developed fine "plant salts". The main “edible plant salts” found in this area are produced from palm or coconut branches. The salts from reeds and many forest trees such as kapok trees are also very appreciated, only they are rare. "Plant salts" are in greater demand for health reasons, hence their qualification as "salts of the sick people". They are consumed as a cooking ingredient or in pharmacopoeia and the elderly are their first consumers. Due to weak demand, productions are very irregular and in low quantities. These products are unknown to populations and industrialists although they could be useful in food and health sectors.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kaduk, James A. « Terephthalate salts : salts of monopositive cations ». Acta Crystallographica Section B Structural Science 56, no 3 (1 juin 2000) : 474–85. http://dx.doi.org/10.1107/s0108768199014718.

Texte intégral
Résumé :
The crystal structures of dilithium, disodium and diammonium terephthalate (1,4-benzenedicarboxylate) have been solved ab initio using Monte Carlo simulated annealing techniques, and refined using synchrotron powder data. The structures of dipotassium terephthalate, potassium hydrogen terephthalate and ammonium hydrogen terephthalate have been refined using single-crystal techniques. Li2C8H4O4 crystallizes in P2 1/c, with a = 8.35921 (5), b = 5.13208 (2), c = 8.48490 (5) Å, β = 93.1552 (4)°, V = 363.451 (3) Å3, Z = 2. The Li anions are tetrahedrally coordinated and the packing of the terephthalate anions resembles the γ-packing of aromatic hydrocarbons. Na2C8H4O4 crystallizes in Pbc2 1, with a = 3.54804 (5), b = 10.81604 (16), c = 18.99430 (20) Å, V = 728.92 (2) Å3, Z = 4. The coordination of the two independent Na is trigonal prismatic and the terephthalate packing resembles the β packing of hydrocarbons. (NH4)2C8H4O4 also crystallizes in Pbc21, with a = 4.0053 (5), b = 11.8136 (21), c = 20.1857 (24) Å, V = 955.1 (2) Å3, Z = 4. The cations and planar anions are linked by hydrogen bonds and the packing is a looser version of the β packing. K2C8H4O2 crystallizes in P21/c, with a = 10.561 (4), b = 3.9440 (12), c = 11.535 (5) Å, β = 113.08 (3)°, V = 442.0 (3) Å3, Z = 2. The K is trigonal prismatic and the packing is also β. Both KHC8H4O4 and (NH4)HC8H4O4 crystallize in C2/c, with a = 18.825 (4) and 18.924 (4), b = 3.770 (2) and 3.7967 (9), c = 11.179 (2) and 11.481 (2) Å, β = 98.04 (3) and 94.56 (5)°, V = 816.8 (3) and 790.9 (3) Å3, respectively, and Z = 4. The packing in the hydrogen-bonded acid salts is also β. Electrostatic interactions among the terephthalate anions appear to be important in determining the crystal packing.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ngoc, Binh Vu. « Characteristics of Clay Soft Soil in the Mekong Delta of Vietnam and Improvement Result with Cement ». Iraqi Geological Journal 55, no 1A (31 janvier 2022) : 64–73. http://dx.doi.org/10.46717/igj.55.1a.5ms-2022-01-24.

Texte intégral
Résumé :
The results of research on the characteristics of soft clay soils distributed in some provinces of the Mekong Delta show that most of the soils are contaminated with easily soluble salts, containing organic matter, pH < 7. Sandy clay, clay in An Giang, and clay mud in Tien Giang are less acidic, not salty, and contamination of salts in the form of sulfate- chloride. Clay mud in Hau Giang is less acidic, less salt, and contamination of salts in the form of chloride-sulfate. Clay mud in Bac Lieu and Ca Mau are lots of salty soil, contaminated with chloride of salts. Peat soil in Kien Giang is strongly acidic, not salty, contaminated with sulfate -chloride. All of them have a large compression coefficient, small load capacity, therefore they should be reinforced when construction works. Unconfined compressive strength of reinforced soils with cement showed that sandy clay in An Giang is the best, and then is soft clay in An Giang and clay mud in Tien Giang, Hau Giang, Bạc Lieu, and Ca Mau. Peat soil in Kien Giang has a low strength at different contents and days of age (with a concents 400 kg/m3 at 91 days has unconfined compressive strength qu = 201 kPa), only 12.8 to 23.0% compared to the soil elsewhere. The curing time process samples show that the compressive strength of the peat soil mixed cement is increased initially, then they were decreased over a period of 28 days.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Schumacher, Ricardo F., Benhur Godoi, Carla K. Jurinic et Andrei L. Belladona. « Diorganyl Dichalcogenides and Copper/Iron Salts : Versatile Cyclization System To Achieve Carbo- and Heterocycles from Alkynes ». Synthesis 53, no 15 (24 mars 2021) : 2545–58. http://dx.doi.org/10.1055/a-1463-4098.

Texte intégral
Résumé :
AbstractOrganochalcogen-containing cyclic molecules have shown several promising pharmacological properties. Consequently, different strategies have been developed for their synthesis in the past few years. Particularly due to the low cost and environmental aspects, copper- and iron-promoted cyclization reactions of alkynyl substrates have been broadly and efficiently applied for this purpose. This short review presents an overview of the most recent advances in the synthesis of organochalcogen-containing carbo- and heterocycles by reacting diorganyl disulfides, diselenides, and ditellurides with alkyne derivatives in the presence of copper and iron salts to promote cyclization reactions.1 Introduction2 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Copper Salts3 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Iron Salts4 Conclusions
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lui, Matthew Y., Lorna Crowhurst, Jason P. Hallett, Patricia A. Hunt, Heiko Niedermeyer et Tom Welton. « Salts dissolved in salts : ionic liquid mixtures ». Chemical Science 2, no 8 (2011) : 1491. http://dx.doi.org/10.1039/c1sc00227a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Salchner, Robert, Volker Kahlenberg, Thomas Gelbrich, Klaus Wurst, Martin Rauch, Gerhard Laus et Herwig Schottenberger. « Hexaethylguanidinium Salts ». Crystals 4, no 3 (5 septembre 2014) : 404–16. http://dx.doi.org/10.3390/cryst4030404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

McCrory, P. « Smelling salts ». British Journal of Sports Medicine 40, no 8 (12 avril 2006) : 659–60. http://dx.doi.org/10.1136/bjsm.2006.029710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Antoniou, T., et D. N. Juurlink. « "Bath salts" ». Canadian Medical Association Journal 184, no 15 (20 août 2012) : 1713. http://dx.doi.org/10.1503/cmaj.121017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Oliveira, Roberta. « Organotrifluoroborate Salts ». Synlett 2009, no 03 (21 janvier 2009) : 505–6. http://dx.doi.org/10.1055/s-0028-1083584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Nikitin, Igor V., et V. Ya Rosolovskii. « Tetrafluoroammonium Salts ». Russian Chemical Reviews 54, no 5 (31 mai 1985) : 426–36. http://dx.doi.org/10.1070/rc1985v054n05abeh003068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Pirkuliev, Namig Sh, Valery K. Brel et Nikolai S. Zefirov. « Alkenyliodonium salts ». Russian Chemical Reviews 69, no 2 (28 février 2000) : 105–20. http://dx.doi.org/10.1070/rc2000v069n02abeh000557.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mongiardo, Nicola, Bruno De Rienzo et Franco Squadrini. « PENTAMIDINE SALTS ». Lancet 334, no 8654 (juillet 1989) : 108. http://dx.doi.org/10.1016/s0140-6736(89)90350-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rapp, Bob. « Molten salts ». Materials Today 8, no 12 (décembre 2005) : 6. http://dx.doi.org/10.1016/s1369-7021(05)71195-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sitzmann, Michael E., Richard Gilardi, Ray J. Butcher, William M. Koppes, Alfred G. Stern, Joseph S. Thrasher, Nirupam J. Trivedi et Zhen-Yu Yang. « Pentafluorosulfanylnitramide Salts ». Inorganic Chemistry 39, no 4 (février 2000) : 843–50. http://dx.doi.org/10.1021/ic991281i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gerona, Roy R., et Alan H. B. Wu. « Bath Salts ». Clinics in Laboratory Medicine 32, no 3 (septembre 2012) : 415–27. http://dx.doi.org/10.1016/j.cll.2012.07.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zheng, Honghe, Yanbao Fu, Hucheng Zhang, Takeshi Abe et Zempachi Ogumi. « Potassium Salts ». Electrochemical and Solid-State Letters 9, no 3 (2006) : A115. http://dx.doi.org/10.1149/1.2161447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Keyworth, Charles Maurice. « Reserve Salts ». Journal of the Society of Dyers and Colourists 44, no 6 (22 octobre 2008) : 177–78. http://dx.doi.org/10.1111/j.1478-4408.1928.tb01500.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Nicklas, W. « Aluminum salts ». Research in Immunology 143, no 5 (janvier 1992) : 489–94. http://dx.doi.org/10.1016/0923-2494(92)80059-t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Vigalok, I. V., V. I. Kovalenko et G. G. Petrova. « Aminofurazan salts ». Chemistry of Heterocyclic Compounds 27, no 7 (juillet 1991) : 803. http://dx.doi.org/10.1007/bf00476221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Griffith, E. J., T. M. Ngo et M. Veiderma. « KURROL’S SALTS ». Proceedings of the Estonian Academy of Sciences. Chemistry 42, no 3 (1993) : 113. http://dx.doi.org/10.3176/chem.1993.3.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fini, Adamo, Giuseppe Fazio, Francesca Rosetti, M. Angeles Holgado, Ana Iruín et Josefa Alvarez-Fuentes. « Diclofenac Salts. III. Alkaline and Earth Alkaline Salts ». Journal of Pharmaceutical Sciences 94, no 11 (novembre 2005) : 2416–31. http://dx.doi.org/10.1002/jps.20436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kushner, Donn J. « What is the "true" internal environment of halophilic and other bacteria ? » Canadian Journal of Microbiology 34, no 4 (1 avril 1988) : 482–86. http://dx.doi.org/10.1139/m88-082.

Texte intégral
Résumé :
This article presents facts about, speculations on, and possible ways of determining the actual intracellular ionic environment of halophilic microorganisms and those that live in other extreme conditions. It suggests that halophilic archaebacteria have a truly salty internal environment (though one in which water and salts might well have limited freedom), whereas halophilic and salt-tolerant eubacteria may have salty external environments but much less salty internal ones.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Peñafiel García, Mario Javier, Cristhopher Alexander Romero Zambrano, Carlos Antonio Moreira Mendoza et Ernesto Alonso Rosero Delgado. « Efecto del pH y Sales Inorgánicas en la Degradación de Colorantes Industriales por Pleurotus Djamor ». Revista Bases de la Ciencia. e-ISSN 2588-0764 6, no 2 (15 octobre 2021) : 13. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2670.

Texte intégral
Résumé :
En la presente investigación se planteó el uso de la cepa Pd318 del hongo Pleurotus djamor como agente biorremediador, con el objetivo de evaluar su capacidad para degradar el colorante reactivo azul 19 (A19). Para ello se estudió la influencia que tienen cinco sales inorgánicas en el crecimiento y actividad lignolítica del hongo. Un cribado de sales inorgánicas en placa determinó que las sales CaCl2.2H2O y MnSO4.5H2O tienen mayor influencia en el desarrollo micelial y actividad lignolítica de la cepa. Ensayos de fermentación líquida (FEL) con diferentes combinaciones a distintas concentraciones de las sales de calcio y manganeso permitieron demostrar la capacidad de degradación del colorante azul 19 a los 7 días de fermentación líquida a temperatura ambiente y agitación constante. Los máximos porcentajes de degradación del colorante fueron obtenidos con las combinaciones A1B1 y A2B1 con 43,47% y 41,36%, respectivamente. Se observó que a un pH de 5 unidades se favorece la degradación del colorante. Los estudios en placa señalaron que la adición de sales de calcio y manganeso en 10 días de incubación favorecieron el desarrollo micelial y la actividad lignolítica de Pd318, mientras que en un sistema FEL de 7 días, únicamente la adición de manganeso influye favorablemente a la actividad lignolítica del hongo y en consecuencia a su capacidad de degradación de azul 19. Palabra clave: Colorante azul 19, degradación de colorantes, enzimas lignolíticas, Pleurotus djamor. Abstract In the present investigation, the use of the Pd318 strain of the Pleurotus djamor fungus as a bioremediation agent was proposed, with the aim of evaluating its ability to degrade reactive dye blue 19 (A19). For this, the influence of five inorganic salts on the growth and lignolytic activity of the fungus was studied. A plate screening of inorganic salts determined that the CaCl2.2H2O and MnSO4.5H2O salts have a greater influence on the mycelial development and lignolytic activity of the strain. Liquid fermentation tests (FEL) with different combinations at different concentrations of the calcium and manganese salts allowed to demonstrate the degradation capacity of the blue dye 19, after 7 days of liquid fermentation at room temperature and constant stirring, the maximum degradation percentages of the dye were obtained with the combinations A1B1 and A2B1 with 43.47% and 41.36% respectively. It was observed that at a pH of 5 units the degradation of the dye is favored. The plate studies indicated that the addition of calcium and manganese salts in 10 days of incubation, favored mycelial development and the lignolytic activity of Pd318, while in a 7 day FEL system, only the addition of manganese favorably influenced the lignolytic activity of the fungus and consequently its ability to break down blue 19. Keywords: Blue dye 19, dye degradation, lignolytic enzymes, Pleurotus djamor.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Benavente, David, Marli de Jongh et Juan Carlos Cañaveras. « Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones ». Minerals 11, no 1 (25 décembre 2020) : 18. http://dx.doi.org/10.3390/min11010018.

Texte intégral
Résumé :
This investigation studies the physical and chemical effect of salt weathering on biocalcarenites and biocalcrudites in the Basilica of Our Lady of Succour (Aspe, Spain). Weathering patterns are the result of salty rising capillary water and water lixiviated from pigeon droppings. Surface modifications and features induced by material loss are observable in the monument. Formation of gypsum, hexahydrite, halite, aphthitalite and arcanite is associated with rising capillary water, and niter, hydroxyapatite, brushite, struvite, weddellite, oxammite and halite with pigeon droppings. Humberstonite is related to the interaction of both types of waters. Analysis of crystal shapes reveals different saturation degree conditions. Single salts show non-equilibrium shapes, implying higher crystallisation pressures. Single salts have undergone dissolution and/or dehydration processes enhancing the deterioration process, particularly in the presence of magnesium sulphate. Double salts (humberstonite) have crystals corresponding to near-equilibrium form, implying lower crystallisation pressures. This geochemical study suggests salts precipitate via incongruent reactions rather than congruent precipitation, where hexahydrite is the precursor and limiting reactant of humberstonite. Chemical dissolution of limestone is driven mainly by the presence of acidic water lixiviated from pigeon droppings and is a critical weathering process affecting the most valuable architectural elements present in the façades.
Styles APA, Harvard, Vancouver, ISO, etc.
27

LI, XIAOYU, CHUNSHENG MU, JIXIANG LIN, YING WANG et XIUJUN LI. « EFFECT OF ALKALINE POTASSIUM AND SODIUM SALTS ON GROWTH, PHOTOSYNTHESIS, IONS ABSORPTION AND SOLUTES SYNTHESIS OF WHEAT SEEDLINGS ». Experimental Agriculture 50, no 1 (9 septembre 2013) : 144–57. http://dx.doi.org/10.1017/s0014479713000458.

Texte intégral
Résumé :
SUMMARYPotassium (K) is an essential nutrient and abundant cation in plant cells. The application of K+ could alleviate abiotic stress. However, it was reported that the alleviation of K+ on salt-stressed plants only happened when K+ concentration was low. Most studies were focused on effects of sodium salts on plants in salty soils, and little information was reported about potassium salts, especially a higher level of potassium in alkaline salts. To explore the effects of K+ in alkaline salts on plant growth, and whether it had a same destructive impact as Na+, we mixed two alkaline sodium salts (ASS) (NaHCO3:Na2CO3 = 9:1) and two alkaline potassium salts (APS) (KHCO3:K2CO3 = 9:1) to treat 10-day-old wheat seedlings. Effects of ASS and APS on growth, photosynthesis, ions absorption and solutes accumulation were compared. Results indicated that effects of potassium salts in soil on plants growth were related to K+ concentration. Both growth and photosynthesis of wheat seedlings decreased, and the reduction was higher in APS treatment than in ASS treatment at 40 mM alkalinity. ASS treatment absorbed Na+, competing with K+ and free Ca2+, and inhibited the absorption of inorganic anions. APS treatments accumulated K+ and reduced the absorption of anions, with no competition with other cations. Both APS and ASS treatments promoted free Mg2+ accumulation and inhibited H2PO4−uptake. The reduction of H2PO4− promoted organic acid synthesis indirectly. Soluble sugar and proline accumulation were also related to the alkaline condition and extra K+ addition. In conclusion, excess potassium ions in soil, especially in alkaline soils, were harmful to plants. APS was another severe salt stress, intensity of which was higher than ASS. The growth and physiological response mechanisms of wheat seedlings to APS were similar to ASS. Both inorganic ions and organic solutes took part in the osmotic adjustment. Differences for APS depended on K+, but ASS on Na+.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Panovská, Z., A. Váchová et J. Řeřichová. « Sensitivity of Assessors to Ferrous Salts ». Czech Journal of Food Sciences 27, Special Issue 1 (24 juin 2009) : S333—S336. http://dx.doi.org/10.17221/1082-cjfs.

Texte intégral
Résumé :
Taste is the chemical sensation whose function is not very well known. Recently it was shown that the range of taste is more extensive than the five basic taste sweet, salty, bitter, sour and umami. A metallic taste has been suggested as another basic taste, but its mode of perception is not well understood and has not been really accepted in the taste literature. Ferrous sulphate solutions were presented to the assessors so their sensitivity and best estimate thresholds (BET) were measured. The best estimated threshold range was 0.00049–0.00669 g/l for demineralised water, 0.00079–0.00669 g/l for distilled water and 0.00108–0.00669 g/l for tap water.
Styles APA, Harvard, Vancouver, ISO, etc.
29

&NA;. « Amfetamine mixed salts ». Reactions Weekly &NA;, no 1385 (janvier 2012) : 7–8. http://dx.doi.org/10.2165/00128415-201213850-00017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Perera, Jean. « Wizard of salts ». Ceylon Medical Journal 51, no 4 (29 septembre 2009) : 159. http://dx.doi.org/10.4038/cmj.v51i4.1154.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

&NA;. « Amfetamine mixed salts ». Reactions Weekly &NA;, no 1358 (juillet 2011) : 6–7. http://dx.doi.org/10.2165/00128415-201113580-00015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

&NA;. « Amfetamine mixed salts ». Reactions Weekly &NA;, no 1369 (septembre 2011) : 8. http://dx.doi.org/10.2165/00128415-201113690-00019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

&NA;. « Amfetamine mixed salts ». Reactions Weekly &NA;, no 1418 (septembre 2012) : 8. http://dx.doi.org/10.2165/00128415-201214180-00029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Levine, Philip. « Salts and Oils ». Iowa Review 15, no 1 (janvier 1985) : 36–37. http://dx.doi.org/10.17077/0021-065x.3162.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

&NA;. « Amfetamine mixed salts ». Reactions Weekly &NA;, no 1328 (novembre 2010) : 7. http://dx.doi.org/10.2165/00128415-201013280-00018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Gaibi, M. « Formation of salts ». British Dental Journal 200, no 2 (janvier 2006) : 64–65. http://dx.doi.org/10.1038/sj.bdj.4813186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lordi, Nicholas, et Prafull Shiromani. « Compressibility of Salts ». Drug Development and Industrial Pharmacy 11, no 1 (janvier 1985) : 13–30. http://dx.doi.org/10.3109/03639048509057668.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wieland, Diane M. « Psychoactive bath salts ». Nursing Critical Care 10, no 3 (mai 2015) : 22–27. http://dx.doi.org/10.1097/01.ccn.0000464301.87505.b9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Schneider, Stefan, Tommy Hawkins, Michael Rosander, Jeffrey Mills, Adam Brand, Leslie Hudgens, Greg Warmoth et Ashwani Vij. « Liquid Azide Salts ». Inorganic Chemistry 47, no 9 (mai 2008) : 3617–24. http://dx.doi.org/10.1021/ic702068r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Katritzky, Alan R., et Wolfgang H. Ramer. « Heterocyclic ynammonium salts ». Journal of Organic Chemistry 50, no 6 (mars 1985) : 852–56. http://dx.doi.org/10.1021/jo00206a026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kolodyazhnaya, O. O., et O. I. Kolodyazhnyi. « Chiral phosphonium salts ». Russian Journal of General Chemistry 82, no 12 (décembre 2012) : 2005–6. http://dx.doi.org/10.1134/s1070363212120171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ross, Edward A., Mary Watson et Bruce Goldberger. « “Bath Salts” Intoxication ». New England Journal of Medicine 365, no 10 (8 septembre 2011) : 967–68. http://dx.doi.org/10.1056/nejmc1107097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Aguirre-Ode, Fernando. « Hydrolysis of salts ». Journal of Chemical Education 70, no 8 (août 1993) : 690. http://dx.doi.org/10.1021/ed070p690.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Cardinali, M. E., C. Giomini et G. Marrosu. « Hydrolysis of salts ». Journal of Chemical Education 70, no 8 (août 1993) : 690. http://dx.doi.org/10.1021/ed070p690.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Malinowski, Edmund R. « Hydrolysis of salts ». Journal of Chemical Education 70, no 8 (août 1993) : 691. http://dx.doi.org/10.1021/ed070p691.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kumar, Anil. « Aqueous guanidinium salts ». Fluid Phase Equilibria 180, no 1-2 (avril 2001) : 195–204. http://dx.doi.org/10.1016/s0378-3812(01)00351-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Conley, Brandon D., Burl C. Yearwood, Sean Parkin et David A. Atwood. « Ammonium hexafluorosilicate salts ». Journal of Fluorine Chemistry 115, no 2 (juin 2002) : 155–60. http://dx.doi.org/10.1016/s0022-1139(02)00046-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Shcherbakova, I. V., S. V. Verin et E. V. Kuznetsov. « 2-Benzopyrylium salts ». Chemistry of Natural Compounds 25, no 1 (1989) : 65–69. http://dx.doi.org/10.1007/bf00596704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Verin, S. V., D. �. Tosunyan, P. I. Zakharov, V. K. Shevtsov et E. V. Kuznetsov. « 2-Benzopyrylium salts. » Chemistry of Heterocyclic Compounds 26, no 9 (septembre 1990) : 980–83. http://dx.doi.org/10.1007/bf00472475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhivich, A. B., G. I. Koldobskii et V. A. Ostrovskii. « Tetrazolium salts (review) ». Chemistry of Heterocyclic Compounds 26, no 12 (décembre 1990) : 1319–28. http://dx.doi.org/10.1007/bf00473958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie