Littérature scientifique sur le sujet « Saccharomyces cerevisiae, cell cycle, Snf1 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Saccharomyces cerevisiae, cell cycle, Snf1 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Saccharomyces cerevisiae, cell cycle, Snf1"
Newcomb, Laura L., Jasper A. Diderich, Matthew G. Slattery et Warren Heideman. « Glucose Regulation of Saccharomyces cerevisiae Cell Cycle Genes ». Eukaryotic Cell 2, no 1 (février 2003) : 143–49. http://dx.doi.org/10.1128/ec.2.1.143-149.2003.
Texte intégralSoontorngun, Nitnipa, Marc Larochelle, Simon Drouin, François Robert et Bernard Turcotte. « Regulation of Gluconeogenesis in Saccharomyces cerevisiae Is Mediated by Activator and Repressor Functions of Rds2 ». Molecular and Cellular Biology 27, no 22 (17 septembre 2007) : 7895–905. http://dx.doi.org/10.1128/mcb.01055-07.
Texte intégralTimblin, Barbara K., Kelly Tatchell et Lawrence W. Bergman. « Deletion of the Gene Encoding the Cyclin-Dependent Protein Kinase Pho85 Alters Glycogen Metabolism in Saccharomyces cerevisiae ». Genetics 143, no 1 (1 mai 1996) : 57–66. http://dx.doi.org/10.1093/genetics/143.1.57.
Texte intégralGray, Joseph V., Gregory A. Petsko, Gerald C. Johnston, Dagmar Ringe, Richard A. Singer et Margaret Werner-Washburne. « “Sleeping Beauty” : Quiescence in Saccharomyces cerevisiae ». Microbiology and Molecular Biology Reviews 68, no 2 (juin 2004) : 187–206. http://dx.doi.org/10.1128/mmbr.68.2.187-206.2004.
Texte intégralMiura, Natsuko, Masahiro Shinohara, Yohei Tatsukami, Yasuhiko Sato, Hironobu Morisaka, Kouichi Kuroda et Mitsuyoshi Ueda. « Spatial Reorganization of Saccharomyces cerevisiae Enolase To Alter Carbon Metabolism under Hypoxia ». Eukaryotic Cell 12, no 8 (7 juin 2013) : 1106–19. http://dx.doi.org/10.1128/ec.00093-13.
Texte intégralDombek, Kenneth M., Valentina Voronkova, Alexa Raney et Elton T. Young. « Functional Analysis of the Yeast Glc7-Binding Protein Reg1 Identifies a Protein Phosphatase Type 1-Binding Motif as Essential for Repression of ADH2 Expression ». Molecular and Cellular Biology 19, no 9 (1 septembre 1999) : 6029–40. http://dx.doi.org/10.1128/mcb.19.9.6029.
Texte intégralHuang, Dongqing, Jason Moffat, Wayne A. Wilson, Lynda Moore, Christine Cheng, Peter J. Roach et Brenda Andrews. « Cyclin Partners Determine Pho85 Protein Kinase Substrate Specificity In Vitro and In Vivo : Control of Glycogen Biosynthesis by Pcl8 and Pcl10 ». Molecular and Cellular Biology 18, no 6 (1 juin 1998) : 3289–99. http://dx.doi.org/10.1128/mcb.18.6.3289.
Texte intégralMiller, M. E., B. R. Cairns, R. S. Levinson, K. R. Yamamoto, D. A. Engel et M. M. Smith. « Adenovirus E1A specifically blocks SWI/SNF-dependent transcriptional activation. » Molecular and Cellular Biology 16, no 10 (octobre 1996) : 5737–43. http://dx.doi.org/10.1128/mcb.16.10.5737.
Texte intégralNeef, Daniel W., et Michael P. Kladde. « Polyphosphate Loss Promotes SNF/SWI- and Gcn5-Dependent Mitotic Induction of PHO5 ». Molecular and Cellular Biology 23, no 11 (1 juin 2003) : 3788–97. http://dx.doi.org/10.1128/mcb.23.11.3788-3797.2003.
Texte intégralDu, Jian, Irem Nasir, Benjamin K. Benton, Michael P. Kladde et Brehon C. Laurent. « Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p Homolog, Is an Essential ATPase in RSC and Differs From Snf/Swi in Its Interactions With Histones and Chromatin-Associated Proteins ». Genetics 150, no 3 (1 novembre 1998) : 987–1005. http://dx.doi.org/10.1093/genetics/150.3.987.
Texte intégralThèses sur le sujet "Saccharomyces cerevisiae, cell cycle, Snf1"
BUSNELLI, SARA. « Protein Kinase Snf1/AMPK : a new regulator of G1/S transition in Saccharomyces cerevisiae ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40994.
Texte intégralNICASTRO, RAFFAELE. « Role of Snf1/AMPK as regulator of cell cycle, signal transduction and metabolism in Saccharomyces cerevisiae ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/68465.
Texte intégralSnf1 is a serine/threonine kinase required by the yeast S. cerevisiae to grow in nutrient-limited conditions and to utilize carbon sources alternative to glucose. In our laboratory we previously demonstrated that lack of Snf1 causes an impairment of the G1/S transition of the cell cycle and a defect in the expression of genes of the G1 phase, even in condition of glucose sufficiency (2% glucose). It was therefore investigated the involvement of Snf1 in three important cellular processes: cycle, signal transduction and metabolism. To demonstrate the necessity of the catalytic activity of Snf1 for a proper G1/S transition was utilized a Snf1-I132G strain, in which the catalytic activity of the kinase can be inhibited by the specific inhibitor 2NM-PP1. The impairment of the G1/S transition and of the transcription of G1 genes in this strain in the presence of the inhibitor was demonstrated performing α-factor release and elutriation experiments. Studying the involvement of Snf1 in the regulation of other signaling pathways it was identified, through CoIP/MS experiments, the interaction between Snf1 and adenylate cyclase (Cyr1), the enzyme responsible for the synthesis of cyclic AMP (cAMP), activator of PKA. The RAS Associating Domain of Cyr1, containing 2 putative Snf1 phosphorylation sites, was purified in E. coli and its in vitro phosphorylation by Snf1 was demonstrated. Moreover, in a Snf1-G53R strain, in which the kinase is constitutively active, we found a reduction of 50% of intracellular cAMP, together with the deregulation of the expression of PKA-dependent genes. We therefore hypothesized the existence of a crosstalk between the Snf1 and PKA pathways.To investigate the global role of Snf1 in conditions of nutritional sufficiency we performed a transcriptomic analysis (gene chip) of wt and snf1Δ cells grown in 2% and 5% glucose, evidencing that lack of Snf1 causes the deregulation of about 1000 genes in 2%, but not in 5% glucose. Among these there are glycolytic genes and therefore possible metabolic deregulations in the absence of Snf1 were investigated. snf1Δ cells grown in 2% glucose secrete more ethanol and acetate, in proportion to their growth rate, compared to the wt. This enhanced glycolytic activity is abolished, as observed for transcripts, in 5% glucose. We further demonstrated that in our growth condition snf1Δ cells accumulate fatty acids, as previously observed in low glucose, due to the lack of Snf1-dependent phosphorylation of acetyl-CoA carboxylase. An extended metabolic analysis, both through mass spectrometry and NMR, revealed in detail the metabolic rewiring occurring in snf1Δ cells to guarantee the growth in spite of the enhanced anabolic processes. snf1Δ cells in 2% glucose accumulate glutamate, coming from the degradation of supplemented amino acids, in an essential process to maintain the growth rate of the mutant. Moreover, the mutant accumulates TCA cycle intermediates and in 2%, but not 5% glucose, is negatively affected by treatment with antimycin A, inhibitor of the electron transport chain. The treatment impairs growth and ATP content and increases NADH in the mutant, demonstrating the necessity of its mitochondrial reoxidation.
Kiser, Gretchen Louise. « Cell cycle checkpoint control in budding yeast Saccharomyces cerevisiae ». Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187074.
Texte intégralGooding, Christopher Michael. « Mitochondrial DNA replication and transmission in Saccharomyces cerevisiae ». Thesis, University of Hertfordshire, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303447.
Texte intégralChotai, Dipti. « Cell cycle regulated expression of the DBF2 gene in Saccharomyces cerevisiae ». Thesis, University of Hertfordshire, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359005.
Texte intégralBahman, A. M. « Studies on the CDC7 gene product of Saccharomyces cerevisiae ». Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233154.
Texte intégralMapa, Claudine E. « Identification of Deubiquitinating Enzymes that Control the Cell Cycle in Saccharomyces cerevisiae ». eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/1004.
Texte intégralMitteau, Romain. « Régulation par la phosphorylation d’un module Rho GTPase dans la levure Saccharomyces cerevisiae ». Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22084/document.
Texte intégralThe eukaryotic cell cycle is characterized by abrupt and dynamic changes in cellular polarity as chromosomes are duplicated and segregated. Those dramatic cellular events require coordination between the cell cycle machinery and polarity regulators. The mechanisms underlying this coordination are not well understood. In the yeast S. cerevisiae, as in other eukaryotes, the GTPase Cdc42 plays an important role in the regulation of cell polarity. Cdc42 regulators constitute a GTPase module that undergoes dynamic phosphorylation during the cell cycle by conserved kinases including Cyclin-Dependent Kinase 1 (Cdk1) and p21-activated kinase (PAK). These kinases and substrates may link cell polarity to the cell cycle progression. Using in vitro approaches, we have reconstituted the phospho-regulation of the Cdc42 Guanine Nucleotide Exchange Factor (GEF), Cdc24. We have identified a possible mechanism of Cdc24 regulation involving a scaffold-dependent increase in Cdc24 phosphorylation by Pak and Cdk1. This phosphorylation moderately increases the affinity of Cdc24 for another GTPase module component, the scaffold Bem1. Moreover, by testing the effect of other GTPase module components on the phosphorylation of Cdc24, and thus on its interaction with the scaffold, we identified an antagonistic function for the GTPase Activating Protein (GAP) Rga2. Our in vivo data of rga2 mutants suggest that Rga2 phosphorylation by Cdk1 inhibits its GAP activity. We propose a tentative model to explain the inhibition of Cla4 by Rga2 and its presence in a complex containing Cdc24 and Bem1. The presence of the GAP protein in the complex may be a mechanism that reduces Cdc24 phosphorylation in case of a mistargetting of the complex in order to downregulate the GEF/Scaffold dimer. Since the PAK component of the GTPase module is itself activated by Cdc42 activity, our results are consistent with a model in which inputs from the cell cycle lead to auto-amplification of the Cdc42 GTPase module. In S. pombe, polarised growth requires a gradient of activation of Cdc42 due to GEF and GAP segregation. Here we show that all Cdc42 GAPs localise to the polarised site during the cell cycle. Those localisations are consistent with a requirement of Cdc42 cycling to maintain a polarity cap. Our results may suggest that Cdc42 GAPs localisations in S. cerevisiae are different from current knowledge in S. pombe
Dieckhoff, Patrick. « Protein modification and degradation in the cell cycle of the yeast Saccharomyces cerevisiae ». Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972638644.
Texte intégralPic-Taylor, Aline. « The regulation of the cell division cycle by forkhead proteins in Saccharomyces cerevisiae ». Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341787.
Texte intégralLivres sur le sujet "Saccharomyces cerevisiae, cell cycle, Snf1"
Crider, David Garry. Mitochondrial inheritance and cell cycle regulation in Saccharomyces cerevisiae. [New York, N.Y.?] : [publisher not identified], 2012.
Trouver le texte intégralHamilton, John Michael Uwe. Search for a plant homologue of the Saccharomyces cerevisiae cell cycle control gene CDC7. Manchester : University of Manchester, 1994.
Trouver le texte intégralSilencing, heterochromatin, and DNA double strand break repair. Boston : Kluwer Academic Publishers, 2001.
Trouver le texte intégralFrom a to Alpha : Yeast As a Model for Cellular Differentiation. Cold Spring Harbor Laboratory Press, 2006.
Trouver le texte intégralChapitres de livres sur le sujet "Saccharomyces cerevisiae, cell cycle, Snf1"
Tatchell, K., J. F. Cannon, L. C. Robinson et R. B. Wilson. « Suppressors of RAS Function in Saccharomyces cerevisiae ». Dans Cell Cycle and Oncogenes, 114–22. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71686-7_13.
Texte intégralJenness, D. D., A. C. Burkholder et L. H. Hartwell. « Hormonal Control of Cell Division in Saccharomyces cerevisiae ». Dans Cell Cycle and Oncogenes, 24–28. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71686-7_3.
Texte intégralGreenwood, Brianna L., et David T. Stuart. « Synchronization of Saccharomyces cerevisiae Cells for Analysis of Progression Through the Cell Cycle ». Dans Cell-Cycle Synchronization, 145–68. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2736-5_12.
Texte intégralPiatti, Simonetta. « Cell cycle regulation of S phase entry in Saccharomyces cerevisiae ». Dans Progress in Cell Cycle Research, 143–56. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5371-7_12.
Texte intégralBrock, Jo-Ann, et Kerry Bloom. « Cell Cycle Regulation of Centromere Function in Saccharomyces Cerevisiae ». Dans Chromosome Segregation and Aneuploidy, 111–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84938-1_9.
Texte intégralThevelein, Johan M. « The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae ». Dans Molecular Biology of Saccharomyces, 109–30. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8_9.
Texte intégralWu, Xiaorong, Lili Liu et Mingxia Huang. « Analysis of Changes in Protein Level and Subcellular Localization During Cell Cycle Progression Using the Budding Yeast Saccharomyces cerevisiae ». Dans Cell Cycle Checkpoints, 47–57. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-273-1_5.
Texte intégralSchuster, T., C. Price, W. Rossoll et B. Kovacech. « New Cell Cycle-Regulated Genes in the Yeast Saccharomyces cerevisiae ». Dans Recent Results in Cancer Research, 251–61. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60393-8_18.
Texte intégralSchalbetter, Stephanie A., et Jonathan Baxter. « Preparation of Cell Cycle-Synchronized Saccharomyces cerevisiae Cells for Hi-C ». Dans Methods in Molecular Biology, 155–65. New York, NY : Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9520-2_12.
Texte intégralKüntzel, H., J. Lisziewicz, A. Godány, E. Hostinová, H. H. FÖrster, M. Trauzold et H. Sternbach. « Control of the Cell Cycle Start by Protein Kinase Genes in Saccharomyces Cerevisiae ». Dans Metabolism and Enzymology of Nucleic Acids, 127–29. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0749-5_18.
Texte intégralActes de conférences sur le sujet "Saccharomyces cerevisiae, cell cycle, Snf1"
Caplain, Emmanuel, Jean-Marie Ringeard, Stephane Serfaty, Loic Martinez, Nicolas Wilkie-Chancellier et Pascal Griesmar. « Microrheological monitoring of life cycle of yeast cell Saccharomyces Cerevisiae ». Dans 2011 IEEE International Ultrasonics Symposium (IUS). IEEE, 2011. http://dx.doi.org/10.1109/ultsym.2011.0375.
Texte intégralMayhew, Michael B., et Alexander J. Hartemink. « Cell-cycle phenotyping with conditional random fields : A case study in Saccharomyces cerevisiae ». Dans 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556661.
Texte intégralPeng Qiu, Z. J. Wang et K. J. Ray Liu. « Tracking the Herd : Resynchronization Analysis of Cell-Cycle Gene Expression Data in Saccharomyces Cerevisiae ». Dans 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615552.
Texte intégralMarkdahl, Johan, Nicolo Colombo, Johan Thunberg et Jorge Goncalves. « Experimental design trade-offs for gene regulatory network inference : An in silico study of the yeast Saccharomyces cerevisiae cell cycle ». Dans 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8263701.
Texte intégral