Littérature scientifique sur le sujet « Rule commutation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Rule commutation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Rule commutation"
Evans, D. Gwion, John E. Gough et Matthew R. James. « Non-abelian Weyl commutation relations and the series product of quantum stochastic evolutions ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 370, no 1979 (28 novembre 2012) : 5437–51. http://dx.doi.org/10.1098/rsta.2011.0525.
Texte intégralBulathsinghala, D. L., et K. A. I. L. Wijewardena Gamalath. « Implementation of a Quantized Line Element in Klein-Gordon and Dirac Fields ». International Letters of Chemistry, Physics and Astronomy 48 (mars 2015) : 68–86. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.48.68.
Texte intégralBulathsinghala, D. L., et K. A. I. L. Wijewardena Gamalath. « Implementation of a Quantized Line Element in Klein-Gordon and Dirac Fields ». International Letters of Chemistry, Physics and Astronomy 48 (25 mars 2015) : 68–86. http://dx.doi.org/10.56431/p-36k0sm.
Texte intégralNarendran, Paliath, et Friedrich Otto. « Preperfectness is undecidable for thue systems containing only length-reducing rules and a single commutation rule ». Information Processing Letters 29, no 3 (octobre 1988) : 125–30. http://dx.doi.org/10.1016/0020-0190(88)90049-x.
Texte intégralChin, Hee-Kwon. « The Study of the Commutation Principles (of General rule) in T’ang Code ». Journal of Social Thoughts and Culture 21, no 4 (30 décembre 2018) : 143–71. http://dx.doi.org/10.17207/jstc.2018.12.21.4.5.
Texte intégralSavasta, Salvatore, Omar Di Stefano et Franco Nori. « Thomas–Reiche–Kuhn (TRK) sum rule for interacting photons ». Nanophotonics 10, no 1 (18 novembre 2020) : 465–76. http://dx.doi.org/10.1515/nanoph-2020-0433.
Texte intégralSkála, Lubomír, et Vojtěch Kapsa. « Quantum Mechanics Needs No Interpretation ». Collection of Czechoslovak Chemical Communications 70, no 5 (2005) : 621–37. http://dx.doi.org/10.1135/cccc20050621.
Texte intégralChin, Hee-Kwon. « The Study of the Commutation Principles (of General rule) in T��ang Code ». Journal of Social Thoughts and Culture 21, no 04 (30 décembre 2018) : 143–71. http://dx.doi.org/10.17207/jstc.2018.12.21.4.143.
Texte intégralSOW, C. L., et T. T. TRUONG. « QUANTUM GROUP APPROACH TO A SOLUBLE VERTEX MODEL WITH GENERALIZED ICE RULE ». International Journal of Modern Physics A 11, no 10 (20 avril 1996) : 1747–61. http://dx.doi.org/10.1142/s0217751x96000936.
Texte intégralDerzhko, O. V., et A. Ph. Moina. « Bose commutation rule approximation in the theory of spin systems and elementary excitation spectrum ». physica status solidi (b) 196, no 1 (1 juillet 1996) : 237–41. http://dx.doi.org/10.1002/pssb.2221960123.
Texte intégralThèses sur le sujet "Rule commutation"
Di, Guardia Rémi. « Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic ». Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0050.
Texte intégralThis study is concerned with the equality of proofs and formulas in linear logic, with in particular contributions for the multiplicative-additive fragment of this logic. In linear logic, and as in many other logics (such as intuitionistic logic), there are two transformations on proofs: cut-elimination and axiom-expansion. One often wishes to identify two proofs related by these transformations, as it is the case semantically (in a categorical model for instance). This situation is similar to the one in the λ-calculus where terms are identified up to β-reduction and η-expansion, operations that, through the prism of the Curry-Howard correspondence, are related respectively to cut-elimination and axiom-expansion. We show here that this identification corresponds exactly to identifying proofs up to rule commutation, a third well-known operation on proofs which is easier to manipulate. We prove so only in multiplicative-additive linear logic, even if we conjecture such a result holds in full linear logic.Not only proofs but also formulas can be identified up to cut-elimination and axiom-expansion. Two formulas are isomorphic if there are proofs between them whose compositions yield identities, still up to cut-elimination and axiom-expansion. These formulas are then really considered to be the same, and every use of one can be replaced with one use of the other. We give an equational theory characterizing exactly isomorphic formulas in multiplicative-additive linear logic. A generalization of an isomorphism is a retraction, which intuitively corresponds to a couple of formulas where the first can be replaced by the second -- but not necessarily the other way around, contrary to an isomorphism. Studying retractions is more complicated, and we characterize retractions to an atom in the multiplicative fragment of linear logic.When studying the two previous problems, the usual syntax of proofs from sequent calculus seems ill-suited because we consider proofs up to rule commutation. Part of linear logic can be expressed in a better adapted syntax in this case: proof-nets, which are graphs representing proofs quotiented by rule commutation. This syntax was an instrumental tool for the characterization of isomorphisms and retractions. Unfortunately, proof-nets are not (or badly) defined with units. Concerning our issues, this restriction leads to a study of the unit-free case by means of proof-nets with the crux of the demonstration, preceded by a work in sequent calculus to handle the units. Besides, this thesis also develops part of the theory of proof-nets by providing a simple proof of the sequentialization theorem, which relates the two syntaxes of proof-net and sequent calculus, substantiating that they describe the same underlying objects. This new demonstration is obtained as a corollary of a generalization of Yeo's theorem. This last result is fully expressed in the theory of edge-colored graphs, and allows to recover proofs of sequentialization for various definitions of proof-nets. Finally, we also formalized proof-nets for the multiplicative fragment of linear logic in the proof assistant Coq, with notably an implementation of our new sequentialization proof
Livres sur le sujet "Rule commutation"
Horing, Norman J. Morgenstern. Thermodynamic Green’s Functions and Spectral Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0007.
Texte intégralChapitres de livres sur le sujet "Rule commutation"
Adelman, Steven A. « Commutation Rules and Uncertainty Relations ». Dans Basic Molecular Quantum Mechanics, 91–97. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9780429155741-5.
Texte intégralIzumi, Masaki. « Fusion Rules and Classification of Subfactors ». Dans Quantum and Non-Commutative Analysis, 317–20. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2823-2_24.
Texte intégralArtal Bartolo, Enrique, José Ignacio Cogolludo-Agustín et Jorge Martín-Morales. « Coverings of Rational Ruled Normal Surfaces ». Dans Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 343–73. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96827-8_13.
Texte intégralBlaisdell, Eben, Max Kanovich, Stepan L. Kuznetsov, Elaine Pimentel et Andre Scedrov. « Non-associative, Non-commutative Multi-modal Linear Logic ». Dans Automated Reasoning, 449–67. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10769-6_27.
Texte intégralFarjoun, Emmanuel Dror. « Commutation rules for Ω, Lf and CWA, preservation of fibrations and cofibrations ». Dans Cellular Spaces, Null Spaces and Homotopy Localization, 59–78. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094432.
Texte intégralDuncan, Anthony, et Michel Janssen. « The Consolidation of Matrix Mechanics : Born–Jordan, Dirac and the Three-Man-Paper ». Dans Constructing Quantum Mechanics Volume Two, 255–348. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198883906.003.0005.
Texte intégralEvens, Leonard. « Products in cohomology ». Dans The Cohomology of Groups, 21–34. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198535805.003.0003.
Texte intégral« Commutation of CA Rules ». Dans World Scientific Series on Nonlinear Science Series A, 67–86. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812798671_0005.
Texte intégralLambek, Joachim. « From Categorial Grammar to Bilinear Logic ». Dans Substructural Logics, 207–38. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780198537779.003.0008.
Texte intégralIliopoulos, J., et T. N. Tomaras. « From Classical to Quantum Fields. Free Fields ». Dans Elementary Particle Physics, 220–36. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.003.0010.
Texte intégralActes de conférences sur le sujet "Rule commutation"
Itoko, Toshinari, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo et Andrew W. Cross. « Quantum circuit compilers using gate commutation rules ». Dans ASPDAC '19 : 24th Asia and South Pacific Design Automation Conference. New York, NY, USA : ACM, 2019. http://dx.doi.org/10.1145/3287624.3287701.
Texte intégralEckstein, Eugene C., Vinay Bhal, JoDe M. Lavine, Baoshun Ma, Mark Leggas et Jerome A. Goldstein. « Nested First-Passages of Tracer Particles in Flows of Blood and Control Suspensions : Symmetry and Lorentzian Transformations ». Dans ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69549.
Texte intégral