Littérature scientifique sur le sujet « Saccharomyce »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Saccharomyce ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Saccharomyce"
Yu, Qilin, Meiqing Sun, Yu Wang, Mingchun Li et Lu Liu. « The interaction between lead sulfide nano-dendrites and Saccharomyce cerevisiae is involved in nanotoxicity ». RSC Adv. 4, no 39 (2014) : 20371–78. http://dx.doi.org/10.1039/c4ra01861c.
Texte intégralZbar, Nedhaal S., Lamyiaa F. Nashi et Shahlaa M. Saleh. « Saccharomyces boulardii as effective probiotic against Shiegella flexneri in mice ». Journal of Biotechnology Research Center 8, no 1 (1 janvier 2014) : 55–58. http://dx.doi.org/10.24126/jobrc.2014.8.1.307.
Texte intégralFIEDUREK, JAN, MARCIN SKOWRONEK et ANNA GROMADA. « Selection and Adaptation of Saccharomyces cerevisae to Increased Ethanol Tolerance and Production ». Polish Journal of Microbiology 60, no 1 (2011) : 51–58. http://dx.doi.org/10.33073/pjm-2011-007.
Texte intégralYaya A. Gimba, Abubakar Idris, Abdullahi Hassan et Opeyemi N. Hassan. « Isolation and optimization of the fermentation condition of cellulolytic microbial isolates from cassava waste water ». GSC Biological and Pharmaceutical Sciences 14, no 1 (30 janvier 2021) : 011–17. http://dx.doi.org/10.30574/gscbps.2021.14.1.0421.
Texte intégralWang, Xin, Bing-Zhi Li, Ming-Zhu Ding, Wei-Wen Zhang et Ying-Jin Yuan. « Metabolomic Analysis Reveals Key Metabolites Related to the Rapid Adaptation of Saccharomyce cerevisiae to Multiple Inhibitors of Furfural, Acetic Acid, and Phenol ». OMICS : A Journal of Integrative Biology 17, no 3 (mars 2013) : 150–59. http://dx.doi.org/10.1089/omi.2012.0093.
Texte intégralWee, Hyun-Jeong, Sae-Byuk Lee, Kyu-Taek Choi, Ji-Yeon Ham, Soo-Hwan Yeo et Heui-Dong Park. « Characteristics of freeze-concentrated apple cider fermented using mixed culture of non-Saccharomyces and Saccharomyces cerevisiae Fermivin ». Korean Journal of Food Preservation 25, no 6 (30 octobre 2018) : 730–41. http://dx.doi.org/10.11002/kjfp.2018.25.6.730.
Texte intégralKhramtsov, A. G., et S. N. Sazanova. « NEW FOOD PRODUCTS WITH PROBIOTIC YEAST ». http://eng.biomos.ru/conference/articles.htm 1, no 19 (2021) : 314–16. http://dx.doi.org/10.37747/2312-640x-2021-19-314-316.
Texte intégralMarinov, Luka, Ana Jeromel, Ivana Tomaz, Darko Preiner et Ana Marija Jagatić Korenika. « Učinak sekvencijalne fermentacije s kvascima Lachancea thermotelerans i Torulaspora delbrueckii na kemijski sastav vina ´Malvazija istarska´ ». Glasnik zaštite bilja 44, no 4 (12 juillet 2021) : 56–66. http://dx.doi.org/10.31727/gzb.44.4.8.
Texte intégralLarassati, Dyah Putri, Maria Erna Kustyawati, Dewi Sartika et Suharyono AS. « Efek Fermentasi Basah Menggunakan Kultur Saccharomyces cerevisiae Terhadap Sifat Kimia dan Sensori Kopi Robusta (Coffea canephora) ». Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) 10, no 4 (30 décembre 2021) : 449. http://dx.doi.org/10.23960/jtep-l.v10i4.449-458.
Texte intégralVilanova, Mar, Sol Zamuz, Antón Masa et Carmen Sieiro. « Evaluation of PFGE and mtDNA restriction analysis methods to detect genetic diversity of saccharomyces cerevisiae strains associated to vitis vinifera ». OENO One 41, no 3 (30 septembre 2007) : 155. http://dx.doi.org/10.20870/oeno-one.2007.41.3.848.
Texte intégralThèses sur le sujet "Saccharomyce"
Zavitoski, Bruna Zavati. « Efeitos da adição de linhagens de Saccharomyces cerevisiae de culturas estoques ao creme de levedura industrial durante fermentações sucessivas de melaço / ». Araraquara, 2016. http://hdl.handle.net/11449/144437.
Texte intégralBanca: Kelly Johana Dussan Medina
Banca: Edwil Aparecida de Lucca Gattas
Resumo: A levedura mais utilizada nos processos fermentativos é a Saccharomyces cerevisiae, por apresentar uma grande eficiência de conversão dos açúcares em etanol, permitindo assim a produção de etanol combustível em larga escala, porem essas leveduras não predominam durante toda a safra, sendo substituídas por leveduras não - Saccharomyces. Durante o processo fermentativo fatores como estresse alcoólico, térmico, ácido, nutricional e osmótico causam prejuízo ao processo. Na busca por um microrganismo capaz de fermentar em condições de estresse a levedura híbrida, S. cerevisiae IQAr/45-1 (PI 0806141-6) construída no Laboratório de Unidades das Leveduras Industriais do Instituto de Química - UNESP, apresenta características de rápida fermentação e resistência ao estresse térmico. Sendo assim o objetivo principal do presente trabalho é testar a capacidade de fermentar da levedura IQAr/45-1 quando inoculada junto ao creme de levedura industrial, que contem leveduras Saccharomyces e não - Saccharomyces avaliando sua capacidade de melhorar a fermentação. Fermentações de 5 ciclos sucessivos com reuso de células foram conduzidas utilizando um fluxo de alimentação 0,39 mL/min, por 3 horas com melaço 20 % (ART) e foram realizadas a 35 °C e 40 °C, durante 10 horas, utilizando como inóculo creme de levedura industrial com adição da levedura IQAr/45-1 na proporção de 3:1. Durante a fermentação foi analisado a concentração celular, viabilidade e ART. Após as análises observou-se quando adiciona... (Resumo completo, clicar acesso eletrônico abaixo)
Mestre
Lleixà, Daga Jéssica. « Influence of non-Saccharomyces yeast on winemaking and quality ». Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667716.
Texte intégralEn la superficie de la uva coexisten poblaciones de levaduras, hongos y bacterias. De estas levaduras, conocidas como levaduras no-Saccharomyces, hay algunas especies de interés enológico. En esta tesis, se han estudiado los efectos de diferentes factores bióticos y abióticos sobre las comunidades fúngicas y bacterianas durante la fermentación alcohólica, con especial énfasis en las no-Saccharomyces. Se ha evaluado tanto el estado sanitario de la uva como las concentraciones de nitrógeno y azúcar del mosto sobre el proceso fermentativo y la microbiota. Los resultados muestran como el estado de la uva define las comunidades microbianas durante la fermentación alcohólica. Además, el nitrógeno ha demostrado ser el nutriente decisivo para el éxito de la fermentación. Por otro lado, se han analizado las fermentaciones y vinos obtenidos con Hanseniaspora vineae, una no-Saccharomyces de interés enológico, y Saccharomyces cerevisiae. Los vinos obtenidos con H. vineae presentaban un perfil más frutado y floral gracias a la producción de 2-fenil etil acetato. También se ha observado la presencia del mecanismo de represión catabólica por nitrógeno (NCR) en H. vineae mediante la expresión de los genes AGP1, GAP1, MEP2 y PUT2 y el consumo de nitrógeno. Por último, se ha analizado la diversidad genotípica y fenotípica de Brettanomyces bruxellensis en Cataluña, una no-Saccharomyces contaminante del vino. Los aislados de B. bruxellensis se distribuían según la zona de aislamiento y exhibían una tolerancia a SO2 variable y una gran capacidad de producción de fenoles volátiles.
Populations of yeasts, fungi and bacteria coexist on grape berry surface. Some species belonging to these yeasts, also known as non-Saccharomyces, are of oenological interest. In this thesis, the effects of different biotic and abiotic factors on fungal and bacterial communities during alcoholic fermentation have been studied, emphasizing its effect on non-Saccharomyces yeasts. Therefore, the health status of the grape together with nitrogen and sugar concentrations of the must on the fermentation process and the microbiota has been evaluated. The results show that health status of the grape defines the microbial communities along the alcoholic fermentation. Moreover, nitrogen has demonstrated to be the decisive nutrient for fermentation success. On the other hand, the fermentations and wines obtained using Hanseniaspora vineae, a non-Saccharomyces yeast of oenological interest, and Saccharomyces cerevisiae have been analysed. H. vineae’s wines exhibited a more fruity and flowery aroma thanks to 2-phenetyl acetate production. Additionally, it has been observed the presence of nitrogen catabolite repression(NCR) mechanism in H. vineae considering the expression profile of AGP1, GAP1, MEP2 and PUT2 genes and the nitrogen consumption. Finally, genotypic and phenotypic diversity of Brettanomyces bruxellensis, a non-Saccharomyces spoiler wine yeast, from Catalonia has been evaluated. The different B. bruxellensis isolates distributed according to the isolation region and exhibited a variable SO2 tolerance and a great ability to produce volatile phenols.
OMODEI, ZORINI FABIO. « IMPROVEMENT OF FEED EFFICIENCY IN DAIRY CATTLE ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/859146.
Texte intégralVázquez, González Jennifer. « Antioxidant effect of melatonin on Saccharomyces and non-Saccharomyces wine yeasts ». Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461155.
Texte intégralLa melatonina (N-acetil-5 metoxytryptamine) que se sintetiza a partir del triptófano, se forma durante la fermentación alcohólica, no obstante su papel en la levadura es desconocido. Este estudio utilizó especies de Saccharomyces y no Saccharomyces para evaluar los posibles efectos antioxidantes de la melatonina. Se evaluó la resistencia al H2O2, la producción de especies reactivas de oxígeno, la peroxidación lipídica, la actividad catalasa y la composición lipídica (ácidos grasos, fosfolípidos y esteroles) tanto en levaduras de Saccharomyces como no-Saccharomyces. Además, en S. cerevisiae se evaluó el contenido de glutatión reducido y oxidado, se cuantificó la melatonina endógena y se realizó un ensayo transcriptómico. Los resultados mostraron que las levaduras que contienen ácidos grasos insaturados como los ácidos linoleico o linolénico son más tolerantes al estrés oxidativo. Por otra parte, la suplementación con melatonina facilitó que las células hicieran frente a posibles estreses futuros. Sin embargo, cuando las células fueron sometidas a estrés oxidativo inducido por H2O2, la melatonina pudo mitigar parcialmente el daño celular reduciendo la producción de ROS, la peroxidación de lípidos y el glutatión oxidado a la vez que aumentaba el glutatión reducido y la viabilidad celular. El analisis de transcriptómica demostró que la melatonina es capaz de modular la respuesta al estrés oxidativo a nivel transcripcional. Los resultados demuestran que la melatonina puede actuar como antioxidante tanto en levaduras Saccharomyces como no-Saccharomyces.
Melatonin (N-acetyl-5 methoxytryptamine) which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces and non-Saccharomyces species to evaluate the possible antioxidant effects of melatonin. Resistance to H2O2, reactive oxygen species, lipid peroxidation, catalase activity and lipid composition (fatty acids, phospholipids and sterols) were evaluated in both Saccharomyces and non-Saccharomyces yeasts. Furthermore, cell viability, reduced and oxidized glutathione levels, endogenous melatonin levels as well as transcriptomics study were assessed in S. cerevisiae. Results showed that non-Saccharomyces yeast containing unsaturated fatty acids such as linoleic or linolenic acids are more tolerant to oxidative stress. Melatonin supplementation enables cells to resist better further stresses. However, when cells were subjected to oxidative stress induced by H2O2, melatonin was able to partially mitigate cell damage by decreasing ROS production, lipid peroxidation and oxidized glutathione and increasing reduced glutathione and viability. Transcriptomics assays showed that melatonin is able to modulate the oxidative stress response at transcriptional level. The findings demonstrate that melatonin can act as antioxidant in both Saccharomyces and non-Saccharomyces yeasts.
Serra, Audrey. « Production d'hybrides saccharomyces cerevisiae x saccharomyces uvarum : contraintes physiologiques et procédé ». Toulouse, INPT, 2004. http://www.theses.fr/2004INPT006G.
Texte intégralEricson, Elke. « High-resolution phenomics to decode : yeast stress physiology / ». Göteborg : Göteborg University, Dept. of Cell and Molecular Biology, Faculty of Science, 2006. http://www.loc.gov/catdir/toc/fy0707/2006436807.html.
Texte intégralEriksson, Peter. « Identification of the two GPD isogenes of saccharomyces cerevisiae and characterization of their response to hyper-osmotic stress ». Göteborg : Chalmers Reproservice, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38202006.html.
Texte intégralJames, Allan. « A genetic analysis of sulfate transporters in Saccharomyces cerevisiae and Saccharomyces pastorianus ». Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/1525.
Texte intégralPratt, Elizabeth Stratton. « Genetic and biochemical studies of Adr6, a component of the SWI/SNF chromatin remodeling complex / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/10288.
Texte intégralKerkmann, Katja. « Die genomweite Expressionsanalyse von Deletionsmutanten der Gene NHP6A/B und CDC73 in der Hefe S.cerevisiae ». [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961961651.
Texte intégralLivres sur le sujet "Saccharomyce"
Tuite, Michael F., et Stephen G. Oliver, dir. Saccharomyces. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8.
Texte intégralGrivell, L. A., dir. Molecular Biology of Saccharomyces. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8.
Texte intégralA, Grivell L., dir. Molecular biology of saccharomyces. Dordrecht : Kluwer Academic Publishers, 1992.
Trouver le texte intégralMojzita, Dominik. Thiamine-related regulation of metabolism and gene expression in the yeast Saccharomyces cerevisiae. Göteborg : Dept. of Cellular and Molecular Biology, Göteborg University, 2007.
Trouver le texte intégralPettersson, Nina. Functional analysis of aquaporins Saccharomyces cerevisae. Göteborg : Department of Cell and Molecular Biology, Göteborg University, 2005.
Trouver le texte intégralPettersson, Nina. Functional analysis of aquaporins Saccharomyces cerevisae. Göteborg : Department of Cell and Molecular Biology, Göteborg University, 2005.
Trouver le texte intégralWingler, Laura Michele. Harnessing Saccharomyces cerevisiae Genetics for Cell Engineering. [New York, N.Y.?] : [publisher not identified], 2011.
Trouver le texte intégralMortimer, Robert K. Genetic map of Saccharomyces cerevisiae : (as of November 1984). [Cold Spring Harbor, N.Y : Cold Spring Harbor Laboratory], 1985.
Trouver le texte intégralSmart, Christopher Andrew. Biotransformations of ketoximes by saccharomyces cerevisiae NCYC 1765. [s.l.] : typescript, 1995.
Trouver le texte intégralChan, Helen G. Y. The Effects of chemotherapeutic drugs on saccharomyces cerevisiae. Sudbury, Ont : Laurentian University, 1997.
Trouver le texte intégralChapitres de livres sur le sujet "Saccharomyce"
Tuite, Michael F., et Stephen G. Oliver. « Introduction ». Dans Saccharomyces, 1–3. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_1.
Texte intégralKreutzfeldt, C., et W. Witt. « Structural Biochemistry ». Dans Saccharomyces, 5–58. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_2.
Texte intégralDickinson, J. R. « Metabolism and Biosynthesis ». Dans Saccharomyces, 59–100. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_3.
Texte intégralWickner, R. B. « Methods in Classical Genetics ». Dans Saccharomyces, 101–47. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_4.
Texte intégralKingsman, A. J., E. J. Mellor, M. J. Dobson et S. M. Kingsman. « Recombinant DNA Techniques ». Dans Saccharomyces, 149–67. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_5.
Texte intégralTuite, Michael F. « Expression of Heterologous Genes ». Dans Saccharomyces, 169–212. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_6.
Texte intégralOliver, Stephen G. « “Classical” Yeast Biotechnology ». Dans Saccharomyces, 213–48. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_7.
Texte intégralMatthews, T. M., et C. Webb. « Culture Systems ». Dans Saccharomyces, 249–82. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_8.
Texte intégralTuite, Michael F., et Stephen G. Oliver. « Biochemical Techniques ». Dans Saccharomyces, 283–320. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2641-8_9.
Texte intégralNehrbass, U., et E. C. Hurt. « Nuclear transport and nuclear pores in yeast ». Dans Molecular Biology of Saccharomyces, 3–14. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8_1.
Texte intégralActes de conférences sur le sujet "Saccharomyce"
Gabrovšek, Ana, Nika Tašler, Rigoberto Barrios-Francisco et Marko Jeran. « Impact of a Saccharin Higher Homolog on Saccharomyces cerevisiae ». Dans Socratic Lectures 7. University of Lubljana Press, 2022. http://dx.doi.org/10.55295/psl.2022.d15.
Texte intégralMilentyeva, Irina, et Anastasiya Fedorova. « THE EFFECT OF BIOLOGICALLY ACTIVE COMPOUNDS OF REAL GINSENG (PANAX GINSENG) ON THE GROWTH OF YEAST CELLS ». Dans I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-88.
Texte intégralHeath, Allison P., Lydia Kavraki et Gabor Balazsi. « Bipolarity of the Saccharomyces Cerevisiae Genome ». Dans 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.84.
Texte intégralPinguli, Luljeta, Ilirjan Malollari, Anisa Dhroso, Hasime Manaj et Dhurata Premtis. « A Comparative Study of Batch Fermentation Performance of Saccharomyces carlsbengensis and Saccharomyces cerevisiae based on Kinetic Parameters ». Dans University for Business and Technology International Conference. Pristina, Kosovo : University for Business and Technology, 2018. http://dx.doi.org/10.33107/ubt-ic.2018.159.
Texte intégralYang, Yueying, Di Liu et Jun Meng. « Module of cellular networks in saccharomyces cerevisiae ». Dans 2012 IEEE 6th International Conference on Systems Biology (ISB). IEEE, 2012. http://dx.doi.org/10.1109/isb.2012.6314133.
Texte intégralRagothaman Avanasi Narasimhan, Ganti S Murthy et Christopher Beatty. « Hemicellulose fermentation by industrial yeast Saccharomyces cerevisiae ». Dans 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI : American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.29920.
Texte intégralБорисенко, О. А. « Влияние холодного охмеления на дрожжи Saccharomyces cerevisiae ». Dans Наука России : Цели и задачи. НИЦ "LJournal", 2021. http://dx.doi.org/10.18411/sr-10-06-2021-39.
Texte intégralSilva, Luana Caroline Domingos Da, et Vivianne Lúcia Bormann De Souza. « EFEITO DA RADIAÇÃO IONIZANTE EM SOLUÇÕES CONTENDO SACCHAROMYCES CEREVISIAE ». Dans II Congresso Brasileiro de Biotecnologia On-line. Revista Multidisciplinar de Educação e Meio Ambiente, 2022. http://dx.doi.org/10.51189/conbiotec/16.
Texte intégralDong, Limin, Zhuo Diao, Juan Du, Zhao Jiang, Qingjuan Meng et Ying Zhang. « Mechanism of Cu(II) Biosorption by Saccharomyces Cerevisiae ». Dans 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163036.
Texte intégralLimin, Dong, Du Juan, Bai Xin, Yu Naili, Fan Chunhui et Zhang Ying. « Mechanism of Pb(II) Biosorption by Saccharomyces Cerevisiae ». Dans 2009 International Conference on Environmental Science and Information Application Technology, ESIAT. IEEE, 2009. http://dx.doi.org/10.1109/esiat.2009.450.
Texte intégralRapports d'organisations sur le sujet "Saccharomyce"
DeLoache, William, Zachary Russ, Jennifer Samson et John Dueber. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways. Office of Scientific and Technical Information (OSTI), septembre 2017. http://dx.doi.org/10.2172/1394729.
Texte intégralCampbell, Chelsea, Cullen Horstmann, Kyoungtae Kim et Alan Kennedy. Saccharomyces cerevisiae (Budding Yeast) ; Standard Operating Procedure Series : Toxicology (T). Engineer Research and Development Center (U.S.), août 2019. http://dx.doi.org/10.21079/11681/33688.
Texte intégralBusche, R. M., C. D. Scott, B. H. Davison et L. R. Lynd. The ultimate ethanol : Technoeconomic evaluation of ethanol manufacture, comparing yeast vs Zymomonas bacterium fermentations. [Zymomonas mobilis:a5 ; Saccharomyces cerevisiae:a6]. Office of Scientific and Technical Information (OSTI), août 1991. http://dx.doi.org/10.2172/5138781.
Texte intégralTurner, Joshua, Lizabeth Thomas et Sarah Kennedy. Structural Analysis of a New Saccharomyces cerevisiae α-glucosidase Homology Model and Identification of Potential Inhibitor Enzyme Docking Sites. Journal of Young Investigators, octobre 2020. http://dx.doi.org/10.22186/jyi.38.4.27-33.
Texte intégralAlexandar, Irina, Diana Zasheva et Nikolay Kaloyanov. Antimicrobial Activity of New Molecular Complexes of 1,10‑Phenanthroline and 5‑Amino‑1,10‑Phenanthroline on Escherichia coli and Saccharomyces cerevisiae Strains. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, février 2019. http://dx.doi.org/10.7546/crabs.2019.01.10.
Texte intégralZhao, Chun. Suppressors (scsl-scs7) of CSG2, a Gene Required by Saccharomyces cerevisiae for Growth in Media Containing 10 mMCa(2+), Identify Genes Required for Sphingolipid Biosynthesis. Fort Belvoir, VA : Defense Technical Information Center, juin 1994. http://dx.doi.org/10.21236/ad1011395.
Texte intégralLuther, Jamie, Holly Goodson et Clint Arnett. Development of a genetic memory platform for detection of metals in water : use of mRNA and protein destabilization elements as a means to control autoinduction from the CUP1 promoter of Saccharomyces cerevisiae. Construction Engineering Research Laboratory (U.S.), juin 2018. http://dx.doi.org/10.21079/11681/27275.
Texte intégralShapira, Roni, Judith Grizzle, Nachman Paster, Mark Pines et Chamindrani Mendis-Handagama. Novel Approach to Mycotoxin Detoxification in Farm Animals Using Probiotics Added to Feed Stuffs. United States Department of Agriculture, mai 2010. http://dx.doi.org/10.32747/2010.7592115.bard.
Texte intégralZhou, Ting, Roni Shapira, Peter Pauls, Nachman Paster et Mark Pines. Biological Detoxification of the Mycotoxin Deoxynivalenol (DON) to Improve Safety of Animal Feed and Food. United States Department of Agriculture, juillet 2010. http://dx.doi.org/10.32747/2010.7613885.bard.
Texte intégralIrudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman et Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, octobre 2004. http://dx.doi.org/10.32747/2004.7587221.bard.
Texte intégral