Thèses sur le sujet « Saccharomyces cerevisiae, cell cycle, Snf1 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Saccharomyces cerevisiae, cell cycle, Snf1 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
BUSNELLI, SARA. « Protein Kinase Snf1/AMPK : a new regulator of G1/S transition in Saccharomyces cerevisiae ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40994.
Texte intégralNICASTRO, RAFFAELE. « Role of Snf1/AMPK as regulator of cell cycle, signal transduction and metabolism in Saccharomyces cerevisiae ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/68465.
Texte intégralSnf1 is a serine/threonine kinase required by the yeast S. cerevisiae to grow in nutrient-limited conditions and to utilize carbon sources alternative to glucose. In our laboratory we previously demonstrated that lack of Snf1 causes an impairment of the G1/S transition of the cell cycle and a defect in the expression of genes of the G1 phase, even in condition of glucose sufficiency (2% glucose). It was therefore investigated the involvement of Snf1 in three important cellular processes: cycle, signal transduction and metabolism. To demonstrate the necessity of the catalytic activity of Snf1 for a proper G1/S transition was utilized a Snf1-I132G strain, in which the catalytic activity of the kinase can be inhibited by the specific inhibitor 2NM-PP1. The impairment of the G1/S transition and of the transcription of G1 genes in this strain in the presence of the inhibitor was demonstrated performing α-factor release and elutriation experiments. Studying the involvement of Snf1 in the regulation of other signaling pathways it was identified, through CoIP/MS experiments, the interaction between Snf1 and adenylate cyclase (Cyr1), the enzyme responsible for the synthesis of cyclic AMP (cAMP), activator of PKA. The RAS Associating Domain of Cyr1, containing 2 putative Snf1 phosphorylation sites, was purified in E. coli and its in vitro phosphorylation by Snf1 was demonstrated. Moreover, in a Snf1-G53R strain, in which the kinase is constitutively active, we found a reduction of 50% of intracellular cAMP, together with the deregulation of the expression of PKA-dependent genes. We therefore hypothesized the existence of a crosstalk between the Snf1 and PKA pathways.To investigate the global role of Snf1 in conditions of nutritional sufficiency we performed a transcriptomic analysis (gene chip) of wt and snf1Δ cells grown in 2% and 5% glucose, evidencing that lack of Snf1 causes the deregulation of about 1000 genes in 2%, but not in 5% glucose. Among these there are glycolytic genes and therefore possible metabolic deregulations in the absence of Snf1 were investigated. snf1Δ cells grown in 2% glucose secrete more ethanol and acetate, in proportion to their growth rate, compared to the wt. This enhanced glycolytic activity is abolished, as observed for transcripts, in 5% glucose. We further demonstrated that in our growth condition snf1Δ cells accumulate fatty acids, as previously observed in low glucose, due to the lack of Snf1-dependent phosphorylation of acetyl-CoA carboxylase. An extended metabolic analysis, both through mass spectrometry and NMR, revealed in detail the metabolic rewiring occurring in snf1Δ cells to guarantee the growth in spite of the enhanced anabolic processes. snf1Δ cells in 2% glucose accumulate glutamate, coming from the degradation of supplemented amino acids, in an essential process to maintain the growth rate of the mutant. Moreover, the mutant accumulates TCA cycle intermediates and in 2%, but not 5% glucose, is negatively affected by treatment with antimycin A, inhibitor of the electron transport chain. The treatment impairs growth and ATP content and increases NADH in the mutant, demonstrating the necessity of its mitochondrial reoxidation.
Kiser, Gretchen Louise. « Cell cycle checkpoint control in budding yeast Saccharomyces cerevisiae ». Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187074.
Texte intégralGooding, Christopher Michael. « Mitochondrial DNA replication and transmission in Saccharomyces cerevisiae ». Thesis, University of Hertfordshire, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303447.
Texte intégralChotai, Dipti. « Cell cycle regulated expression of the DBF2 gene in Saccharomyces cerevisiae ». Thesis, University of Hertfordshire, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359005.
Texte intégralBahman, A. M. « Studies on the CDC7 gene product of Saccharomyces cerevisiae ». Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233154.
Texte intégralMapa, Claudine E. « Identification of Deubiquitinating Enzymes that Control the Cell Cycle in Saccharomyces cerevisiae ». eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/1004.
Texte intégralMitteau, Romain. « Régulation par la phosphorylation d’un module Rho GTPase dans la levure Saccharomyces cerevisiae ». Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22084/document.
Texte intégralThe eukaryotic cell cycle is characterized by abrupt and dynamic changes in cellular polarity as chromosomes are duplicated and segregated. Those dramatic cellular events require coordination between the cell cycle machinery and polarity regulators. The mechanisms underlying this coordination are not well understood. In the yeast S. cerevisiae, as in other eukaryotes, the GTPase Cdc42 plays an important role in the regulation of cell polarity. Cdc42 regulators constitute a GTPase module that undergoes dynamic phosphorylation during the cell cycle by conserved kinases including Cyclin-Dependent Kinase 1 (Cdk1) and p21-activated kinase (PAK). These kinases and substrates may link cell polarity to the cell cycle progression. Using in vitro approaches, we have reconstituted the phospho-regulation of the Cdc42 Guanine Nucleotide Exchange Factor (GEF), Cdc24. We have identified a possible mechanism of Cdc24 regulation involving a scaffold-dependent increase in Cdc24 phosphorylation by Pak and Cdk1. This phosphorylation moderately increases the affinity of Cdc24 for another GTPase module component, the scaffold Bem1. Moreover, by testing the effect of other GTPase module components on the phosphorylation of Cdc24, and thus on its interaction with the scaffold, we identified an antagonistic function for the GTPase Activating Protein (GAP) Rga2. Our in vivo data of rga2 mutants suggest that Rga2 phosphorylation by Cdk1 inhibits its GAP activity. We propose a tentative model to explain the inhibition of Cla4 by Rga2 and its presence in a complex containing Cdc24 and Bem1. The presence of the GAP protein in the complex may be a mechanism that reduces Cdc24 phosphorylation in case of a mistargetting of the complex in order to downregulate the GEF/Scaffold dimer. Since the PAK component of the GTPase module is itself activated by Cdc42 activity, our results are consistent with a model in which inputs from the cell cycle lead to auto-amplification of the Cdc42 GTPase module. In S. pombe, polarised growth requires a gradient of activation of Cdc42 due to GEF and GAP segregation. Here we show that all Cdc42 GAPs localise to the polarised site during the cell cycle. Those localisations are consistent with a requirement of Cdc42 cycling to maintain a polarity cap. Our results may suggest that Cdc42 GAPs localisations in S. cerevisiae are different from current knowledge in S. pombe
Dieckhoff, Patrick. « Protein modification and degradation in the cell cycle of the yeast Saccharomyces cerevisiae ». Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972638644.
Texte intégralPic-Taylor, Aline. « The regulation of the cell division cycle by forkhead proteins in Saccharomyces cerevisiae ». Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341787.
Texte intégralSchaefer, Jonathan Brook. « Regulation of G1 exit by the Swi6p transcription factor / ». Thesis, Connect to this title online ; UW restricted, 2007. http://hdl.handle.net/1773/5080.
Texte intégralMiller, Kristi E. « Negative Regulation of Polarity Establishment in Saccharomyces cerevisiae ». The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555329407450767.
Texte intégralHarris, M. R. « G1/S transcriptional regulation in Saccharomyces cerevisiae integrates cell cycle progression and genome stability ». Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1419003/.
Texte intégralVenning, Bruce Martyn. « Cloning and characterization of an osmotically dependent suppressor of the cdc4 mutation of Saccharomyces cerevisiae ». Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257467.
Texte intégralAtkins, Benjamin David. « Inhibition of Cdc42 during mitotic exit is required for cytokinesis in Saccharomyces cerevisiae ». Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11257.
Texte intégralCalzone, Laurence. « Temporal organization of the budding yeast cell cycle : general principles and detailed simulations ». Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11070.
Texte intégralPh. D.
Adrover, Nadal Miguel Angel. « Qualitative and quantitative study of the effect of osmotress on cell cycle of Saccharomyces cerevisiae ». Doctoral thesis, Universitat Pompeu Fabra, 2009. http://hdl.handle.net/10803/7211.
Texte intégralEl control del cicle cel·lular per Proteïna Cinases Activades per Estrès (SAPKs) es un aspecte essencial per a l'adaptació als estímuls extracel·lulars. A Saccharomyces cerevisiae, l'activació de la SAPK Hog1, resulta en un retardament de la transcripció de les ciclines de G1 (CLN1,2) i l'estabilització del inhibidor de les ciclines del tipus B, SIC1, i per tant posposa l'entrada en fase S. Els resultats que aquí s'exposen, mostren, mitjançant la combinació de modelatge matemàtic i experiments quantitatius in vivo, que, abans d'Start, el control de la transició es duu a terme principalment inhibint l'expressió de les ciclines, tant les de G1 (CLN1,2) com les de la fase S (CLB5,6). Per altra banda, després d'Start, la fosforilació i estabilització de Sic1 per part de Hog1 esdevé un fet necessari per a prevenir la iniciació de la replicació abans d'adaptar-se. Per tant, hem descobert aquí que la regulació de Sic1 i les ciclines juguen un paper diferent segons el moment en que apareix l'estrès. Hem descrit també, que Hog1 produeix una parada a G2 a través de la inhibició de la transcripció de CLB2 i la fosforilació d'Hsl1, la qual promou la deslocalització d'Hsl7 i la subsegüent estabilització de Swe1, un inhibidor específic de Clb1,2-Cdc28, i d'aquesta manera es posposa l'entrada en Anafase. Tot plegat, demostra que l'ús d'aproximacions pròpies de la Biologia de Sistemes és útil per a entendre de quina forma una via de senyalització intracel·lular incideix sobre el control del cicle cel·lular, mes enllà de la pura descripció de la mecànica del sistema. D'aquesta forma, proposem que una sola MAPK modula distints punts de control del cicle cel·lular per millorar la probabilitat de supervivència en front de l'estrès osmòtic.
Doris, Kathryn S. « The regulation of the cell division cycle in response to oxidative stress in Saccharomyces cerevisiae ». Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493072.
Texte intégralO'Callaghan, Peter. « The regulation of the cell division cycle of Saccharomyces cerevisiae by the oxidative stress response ». Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413942.
Texte intégralPala, Prashna Jatindra. « Biochemical and biophysical characterisation of the Saccharomyces cerevisiae cell-cycle transcription factors, SBF and MBF ». Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271258.
Texte intégralAndalis, Alexis Albert 1973. « Polyploidy in Saccharomyces cerevisiae leads to the loss of cell cycle control in stationary phase ». Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29783.
Texte intégralIncludes bibliographical references.
Advances in genome sequencing and comparative genomics have uncovered ancient duplications in the genomes of many extant organisms. Evidence for large regional duplications is observed in eukaryotic organisms that include yeast, plants, fish, and humans. Furthermore, phylogenetic analysis of paralogous duplications within these organisms provides support for a single duplication event of the entire genome. The prevalence of genomic duplications lends credence to proposals that suggest that evolution is driven by polyploidization. This evidence must be balanced by recent experiments that demonstrate that newly formed polyploid genomes manifest problems in genomic stability, gene regulation, and development. In order to determine the consequences of nascent duplications of the entire genome, I created isogenic polyploid strains in Saccharomyces cerevisiae. These newly formed polyploids do not grow abnormally during exponential growth. Furthermore, they are not increased or decreased in their sensitivity to a variety of stresses including oxidative stress, high osmolarity, salt stress, toxic ions, and growth at high temperatures. However, polyploid strains of S. cerevisiae rapidly lose viability under conditions of nutrient deprivation. In contrast to isogenic haploids that remain viable for weeks and even months, tetraploid yeast are completely inviable after approximately 10-15 days in synthetic media. Analysis of the growth patterns of haploid and tetraploid cells during stationary phase reveals that tetraploids are defective for growth arrest during nutrient deprivation.
(cont.) Furthermore, alterations that impede their inappropriate mitotic growth, such as deletion of the G1 cyclin, CLN3, can restore viability in tetraploids during stationary phase. The stationary phase defects found in tetraploid cells are notably similar to those observed in haploid cells that constitutively activate the glucose sensing Ras/cAMP pathway. In addition, all of these defects are suppressed by overexpression of the Ras/cAMP pathway inhibitor, RPII. Although these data suggest a role for RPIH in the restoration of tetraploid viability, the precise function remains elusive. Nevertheless, RPI1 may define a compensatory change that permits the survival of nascent polyploid organisms.
by Alexis Albert Andalis.
Ph.D.
Liu, Natalie, Charles W. Putnam et Jesse D. Martinez. « Modeling Cell Cycle Effects of Human 14-3-3 Tumor Promoting Proteins in Saccharomyces Cerevisiae ». Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244407.
Texte intégralBUSTI, STEFANO. « Glucose and regulation of cell cycle in saccharomyces cerevisiae : analisys of mutans impaired in sugar uptake mechanisms ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7482.
Texte intégralMünzner, Ulrike Tatjana Elisabeth. « From birth to birth A cell cycle control network of S. cerevisiae ». Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18566.
Texte intégralThe survival of a species depends on the correct transmission of an intact genome from one generation to the next. The cell cycle regulates this process and its correct execution is vital for survival of a species. The cell cycle underlies a strict control mechanism ensuring accurate cell cycle progression, as aberrations in cell cycle progression are often linked to serious defects and diseases such as cancer. Understanding this regulatory machinery of the cell cycle offers insights into how life functions on a molecular level and also provides for a better understanding of diseases and possible approaches to control them. Cell cycle control is furthermore a complex mechanism and studying it holistically provides for understanding its collective properties. Computational approaches facilitate holistic cell cycle control studies. However, the properties of the cell cycle control network challenge large-scale in silico studies with respect to scalability, model execution and parameter estimation. This thesis presents a mechanistically detailed and executable large-scale reconstruction of the Saccharomyces cerevisiae cell cycle control network based on reaction- contingency language. The reconstruction accounts for 229 proteins and consists of three individual cycles corresponding to the macroscopic events of DNA replication, spindle pole body duplication, and bud emergence and growth. The reconstruction translated into a bipartite Boolean model has, using an initial state determined with a priori knowledge, a cyclic attractor which reproduces the cyclic behavior of a wildtype yeast cell. The bipartite Boolean model has 2506 nodes and correctly responds to four cell cycle arrest chemicals. Furthermore, the bipartite Boolean model was used in a mutational study where 37 mutants were tested and 32 mutants found to reproduce known phenotypes. The reconstruction of the cell cycle control network of S. cerevisiae demonstrates the power of the reaction-contingency based approach, and paves the way for network extension with regard to the cell cycle machinery itself, and several signal transduction pathways interfering with the cell cycle.
Knockleby, James. « A role for the «Saccharomyces cerevisiae» kinetochore protein Ame1 in cell cycle control and MT-kinetochore attachment ». Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22031.
Texte intégralDans toute cellule en division, la haute fidélité de la ségrégation des chromosomes passe par la formation d'attachements bi orientés entre les microtubules du fuseau (MT) et les chromosomes. Le kinétochore est la structure faisant le lien entre les MT et les chromosomes. Le complexe COMA (Ctf19, Okp1, Mcm21, Ame1) est un sous-complexe central du kinétochore, et Ame1 en est un composant essentiel quoique peu caractérisé. Dans le but de caractériser Ame1, j'ai utilisé deux allèles du complexe COMA: ame1-4 et okp1-5. J'ai examiné le rôle d'Ame1 dans le cadre du kinétochore et de la maintenance du point de contrôle de l'assemblage du fuseau ainsi que dans la formation et la réparation des attachements entre kinetochore et MT. J'ai constaté que, dans les cellules ame1-4, le complexe COMA est compromis. Dans les cellules okp1-5, le complexe COMA est également perturbé, alors qu'Ame1 est localisé au kinétochore. Toutefois, dans les cellules ame1-4 comme dans les cellules okp1-5, la stabilité de la liaison à l'ADN et aux MT des complexes du kinétochore demeure intacte. J'ai utilisé la différence entre les mutants okp1-5 et ame1-4 pour mieux comprendre la relation entre Ame1 et le complexe COMA. Dans les cellules ame1-4, les attachements des chromatides soeurs sont déficients. Ceux-ci ne sont pas réparés et sont incapables de maintenir l'arrêt de croissance suite à l'activation du point de contrôle. Nous avons constaté que l'inactivation du complexe COMA provient de l'incapacité à localiser Sli15 au kinétochore. Par ailleurs, Sli15 joue un rôle dans la maintenance du point de contrôle et la migration des protéines passagères du fuseau. Le fait que les cellules ame1-4 présentent une cytokinèse déficiente indique une perte de migration des protéines passagères. Enfin, la surexpression d'OKP1 dans les cellules ame1-4 rétablit la localisation de ame1-4 et la maintenance du point de contrôle mais pas la localisation de Sli15 au$
Escoté, Miró Xavier. « Control of cell cycle progression by the last MAPK Hog1 ». Doctoral thesis, Universitat Pompeu Fabra, 2005. http://hdl.handle.net/10803/7186.
Texte intégralPathak, Ritu. « Regulation of initiation of division in Saccharomyces cerevisiae : characterization of the role of DCR2, GID8, and KEM1 in completion of START ». Texas A&M University, 2006. http://hdl.handle.net/1969.1/4819.
Texte intégralDauban, Lise. « Organisation du génome par le complexe cohésine chez la levure Saccharomyces cerevisiae ». Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30100.
Texte intégralCohesin is an evolutionary-conserved complex composed of a ring capable of DNA entrapment and of auxiliary proteins regulating its association with DNA. On the one hand, cohesin confers sister chromatid cohesion required for their proper segregation and on the other hand it establishes and maintains chromatin looping. Chromatin loops are crucial for assembly of topological domains, gene expression and genome stability. However, mechanisms driving their establishment remain to be elucidated. According to loop extrusion model, cohesin would capture small loops and enlarge them by extruding DNA throughout its ring. This model predicts that loop size would depend on both cohesin residence time on DNA and on its processivity. Deciphering cohesin regulation is thus fundamental to understand chromosome biology. In this study, we showed that mitotic chromosome arms of yeast Saccharomyces cerevisiae are organised in cohesin-dependent chromatin loops. We studied the role of cohesin regulatory subunits Pds5, Wpl1 and Eco1 on loop establishment. Our data show that Pds5 inhibits loop expansion via Wpl1 and Eco1. As previously described in mammals, Wpl1 counteracts loop expansion by dissociating cohesin from DNA. Our results suggest that Eco1 would inhibit cohesin translocation on DNA, required for loop expansion. We then studied how these proteins contribute to the organisation of the ribosomal DNA array (rDNA), a cohesin-rich, highly transcribed sequence segregated away from the rest of the genome. Our data point toward a central role for Pds5 in organising this genomic region, independently of Wpl1 and Eco1. To study in detail rDNA spatial organisation, we developed a dedicated image analysis to assess its organisation in three dimensions. We have unveiled an underlying organisation for rDNA, made by a succession of small domains spatially organised by cohesin. This study opens large perspectives towards a better understanding of cohesin regulation in genome organisation
Eckert, Carrie Ann. « Implications and dynamics of pericentric cohesin association during mitosis in Saccharomyces cerevisiae / ». Connect to full text via ProQuest. IP filtered, 2006.
Trouver le texte intégralTypescript. Includes bibliographical references (leaves 126-147). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
Bolte, Melanie. « Regulation of the anaphase promoting complex (APC-C) in the mitotic and meiotic cell cycle of Saccharomyces cerevisiae ». Doctoral thesis, [S.l.] : [s.n.], 2004. http://webdoc.sub.gwdg.de/diss/2004/bolte/bolte.pdf.
Texte intégralSemple, Jeffrey. « Characterization of the role of Orc6 in the cell cycle of the budding yeast Saccharomyces cerevisiae ». Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2969.
Texte intégralTRIPODI, FARIDA. « Protein Kinase CK2 : a major regulator of the G1/S transition in Saccharomyces cerevisiae ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7478.
Texte intégralTeufel, Lotte. « Cyclins and their roles in cell cycle progression, transcriptional regulation and osmostress adaptation in Saccharomyces cerevisiae. A transcriptome-wide and single cell approach ». Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21205.
Texte intégralThe eukaryotic cell cycle is a highly ordered process. For its timing and progression, oscillating gene expression is crucial. The stability of cell cycle regulation and the exact timing is still a fundamental question in cell biology. Specific events, like DNA replication and nuclear division can be assigned to four distinct phases. These events are regulated by cyclin-dependent kinases, cyclins and their inhibitors. In Saccharomyces cerevisiae cyclin-dependent kinases (Cdc28, Pho85) are present throughout the cell cycle, while cyclins and their inhibitors are only expressed and active during specific phases. The G1 cyclins Cln1-3 are essential players to induce oscillating gene expression and are thereby involved in the fine-tuning of the cell cycle. To understand the role of the G1 cyclins for exact cell cycle timing and oscillating gene expression, time-resolved, transcriptome-wide gene expression in wild type and cyclin deletion mutants were measured. Characteristic expression profiles were clustered, precise peak times for each gene were estimated, a transcription factor network was integrated and cell cycle phase durations were defined. To further understand the role and differences of each cyclin osmostress was applied. Furthermore the expression of two cyclins (PCL1 and PCL9) corresponding to the cyclin-dependent kinase Pho85 was measured in single cells. Using RNA-Fluorescence In Situ Hybridization (FISH) and cell cycle progression markers, high and low expression phases and absolute numbers of mRNAs were obtained. Gene expression was quantified under normal and osmostressed growth conditions to understand the necessity of the cyclins for osmostress adaptation in different cell cycle phases. By the combination of a single cell and a transcriptome-wide approach distinct roles of G1 cyclins Cln1, Cln2 and Cln3 were deciphered and an insight in the backup mechanisms during cell cycle progression for normal and osmostressed growth conditions were proposed.
Pietruszka, Patrycja. « Role of Tem1 phosphorylation in the control of mitotic exit and spindle positioning ». Thesis, Montpellier 1, 2013. http://www.theses.fr/2013MON1T021.
Texte intégralIn the budding yeast Saccharomyces cerevisiae a faithful mitosis requires positioning of the mitotic spindle along the mother-bud axis to ensure proper chromosome segregation. This is achieved by two distinct but functionally redundant mechanisms that require the APC (adenomatous polyposis coli)-like protein Kar9 and dynein (Dyn1), respectively. During metaphase, Kar9 localizes asymmetrically on the mitotic spindle, with a prominent accumulation on astral microtubules emanating from the old spindle pole body (SPB – i.e. the yeast equivalent of the centrosome) that is normally directed towards the bud. In case of spindle misalignment, a surveillance mechanism called Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis, thereby providing the time necessary to correct spindle alignment. The main target of the SPOC is the small GTPase Tem1, which activates a signal transduction cascade called Mitotic Exit Network (MEN) that drives cells out of mitosis and triggers cytokinesis. Tem1 is localized at SPBs, with an increasingly asymmetric pattern during the progression from metaphase to anaphase, when Tem1 is concentrated on bud-directed old SPB. Recent data have implicated MEN components also in the regulation of Kar9 localization at SPBs and in setting the right polarity of SPBs inheritance during metaphase. In particular, Kar9 localizes more symmetrically in MEN mutants than in wild type cells and this leads to spindle orientation and SPB inheritance defects (i.e. with the new SPB being oriented towards the bud). A key question emerging from these data is how MEN activity is regulated to promote proper Kar9 localization and spindle positioning in metaphase, while being restrained until telophase for what concerns its mitotic exit and cytokinetic functions. We hypothesised that Tem1 post-translational modifications might be relevant for this control and for this reason we have been focusing on the role of Tem1 phosphorylation. Tem1 was found in a wide phosphoproteomic study to be phosphorylated on two tyrosines (Y40 and Y45) located at its N-terminus. We constructed a non-phosphorylatable mutant, TEM1-Y40F,Y45F, where the two phosphorylated tyrosines were mutated to phenylalanine. This mutant allele was able to rescue the lethality caused by TEM1 deletion, suggesting that it retains all its the essential functions. The kinetics of cell cycle progression of TEM1-Y40F,Y45F cells was similar to that of wild type cells, suggesting that lack of Tem1 phosphorylation is unlikely to affect mitotic exit. In addition, the TEM1-Y40F,Y45F allele did not affect the SPB localization of Tem1 and its regulatory GTPase-activating protein Bub2/Bfa1 during the cell cycle. Moreover, although the Tem1-Y40F,Y45F mutant protein showed reduced GTPase activity in vitro, it did not cause SPOC defects in vivo and could efficiently respond to spindle mispositioning. Altogether, these results suggest that lack of Tem1 phosphorylation does not affect the late mitotic functions of the GTPase. In contrast, we found that Tem1 phosphorylation is required for Kar9 asymmetry at SPBs and proper spindle positioning during metaphase. Indeed, TEM1-Y40F,Y45F cells display a more symmetric pattern of Kar9 distribution at SPBs in this cell cycle stage, as well as spindle position and orientation defects. We are currently investigating if Tem1 phosphorylation also regulates the pattern of SPB inheritance. Finally, an important question that we are trying to answer is “what is the kinase that phosphorylates Tem1?” The best candidates are the wee1-like kinase Swe1, which is the only true tyrosine kinase of budding yeast, and Mps1, a dual-specificity protein kinase controlling SPB duplication. While we are developing specific tools to study Tem1 phosphorylation and ultimately identify its promoting kinase, we gained preliminary data suggesting that both kinases might be involved in spindle positioning
Buchanan, Christina Diane. « Identification and characterization of a checkpoint triggered by delayed replication in S. cerevisiae / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/10253.
Texte intégralPope, Patricia A. « Investigation of Multiple Concerted Mechanisms Underlying Stimulus-induced G1 Arrest in Yeast : A Dissertation ». eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/680.
Texte intégralPope, Patricia A. « Investigation of Multiple Concerted Mechanisms Underlying Stimulus-induced G1 Arrest in Yeast : A Dissertation ». eScholarship@UMMS, 2006. http://escholarship.umassmed.edu/gsbs_diss/680.
Texte intégralBhaduri, Samyabrata. « Regulation of CDK1 Activity during the G1/S Transition in S. cerevisiae through Specific Cyclin-Substrate Docking : A Dissertation ». eScholarship@UMMS, 2014. http://escholarship.umassmed.edu/gsbs_diss/871.
Texte intégralLázari, Lucas Cardoso. « Modelagem do ciclo celular e influência dos lncRNAs em Saccharomyces cerevisiae expostas a altas concentrações de etanol ». Botucatu, 2020. http://hdl.handle.net/11449/192925.
Texte intégralResumo: A intensa utilização de combustíveis fósseis gerapreocupações constantes devido aos impactos de sua combustão ao meio ambiente. Os biocombustíveis são uma alternativa viável aos combustíveis fósseis por apresentarem vantagens como serem menos agressivos ao meio ambiente. O bioetanol é um dos biocombustíveis mais utilizados no mundo e sua produção pode ser feita pela fermentação realizada pela levedura Saccharomyces cerevisiae. No entanto, altas concentrações de etanol inibem diversos mecanismos biológicos da levedura, causando a diminuição da produtividade. A partir de resultados prévios, observou-se que o ciclo celular é uma das vias mais afetadas pelo etanol e, além disso, constatou-se a presença de lncRNAs regulando esta via emduas linhagens de S. cerevisiae, a BY4742 e SEY6210. Utilizando operadores Booleanos, um modelo lógico discreto foi desenvolvido para o ciclo celular no qual os nós do sistema assumem até quatro valores discretos que representam a quantidade ou o graude ativaçãodesses nós. O modelo desenvolvido apresentou boa performance preditiva, acertando 87.27% dos 109 fenótipos obtidosda literatura, tornando possível a simulação de novos elementos. Experimentos prévios demonstraram que as leveduras de baixatolerância ao etanol conseguem retomar o crescimento mais rápido do que as de alta tolerância. Nesse trabalho, simulações feitas com dados de expressão diferencial via RNA-Seq permitiu inferir que isso ocorre porque as linhagens de baixa tolerância sofrem arre... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The intense use of fossil fuels raised concern about the future due to their negative environmental impact. Bio-fuels are alternatives to the fossil fuels due to be biodegradable and less environmentally harmful. The bio-ethanol is one of the most popular bio-fuel. It can be produced by fermentation using the yeast Saccharomyces cereviae. However, high ethanol concentration inhibits the yeast decreasing the ethanol yield. Previous data of our groups showed the cell cycle is one of most affected pathways during ethanol stress. Moreover, it was found lncRNAs regulating this pathway in the BY4742 and SEY6210 strains. Using Boolean operators the discrete logical model of the cell cycle was developed. The nodes may get up to four discrete values to represent theirs abundance of activation degree. This model correctly modeled around 87.27% of correct predictions based on 109 phenotypes from the literature, hence, this model is desirable to predict cell cycle behavior after addition of new elements. According to previous data of our group, the lower tolerant strains recover the normal growth faster than higher tolerant strains after stress relief. The simulations here presented by adding RNASeq information into the model, showed a cell cycle arrest at final phase of the cell cycle (M phase) in lower tolerant strains whereas in the higher tolerant ones this arrest occurs at the first phase (G1 phase) during the ethanol treatment. The simulations also indicated that in SEY6210 (low to... (Complete abstract click electronic access below)
Mestre
Rai, Urvashi. « Spindle Assembly Checkpoint Stability Depends on Integrity of the Nucleolus and Septins in Saccharomyces cerevisiae ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1491568383512984.
Texte intégralParsons, Michelle L. « The Role of SIR4 in the Establishment of Heterochromatin in the Budding Yeast Saccharomyces cerevisiae ». Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31028.
Texte intégralDeniz, Ozgen. « Nucleosome Positioning in Budding Yeast = Posicionamiento de nucleosomas en Saccharomyces cerevisiae ». Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145763.
Texte intégralNuestro estudio se centra en el posicionamiento de nucleosomas a nivel genómico en levadura, con tal de explorar los factores determinantes de nucleosomas y su plasticidad a lo largo del ciclo celular, así como su relación con la expresión génica basándonos en la cantidad de mARN celular. Encontramos que las regiones libres de nucleosomas (NFRs en inglés) en 5’ y 3’ contienen propiedades físicas inusuales, las cuales son intrínsecas del ADN genómico. Además, demostramos que estas propiedades físicas actúan sinérgicamente con factores de transcripción para definir las NFRs. Una vez la NFR está definida, el posicionamiento de nucleosomas en torno al inicio de transcripción (TSS en inglés) puede predecirse con modelos estadísticos simples. No obstante, también observamos que los nucleosomas son bastante dinámicos en las regiones distales a 5’NFRs y poseen distintos mecanismos reguladores. Nuestro análisis comparativo acerca de la organización de los nucleosomas reveló que la cromatina de hecho exhibe una configuración distinta debido al reordenamiento dependiente de la replicación en fase S, mostrando una mayor sensibilidad de corte por el enzima MNase y un mayor número de nucleosomas deslocalizados a lo largo del genoma. Adicionalmente, observamos características particulares en fase M, donde la cromatina sufre un mayor grado de compactación. Notablemente, estos cambios en la organización de la cromatina son repentinos y agudos y sólo afectan a algunas regiones del genoma, mientras que la mayoría de genes presentan una conservación del patrón de nucleosomas a lo largo del ciclo celular. El análisis detallado en torno a los orígenes de replicación muestra una NFR más ancha en fase G1, debido a la unión del complejo pre-replicatorio. Una vez se activa el origen, los nucleosomas sólo ocupan parcialmente la NFR, debido a la unión constitutiva del complejo de origen de replicación (ORC en inglés). También proporcionamos evidencias de que los orígenes tempranos tienden a tener una organización nucleosomal más ordenada que los tardíos. Finalmente, ilustramos que los nucleosomas centroméricos poseen un posicionamiento idóneo y asimismo, un ensamblaje distinto. Sin embargo, nuestro análisis también mostró la dinámica de los nucleosomas centroméricos a lo largo del ciclo celular, indicando que de hecho su composición puede oscilar a lo largo del ciclo celular. En conjunto, nuestro detallado estudio proporciona una imagen dinámica del posicionamiento de nucleosomas y sus factores determinantes; nuevos indicios respecto a la organización de la cromatina en regiones reguladoras clave en base al ciclo celular y su conexión con la expresión génica; y finalmente, añade una nueva dimensión a la caracterización de los nucleosomas centroméricos.
Pessoa-Brandão, Luis. « Genetic and molecular studies of Saccharomyces cerevisiae Cdc7-Dbf4 kinase function in DNA damage-induced mutagenesis / ». Connect to full text via ProQuest. IP filtered, 2005.
Trouver le texte intégralGOTTI, LAURA. « Nutritional modulation of cell size at s phase initiation in the buddine yeast saccharomyces cerevisiae : a role for glucose sensing and the cyclin dependent kinase inhibitor ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19573.
Texte intégralCharton, Romain. « Étude du comportement de la chromatine, de la régulation de la transcription et réparation des gènes de l’ARNr avant la réplication de l’ADN et assemblage de la réparation par excision de nucléotides chez Saccharomyces cerevisiae ». Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9527.
Texte intégralAbstract : The nucleolus is thought to be a “factory” involve in the production of ribosomes. This production is the most energetically consuming process in the cell. The three RNA polymerases are involved and this represents 80% of the total transcription activity of the cell. Three quarters of this transcriptional activity correspond to the synthesis of rRNA by the RNA polymerase I (RNAPI). So a better understanding of the cellular mechanisms taking place in this compartment may help for the development of new drugs against cancer. The synthesis of rRNA by RNAPI is regulated at three levels: initiation of transcription, elongation and the number of rRNA genes in transcription. Most of the works that characterized those levels of regulation were done in exponentially growing cells. During my work, I studied the regulation of RNAPI during the G1 phase of the cell cycle and during the early S phase. So my results have shown that if the chromatin of the rRNA genes mostly depleted of nucleosomes, the regulation of the RNAPI differs in cells in G1 and early S phase. I could observe that in G1, RNAPI transcription concentrates on a reduced number of transcribed rRNA genes. In cells arrested in early S phase with hydroxyurea, RNAPI transcription is disrupted by a defect in rRNA processing. With this results on the nature of the ribosomal genes in G1, I started the analysis of the DNA repair of those genes during this phase of the cell cycle. In UVC irradiated exponentially growing cells, the rRNA genes are closing. But in cells synchronized in G1, I could not observe the deposition of nucleosomes after UVC irradiation. Moreover, my results show an increase repair of the locus. In parallel, I have explored the assembly of the complex of nucleotide excision repair. However, the results were not conclusive.
Müller, Dirk [Verfasser]. « Model-Assisted Analysis of Cyclic AMP Signal Transduction in Saccharomyces cerevisiae – cAMP as Dynamic Coordinator of Energy Metabolism and Cell Cycle Progression / Dirk Müller ». Aachen : Shaker, 2006. http://d-nb.info/1170528538/34.
Texte intégralAdkins, Melissa Wess. « The role of histone chaperones in chromatin structure and gene expression / ». Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2006.
Trouver le texte intégralTypescript. Includes bibliographical references (leaves 147-164). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
Flaman, Jean-Michel. « La levure Saccharomyces cerevisiae : un modèle pour l'étude de l'activité transcriptionnelle de p53 et de son altération dans les cancers ». Rouen, 1997. http://www.theses.fr/1997ROUES084.
Texte intégralDražková, Jana. « Emergentní vlastnosti sítě G1/S ». Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229035.
Texte intégralPuddu, F. « Functional Analysis of the Cell Cycle Protein Dpb11 in Response to DNA Damage and Replicative Stress ». Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/158404.
Texte intégral