Littérature scientifique sur le sujet « RT-QuIC analysis »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « RT-QuIC analysis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "RT-QuIC analysis"

1

Rowden, Gage R., Catalina Picasso-Risso, Manci Li, Marc D. Schwabenlander, Tiffany M. Wolf et Peter A. Larsen. « Standardization of Data Analysis for RT-QuIC-Based Detection of Chronic Wasting Disease ». Pathogens 12, no 2 (13 février 2023) : 309. http://dx.doi.org/10.3390/pathogens12020309.

Texte intégral
Résumé :
Chronic wasting disease (CWD) is a disease affecting cervids and is caused by prions accumulating as pathogenic fibrils in lymphoid tissue and the central nervous system. Approaches for detecting CWD prions historically relied on antibody-based assays. However, recent advancements in protein amplification technology provided the foundation for a new class of CWD diagnostic tools. In particular, real-time quaking-induced conversion (RT-QuIC) has rapidly become a feasible option for CWD diagnosis. Despite its increased usage for CWD-focused research, there lacks a consensus regarding the interpretation of RT-QuIC data for diagnostic purposes. It is imperative then to identify a standardized and replicable method for determining CWD status from RT-QuIC data. Here, we assessed variables that could impact RT-QuIC results and explored the use of maxpoint ratios (maximumRFU/backgroundRFU) to improve the consistency of RT-QuIC analysis. We examined a variety of statistical analyses to retrospectively analyze CWD status based on RT-QuIC and ELISA results from 668 white-tailed deer lymph nodes. Our results revealed an MPR threshold of 2.0 for determining the rate of amyloid formation, and MPR analysis showed excellent agreement with independent ELISA results. These findings suggest that the use of MPR is a statistically viable option for normalizing between RT-QuIC experiments and defining CWD status.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Donadio, Vincenzo, Zerui Wang, Alex Incensi, Giovanni Rizzo, Enrico Fileccia, Veria Vacchiano, Sabina Capellari et al. « In Vivo Diagnosis of Synucleinopathies ». Neurology 96, no 20 (9 avril 2021) : e2513-e2524. http://dx.doi.org/10.1212/wnl.0000000000011935.

Texte intégral
Résumé :
ObjectiveTo determine whether (1) immunofluorescence is a reproducible technique in detecting misfolded α-synuclein in skin nerves and subsequently whether (2) immunofluorescence and real-time quaking-induced conversion (RT-QuIC) (both in skin and CSF) show a comparable in vivo diagnostic accuracy in distinguishing synucleinopathies from non-synucleinopathies in a large cohort of patients.MethodsWe prospectively recruited 90 patients fulfilling clinical and instrumental diagnostic criteria for all synucleinopathies variants and non-synucleinopathies (mainly including Alzheimer disease, tauopathies, and vascular parkinsonism or dementia). Twenty-four patients with mainly peripheral neuropathies were used as controls. Patients underwent skin biopsy for immunofluorescence and RT-QuIC; CSF was examined in patients who underwent lumbar puncture for diagnostic purposes. Immunofluorescence and RT-QuIC analysis were made blinded to the clinical diagnosis.ResultsImmunofluorescence showed reproducible results between 2 pairs of neighboring skin samples. Both immunofluorescence and RT-QuIC showed high sensitivity and specificity in discriminating synucleinopathies from non-synucleinopathies and controls but immunofluorescence presented higher diagnostic accuracy. Immunofluorescence presented a good level of agreement with RT-QuIC in both skin and CSF in synucleinopathies.ConclusionsBoth immunofluorescence and RT-QuIC showed high diagnostic accuracy, although immunofluorescence displayed the better value as well as optimal reproducibility; they presented a good level of agreement in synucleinopathies, supporting the use of less invasive tests such as skin immunofluorescence or RT-QuIC instead of CSF RT-QuIC as a diagnostic tool for synucleinopathies.Classification of EvidenceThis study provides Class III evidence that immunofluorescence or RT-QuIC accurately distinguish synucleinopathies from non-synucleinopathies.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Xiao, Kang, Xuehua Yang, Wei Zhou, Cao Chen, Qi Shi et Xiaoping Dong. « Validation and Application of Skin RT-QuIC to Patients in China with Probable CJD ». Pathogens 10, no 12 (19 décembre 2021) : 1642. http://dx.doi.org/10.3390/pathogens10121642.

Texte intégral
Résumé :
The definite diagnosis of human sporadic Creutzfeldt–Jakob disease (sCJD) largely depends on postmortem neuropathology and PrPSc detection in the brain. The development of real-time quaking-induced conversion (RT-QuIC) of cerebrospinal fluid (CSF) samples makes it possible for premortem diagnosis for sCJD. To test the diagnostic potential of RT-QuIC of skin specimens for probable sCJD, we collected the paired skin and CSF samples from 51 recruited living patients referred to the Chinese CJD surveillance center, including 34 probable sCJD, 14 non-CJD, and 3 genetic prion disease (gPrD). The samples were subjected to RT-QuIC assays using recombinant hamster PrP protein rHaPrP90-231 as the substrate. Using skin RT-QuIC assay, 91.2% (31/34) probable sCJD patients, and 1 T188K genetic CJD (gCJD) cases showed positive prion-seeding activity, while 85.7% (12/14) non-CJD patients were negative. CSF RT-QuIC positive seeding activity was only observed in 14 probable sCJD patients. Analysis of the reactivity of 38 positive skin RT-QuIC tests revealed that the positive rates in the preparations of 10−2, 10−3 and 10−4 diluted skin samples were 88.6% (39/44), 63.6% (28/44), and 25.0% (11/44), respectively. Eleven probable sCJD patients donated two skin specimens collected at different sites simultaneously. Although 95.5% (21/22) skin RT-QuIC elicited positive reaction, the reactivity varied. Our preliminary data indicate high sensitivity and specificity of skin RT-QuIC in prion detection for Chinese probable sCJD and highlight that skin prion-seeding activity is a reliable biomarker for premortem diagnosis of human prion disease.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Poggiolini, Ilaria, Vandana Gupta, Michael Lawton, Seoyun Lee, Aadil El-Turabi, Agustin Querejeta-Coma, Claudia Trenkwalder et al. « Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies ». Brain 145, no 2 (11 décembre 2021) : 584–95. http://dx.doi.org/10.1093/brain/awab431.

Texte intégral
Résumé :
Abstract Several studies have confirmed the α-synuclein real-time quaking-induced conversion (RT-QuIC) assay to have high sensitivity and specificity for Parkinson’s disease. However, whether the assay can be used as a robust, quantitative measure to monitor disease progression, stratify different synucleinopathies and predict disease conversion in patients with idiopathic REM sleep behaviour disorder remains undetermined. The aim of this study was to assess the diagnostic value of CSF α-synuclein RT-QuIC quantitative parameters in regard to disease progression, stratification and conversion in synucleinopathies. We performed α-synuclein RT-QuIC in the CSF samples from 74 Parkinson’s disease, 24 multiple system atrophy and 45 idiopathic REM sleep behaviour disorder patients alongside 55 healthy controls, analysing quantitative assay parameters in relation to clinical data. α-Synuclein RT-QuIC showed 89% sensitivity and 96% specificity for Parkinson’s disease. There was no correlation between RT-QuIC quantitative parameters and Parkinson’s disease clinical scores (e.g. Unified Parkinson’s Disease Rating Scale motor), but RT-QuIC positivity and some quantitative parameters (e.g. Vmax) differed across the different phenotype clusters. RT-QuIC parameters also added value alongside standard clinical data in diagnosing Parkinson’s disease. The sensitivity in multiple system atrophy was 75%, and CSF samples showed longer T50 and lower Vmax compared to Parkinson’s disease. All RT-QuIC parameters correlated with worse clinical progression of multiple system atrophy (e.g. change in Unified Multiple System Atrophy Rating Scale). The overall sensitivity in idiopathic REM sleep behaviour disorder was 64%. In three of the four longitudinally followed idiopathic REM sleep behaviour disorder cohorts, we found around 90% sensitivity, but in one sample (DeNoPa) diagnosing idiopathic REM sleep behaviour disorder earlier from the community cases, this was much lower at 39%. During follow-up, 14 of 45 (31%) idiopathic REM sleep behaviour disorder patients converted to synucleinopathy with 9/14 (64%) of convertors showing baseline RT-QuIC positivity. In summary, our results showed that α-synuclein RT-QuIC adds value in diagnosing Parkinson’s disease and may provide a way to distinguish variations within Parkinson’s disease phenotype. However, the quantitative parameters did not correlate with disease severity in Parkinson’s disease. The assay distinguished multiple system atrophy patients from Parkinson’s disease patients and in contrast to Parkinson’s disease, the quantitative parameters correlated with disease progression of multiple system atrophy. Our results also provided further evidence for α-synuclein RT-QuIC having potential as an early biomarker detecting synucleinopathy in idiopathic REM sleep behaviour disorder patients prior to conversion. Further analysis of longitudinally followed idiopathic REM sleep behaviour disorder patients is needed to better understand the relationship between α-synuclein RT-QuIC signature and the progression from prodromal to different synucleinopathies.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Budhram, Adrian, Ryan G. Taylor, Jeff Fuller, Jorge G. Burneo, J. David Knox et Stephen H. Pasternak. « The Predictive Value of Endpoint Quaking-Induced Conversion in Creutzfeldt-Jakob Disease ». Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 46, no 5 (3 juillet 2019) : 595–98. http://dx.doi.org/10.1017/cjn.2019.72.

Texte intégral
Résumé :
ABSTRACT:Creutzfeldt-Jakob disease (CJD) is a fatal neurological illness for which accurate diagnosis is paramount. Real-time quaking-induced conversion (RT-QuIC) is a prion-specific assay with high sensitivity and specificity for CJD. The Canadian endpoint quaking-induced conversion (EP-QuIC) test is similar, but unlike RT-QuIC there is little data regarding its diagnostic utility in clinical practice. In this exploratory predictive value analysis of EP-QuIC in CJD, the negative predictive value (NPV) and positive predictive value (PPV) was 100% and 83%, respectively, with one false-positive result identified. Re-testing this sample with an optimized EP-QuIC protocol eliminated this false-positive result, leading to a PPV of 100%.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Green, Alison J. E. « RT-QuIC : a new test for sporadic CJD ». Practical Neurology 19, no 1 (3 octobre 2018) : 49–55. http://dx.doi.org/10.1136/practneurol-2018-001935.

Texte intégral
Résumé :
The diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) can be difficult, but the real-time quaking-induced conversion (RT-QuIC) assays have made a considerable impact on its clinical diagnosis. This technique exploits the ability of the misfolded pathological form of prion protein (PrPSc) found in cerebrospinal fluid (CSF) to induce conversion of normal PrP to the misfolded form, which subsequently aggregates. The formation of these aggregates of misfolded PrP is monitored in real time using fluorescent dyes. The current sensitivity of CSF RT-QuIC undertaken at the UK National CJD Research & Surveillance Unit is 92% and the specificity is 100%. The interpretation of the RT-QuIC traces is affected by the presence of raised CSF red and white cells counts and elevated total protein concentrations. We recommend that CSF samples for RT-QuIC analysis are clear and colourless with a white cell count of <10 x10^6/L and have a total protein concentration of <1 g/L.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Haley, Nicholas J., Chris Siepker, Laura L. Hoon-Hanks, Gordon Mitchell, W. David Walter, Matteo Manca, Ryan J. Monello et al. « Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion ». Journal of Clinical Microbiology 54, no 4 (17 février 2016) : 1117–26. http://dx.doi.org/10.1128/jcm.02700-15.

Texte intégral
Résumé :
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni;n= 323), and nasal brush samples were collected from a subpopulation of these animals (n= 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both thePRNPgenotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hermann, Peter, Mareike Laux, Markus Glatzel, Jakob Matschke, Tobias Knipper, Stefan Goebel, Johannes Treig et al. « Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance ». Neurology 91, no 4 (22 juin 2018) : e331-e338. http://dx.doi.org/10.1212/wnl.0000000000005860.

Texte intégral
Résumé :
ObjectiveTo validate an amended protocol for clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) including real-time quaking-induced conversion (RT-QuIC) and to observe its use in CJD surveillance.MethodsIn the framework of a prospective epidemiologic study, all neuropathologically confirmed cases with sCJD who received CSF RT-QuIC analysis during diagnostic workup (n = 65) and a control group of individuals without CJD (n = 118) were selected to investigate the accuracy of an amended diagnostic protocol. The patients had been referred to the German National Reference Center for Transmissible Spongiform Encephalopathies. The influence of the amended protocol on incidence figures was evaluated in the context of 3 years of surveillance activity (screened cases using 14-3-3 test n = 18,789, highly suspicious cases of CJD n = 704). Annual incidences were calculated with current criteria and the amended protocol.ResultsThe amended protocol showed a sensitivity of 97% and a specificity of 99%. When it was applied to all suspected cases who were referred to the reference center, the assessed incidence of CJD increased from 1.7 to 2.2 per million in 2016.ConclusionCJD surveillance remains challenging because information from external health care institutions can be limited. RT-QuIC shows excellent diagnostic accuracy when applied in the clinical setting to symptomatic patients. Data for RT-QuIC alone when applied as a general screening test are not available yet. We propose an amended research protocol that improves early and accurate clinical diagnosis of sCJD during surveillance activities. The use of this protocol will probably lead to a significant increase of the incidence rate.Classification of evidenceThis study provides Class III evidence that for patients with suspected sCJD, criteria for clinical diagnosis plus the CSF RT-QuIC accurately identifies patients with sCJD (sensitivity 97%, specificity 99%).
Styles APA, Harvard, Vancouver, ISO, etc.
9

Haley, Nicholas J., Chris Siepker, W. David Walter, Bruce V. Thomsen, Justin J. Greenlee, Aaron D. Lehmkuhl et Jürgen A. Richt. « Antemortem Detection of Chronic Wasting Disease Prions in Nasal Brush Collections and Rectal Biopsy Specimens from White-Tailed Deer by Real-Time Quaking-Induced Conversion ». Journal of Clinical Microbiology 54, no 4 (10 février 2016) : 1108–16. http://dx.doi.org/10.1128/jcm.02699-15.

Texte intégral
Résumé :
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since spread to cervids in 23 states, two Canadian provinces, and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction of farmed or free-ranging deer and elk or surveillance studies of private or protected herds, where depopulation is contraindicated. This study sought to evaluate the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay by using recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brush samples collected antemortem from farmed white-tailed deer (n= 409). Antemortem findings were then compared to results from ante- and postmortem samples (RAMALT, brainstem, and medial retropharyngeal lymph nodes) evaluated by using the current gold standardin vitroassay, immunohistochemistry (IHC) analysis. We hypothesized that the sensitivity of RT-QuIC would be comparable to IHC analysis in antemortem tissues and would correlate with both the genotype and the stage of clinical disease. Our results showed that RAMALT testing by RT-QuIC assay had the highest sensitivity (69.8%) compared to that of postmortem testing, with a specificity of >93.9%. These data suggest that RT-QuIC, like IHC analysis, is an effective assay for detection of PrPCWDin rectal biopsy specimens and other antemortem samples and, with further research to identify more sensitive tissues, bodily fluids, or experimental conditions, has potential for large-scale and rapid automated testing for CWD diagnosis.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Moško, Tibor, Soňa Galušková, Radoslav Matěj, Magdalena Brůžová et Karel Holada. « Detection of Prions in Brain Homogenates and CSF Samples Using a Second-Generation RT-QuIC Assay : A Useful Tool for Retrospective Analysis of Archived Samples ». Pathogens 10, no 6 (13 juin 2021) : 750. http://dx.doi.org/10.3390/pathogens10060750.

Texte intégral
Résumé :
The possibilities for diagnosing prion diseases have shifted significantly over the last 10 years. The RT-QuIC assay option has been added for neuropsychiatric symptoms, supporting biomarkers and final post-mortem confirmation. Samples of brain homogenates used for final diagnosis, archived for many years, provide the possibility for retrospective studies. We used a second-generation RT-QuIC assay to detect seeding activity in different types of sporadic and genetic prion diseases in archival brain homogenates and post-mortem CSF samples that were 2 to 15 years old. Together, we tested 92 archival brain homogenates: 39 with definite prion disease, 28 with definite other neurological disease, and 25 with no signs of neurological disorders. The sensitivity and specificity of the assay were 97.4% and 100%, respectively. Differences were observed in gCJD E200K, compared to the sporadic CJD group. In 52 post-mortem CSF samples—24 with definite prion disease and 28 controls—we detected the inhibition of seeding reaction due to high protein content. Diluting the samples eliminated such inhibition and led to 95.8% sensitivity and 100% specificity of the assay. In conclusion, we proved the reliability of archived brain homogenates and post-mortem CSF samples for retrospective analysis by RT-QuIC after long-term storage, without changed reactivity.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie