Littérature scientifique sur le sujet « Ruthenium phosphide nanoparticles »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ruthenium phosphide nanoparticles ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Ruthenium phosphide nanoparticles"

1

Guo, Long, Fang Luo, Fei Guo, Quan Zhang, Konggang Qu, Zehui Yang et Weiwei Cai. « Robust hydrogen evolution reaction catalysis by ultrasmall amorphous ruthenium phosphide nanoparticles ». Chemical Communications 55, no 53 (2019) : 7623–26. http://dx.doi.org/10.1039/c9cc03675j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Si, Chong-Dian, Ze-Xing Wu, Jing Wang, Zhi-Hua Lu, Xiu-Feng Xu et Ji-Sen Li. « Enhanced the Hydrogen Evolution Performance by Ruthenium Nanoparticles Doped into Cobalt Phosphide Nanocages ». ACS Sustainable Chemistry & ; Engineering 7, no 11 (10 mai 2019) : 9737–42. http://dx.doi.org/10.1021/acssuschemeng.9b00817.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Xiaofei, Yanglong Guo, Wangcheng Zhan et Tian Jin. « Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction ». Catalysts 9, no 3 (5 mars 2019) : 240. http://dx.doi.org/10.3390/catal9030240.

Texte intégral
Résumé :
The development of scalable hydrogen production technology to produce hydrogen economically and in an environmentally friendly way is particularly important. The hydrogen evolution reaction (HER) is a clean, renewable, and potentially cost-effective pathway to produce hydrogen, but it requires the use of a favorable electrocatalyst which can generate hydrogen with minimal overpotential for practical applications. Up to now, ruthenium phosphide Ru2P has been considered as a high-performance electrocatalyst for the HER. However, a tedious post-treatment method as well as large consumption of solvents in conventional solution-based synthesis still limits the scalable production of Ru2P electrocatalysts in practical applications. In this study, we report a facile and cost-effective strategy to controllably synthesize uniform ultrasmall Ru2P nanoparticles embedded in carbon for highly efficient HER. The key to our success lies in the use of a solid-state ball milling-assisted technique, which overcomes the drawbacks of the complicated post-treatment procedure and large solvent consumption compared with solution-based synthesis. The obtained electrocatalyst exhibits excellent Pt-like HER performance with a small overpotential of 36 mV at current density of 10 mA cm−2 in 1 M KOH, providing new opportunities for the fabrication of highly efficient HER electrocatalysts in real-world applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xiao, X., X. Wang, B. Li, X. Jiang, Y. Zhang, M. Li, S. Song et al. « Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media ». Materials Today Physics 12 (mars 2020) : 100182. http://dx.doi.org/10.1016/j.mtphys.2020.100182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Luo, Qian, Caili Xu, Qian Chen, Jie Wu, Yi Wang, Yun Zhang et Guangyin Fan. « Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction ». International Journal of Hydrogen Energy 44, no 47 (octobre 2019) : 25632–41. http://dx.doi.org/10.1016/j.ijhydene.2019.08.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Zhifeng, et Heyan Jiang. « Efficient palladium and ruthenium nanocatalysts stabilized by phosphine functionalized ionic liquid for selective hydrogenation ». RSC Advances 5, no 44 (2015) : 34622–29. http://dx.doi.org/10.1039/c5ra01893e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bresó-Femenia, Emma, Cyril Godard, Carmen Claver, Bruno Chaudret et Sergio Castillón. « Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles : a new approach to gain information on ligand coordination ». Chemical Communications 51, no 91 (2015) : 16342–45. http://dx.doi.org/10.1039/c5cc06984j.

Texte intégral
Résumé :
Selective deuteration of phenyl rings in phenyl-alkyl phosphines, including diphosphines, was achieved using Ru/PVP nanoparticles and D2, which enables the comprehension of how different phosphorus ligands coordinate to the nanoparticle surface.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jiang, He-yan, et Xu-xu Zheng. « Tuning the chemoselective hydrogenation of aromatic ketones, aromatic aldehydes and quinolines catalyzed by phosphine functionalized ionic liquid stabilized ruthenium nanoparticles ». Catalysis Science & ; Technology 5, no 7 (2015) : 3728–34. http://dx.doi.org/10.1039/c5cy00293a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ma, Ge, Na Yang, Yafei Xue, Guofu Zhou et Xin Wang. « Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Nickel Phosphide Ultrathin Nanosheets ». ACS Applied Materials & ; Interfaces 13, no 36 (2 septembre 2021) : 42763–72. http://dx.doi.org/10.1021/acsami.1c10971.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

González-Gálvez, David, Pau Nolis, Karine Philippot, Bruno Chaudret et Piet W. N. M. van Leeuwen. « Phosphine-Stabilized Ruthenium Nanoparticles : The Effect of the Nature of the Ligand in Catalysis ». ACS Catalysis 2, no 3 (27 janvier 2012) : 317–21. http://dx.doi.org/10.1021/cs200633k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Ruthenium phosphide nanoparticles"

1

DELGADO, CALVO FUENCISLA. « Some advances in low valent phosphorus chemistry : fluorophosphines, naked polyphosphorus compounds and metal phosphide nanoparticles ». Doctoral thesis, 2016. http://hdl.handle.net/2158/1019937.

Texte intégral
Résumé :
Phosphorus chemistry is a very broad field with a great range of applications. The goals of this Ph.D. thesis are related to different aspects of low-valent phosphorus chemistry: going from the synthesis of fluorophosphine ligands through a “green” and innovative pathway, to the activation and functionalization of elemental white phosphorus in the presence of late transition metals, and, finally, to the not yet explored synthesis of ruthenium phosphide nanoparticles starting from white phosphorus. In Chapter 1, different points related to the phosphorus chemistry are mentioned. The opening section reports a general description of the element phosphorus and its allotropic modifications before taking into detailed consideration the reactivity of white phosphorus, emphasizing on the production of organophosphorus compounds through catalytic processes involving the activation of P4 mediated by transition metal complexes. The second section depicts a brief introduction about the importance of phosphine ligands in catalysis, particularly giving attention to the role of fluorophosphine ligands. Finally, the last section deals with the synthesis of metal phosphides nanoparticles, which are of great interest on diverse fields, particularly in catalysis, aiming at P4-derived metal phosphide nanoparticles. Chapter 2 describes the study of the transformation of phosphorous oxyacids, such as PhPO(OH)H, H3PO3, H3PO2, into the corresponding fluorophosphines mediated by [CpRu(PPh3)2Cl] under mild reaction conditions using a soft deoxyfluorinating agent, commercially available as XtalFluor-E. The reaction is selective, proceeds with high yields and can be extended to a wide range of phosphorous oxyacids once coordinated to the ruthenium fragment {CpRu(PPh3)2}+ as their hydroxyphosphine tautomer. Deoxyfluorination of phenylphosphinic acid was also mediated by [CpRRu(CH3CN)3]PF6, where CpR: Cp = C5H5, Cp* = C5Me5, and {η6-(p-cymene)Ru(µ-Cl)Cl}2. On chapter 3, the coordination chemistry of white phosphorus towards a 16 electron ruthenium organometallic complex [Cp*RuPCy3X], where Cp* = C5Me5, X = Cl, Br, I is described. The different electronegativity and steric bulk in the series of halogens changes the reactivity with white phosphorus. Migration of the halogen from ruthenium to the P4 moiety was observed, in the case of chloride and bromide, obtaining bimetallic complexes bearing unexpected P4X2 (X = Cl, Br) moiety as bridging ligands. In the case of iodide, a completely different structure is proposed, containing the not yet previously reported P4I ligand as a bridging moiety between two Ru(II) centers. Chapter 4 deals with the synthesis and characterization of ruthenium phosphide nanoparticles using white phosphorus as P-source. The novelty introduced is the use of white phosphorus as phosphorus source to react with previously prepared ruthenium nanoparticles. A preliminary catalytic study on hydrogenation of phenylacetylene under mild conditions shows very good catalytic activity and selectivity towards the fully hydrogenated product, ethylbenzene.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie