Articles de revues sur le sujet « RNA viruses »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : RNA viruses.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « RNA viruses ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Shi, Rui-Zhu, Yuan-Qing Pan et Li Xing. « RNA Helicase A Regulates the Replication of RNA Viruses ». Viruses 13, no 3 (25 février 2021) : 361. http://dx.doi.org/10.3390/v13030361.

Texte intégral
Résumé :
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ahlquist, Paul. « Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses ». Nature Reviews Microbiology 4, no 5 (3 avril 2006) : 371–82. http://dx.doi.org/10.1038/nrmicro1389.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sokoloski, Kevin J., Carol J. Wilusz et Jeffrey Wilusz. « Viruses : Overturning RNA Turnover ». RNA Biology 3, no 4 (octobre 2006) : 140–44. http://dx.doi.org/10.4161/rna.3.4.4076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yang, Jie, Hongjie Xia, Qi Qian et Xi Zhou. « RNA chaperones encoded by RNA viruses ». Virologica Sinica 30, no 6 (décembre 2015) : 401–9. http://dx.doi.org/10.1007/s12250-015-3676-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Enami, Masayoshi. « Negative-strand RNA viruses. Reverse genetics of negative-strand RNA viruses. » Uirusu 45, no 2 (1995) : 145–57. http://dx.doi.org/10.2222/jsv.45.145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ahlquist, P. « RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing ». Science 296, no 5571 (17 mai 2002) : 1270–73. http://dx.doi.org/10.1126/science.1069132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Newburn, Laura R., et K. Andrew White. « Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses ». Viruses 11, no 8 (14 août 2019) : 751. http://dx.doi.org/10.3390/v11080751.

Texte intégral
Résumé :
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
8

SATO, Hironori, et Masaru YOKOYAMA. « RNA viruses and mutations ». Uirusu 55, no 2 (2005) : 221–29. http://dx.doi.org/10.2222/jsv.55.221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

MINE, Akira, et Tetsuro OKUNO. « Viruses and RNA silencing ». Uirusu 58, no 1 (2008) : 61–68. http://dx.doi.org/10.2222/jsv.58.61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Strauss, J. H., et E. G. Strauss. « Evolution of RNA Viruses ». Annual Review of Microbiology 42, no 1 (octobre 1988) : 657–83. http://dx.doi.org/10.1146/annurev.mi.42.100188.003301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Carmichael, Gordon G. « Silencing viruses with RNA ». Nature 418, no 6896 (juillet 2002) : 379–80. http://dx.doi.org/10.1038/418379a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

King, Andrew M. Q. « RNA viruses do it ». Trends in Genetics 3 (janvier 1987) : 60–61. http://dx.doi.org/10.1016/0168-9525(87)90173-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Billiau, A. « Double-stranded RNA viruses ». Antiviral Research 5, no 3 (juin 1985) : 191–92. http://dx.doi.org/10.1016/0166-3542(85)90052-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Saiz, Juan-Carlos. « Vaccines against RNA Viruses ». Vaccines 8, no 3 (27 août 2020) : 479. http://dx.doi.org/10.3390/vaccines8030479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Slamon, Dennis J., et Irvin S. Y. Chen. « RNA viruses and cancer ». Infectious Diseases Newsletter 5, no 4 (avril 1986) : 28–30. http://dx.doi.org/10.1016/0278-2316(86)90068-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hammarskjöld, Marie-Louise. « RNA and lessons from viruses ». RNA 21, no 4 (16 mars 2015) : 632–33. http://dx.doi.org/10.1261/rna.050310.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Lundstrom, Kenneth. « Self-Replicating RNA Viruses for RNA Therapeutics ». Molecules 23, no 12 (13 décembre 2018) : 3310. http://dx.doi.org/10.3390/molecules23123310.

Texte intégral
Résumé :
Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Lundstrom, Kenneth. « Self-Amplifying RNA Viruses as RNA Vaccines ». International Journal of Molecular Sciences 21, no 14 (20 juillet 2020) : 5130. http://dx.doi.org/10.3390/ijms21145130.

Texte intégral
Résumé :
Single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses and rhabdoviruses are characterized by their capacity of highly efficient self-amplification of RNA in host cells, which make them attractive vehicles for vaccine development. Particularly, alphaviruses and flaviviruses can be administered as recombinant particles, layered DNA/RNA plasmid vectors carrying the RNA replicon and even RNA replicon molecules. Self-amplifying RNA viral vectors have been used for high level expression of viral and tumor antigens, which in immunization studies have elicited strong cellular and humoral immune responses in animal models. Vaccination has provided protection against challenges with lethal doses of viral pathogens and tumor cells. Moreover, clinical trials have demonstrated safe application of RNA viral vectors and even promising results in rhabdovirus-based phase III trials on an Ebola virus vaccine. Preclinical and clinical applications of self-amplifying RNA viral vectors have proven efficient for vaccine development and due to the presence of RNA replicons, amplification of RNA in host cells will generate superior immune responses with significantly reduced amounts of RNA delivered. The need for novel and efficient vaccines has become even more evident due to the global COVID-19 pandemic, which has further highlighted the urgency in challenging emerging diseases.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Raj, Pushker. « Classification of medically important viruses II : RNA viruses ». Clinical Microbiology Newsletter 16, no 17 (septembre 1994) : 129–34. http://dx.doi.org/10.1016/0196-4399(94)90005-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Fisher, Susie. « Are RNA Viruses Vestiges of an RNA World ? » Journal for General Philosophy of Science 41, no 1 (25 mai 2010) : 121–41. http://dx.doi.org/10.1007/s10838-010-9119-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Geng, Guowei, Deya Wang, Zhifei Liu, Yalan Wang, Mingjing Zhu, Xinran Cao, Chengming Yu et Xuefeng Yuan. « Translation of Plant RNA Viruses ». Viruses 13, no 12 (13 décembre 2021) : 2499. http://dx.doi.org/10.3390/v13122499.

Texte intégral
Résumé :
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Silva-Júnior, Edeildo F. da. « Entry Inhibitors of RNA Viruses ». Current Medicinal Chemistry 29, no 4 (février 2022) : 609–11. http://dx.doi.org/10.2174/092986732904220207113503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Pompei, Simone, Vittorio Loreto et Francesca Tria. « Phylogenetic Properties of RNA Viruses ». PLoS ONE 7, no 9 (20 septembre 2012) : e44849. http://dx.doi.org/10.1371/journal.pone.0044849.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Simon-Loriere, Etienne, et Edward C. Holmes. « Why do RNA viruses recombine ? » Nature Reviews Microbiology 9, no 8 (4 juillet 2011) : 617–26. http://dx.doi.org/10.1038/nrmicro2614.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Steinhauer, D. A., et J. J. Holland. « Rapid Evolution of RNA Viruses ». Annual Review of Microbiology 41, no 1 (octobre 1987) : 409–31. http://dx.doi.org/10.1146/annurev.mi.41.100187.002205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Gillespie, J. H. « Episodic evolution of RNA viruses. » Proceedings of the National Academy of Sciences 90, no 22 (15 novembre 1993) : 10411–12. http://dx.doi.org/10.1073/pnas.90.22.10411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zeller, Mark, et Kristian G. Andersen. « Backbone of RNA viruses uncovered ». Nature 556, no 7700 (avril 2018) : 182–83. http://dx.doi.org/10.1038/d41586-018-03923-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Said, Elias A., Felipe Diaz-Griffero, Dorine Bonte, Daniel Lamarre et Ali A. Al-Jabri. « Immune Responses to RNA Viruses ». Journal of Immunology Research 2018 (12 juin 2018) : 1–2. http://dx.doi.org/10.1155/2018/5473678.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Russell, Stephen J. « RNA viruses as virotherapy agents ». Cancer Gene Therapy 9, no 12 (22 novembre 2002) : 961–66. http://dx.doi.org/10.1038/sj.cgt.7700535.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Woodland, David L. « A Focus on RNA Viruses ». Viral Immunology 24, no 2 (avril 2011) : 67–68. http://dx.doi.org/10.1089/vim.2011.ed.24.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Rima, B. K. « Viruses in the RNA World ». Biochemical Society Transactions 24, no 1 (1 février 1996) : 1–13. http://dx.doi.org/10.1042/bst0240001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

BHUVANESHWARI, M., H. SUBRAMANYA, M. MURTHY, K. GOPINATH et H. SAVITHRI. « Architecture of small RNA viruses ». Progress in Crystal Growth and Characterization of Materials 34, no 1-4 (1997) : 1–10. http://dx.doi.org/10.1016/s0960-8974(97)00001-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Michalakis, Y. « EVOLUTION : Epistasis in RNA Viruses ». Science 306, no 5701 (26 novembre 2004) : 1492–93. http://dx.doi.org/10.1126/science.1106677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Colbère-Garapin, Florence, Bruno Blondel, Aure Saulnier, Isabelle Pelletier et Karine Labadie. « Silencing viruses by RNA interference ». Microbes and Infection 7, no 4 (avril 2005) : 767–75. http://dx.doi.org/10.1016/j.micinf.2005.02.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Ruigrok, R. W. H. « Assembly of enveloped RNA viruses ». FEBS Letters 202, no 1 (23 juin 1986) : 159. http://dx.doi.org/10.1016/0014-5793(86)80670-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lang, Andrew S., Matthew L. Rise, Alexander I. Culley et Grieg F. Steward. « RNA viruses in the sea ». FEMS Microbiology Reviews 33, no 2 (mars 2009) : 295–323. http://dx.doi.org/10.1111/j.1574-6976.2008.00132.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Drake, J. W., et J. J. Holland. « Mutation rates among RNA viruses ». Proceedings of the National Academy of Sciences 96, no 24 (23 novembre 1999) : 13910–13. http://dx.doi.org/10.1073/pnas.96.24.13910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Dadley-Moore, Davina. « RNA viruses : all bases covered ? » Nature Reviews Immunology 6, no 5 (mai 2006) : 341. http://dx.doi.org/10.1038/nri1856.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Rossmann, Michael G. « The evolution of RNA viruses ». BioEssays 7, no 3 (septembre 1987) : 99–103. http://dx.doi.org/10.1002/bies.950070302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Weber, Friedemann, Valentina Wagner, Simon B. Rasmussen, Rune Hartmann et Søren R. Paludan. « Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses ». Journal of Virology 80, no 10 (15 mai 2006) : 5059–64. http://dx.doi.org/10.1128/jvi.80.10.5059-5064.2006.

Texte intégral
Résumé :
ABSTRACT Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Richaud, Aurélien, Lise Frézal, Stephen Tahan, Hongbing Jiang, Joshua A. Blatter, Guoyan Zhao, Taniya Kaur, David Wang et Marie-Anne Félix. « Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase ». Proceedings of the National Academy of Sciences 116, no 49 (18 novembre 2019) : 24738–47. http://dx.doi.org/10.1073/pnas.1903903116.

Texte intégral
Résumé :
Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chao, Shufen, Haoran Wang, Shu Zhang, Guoqing Chen, Chonghui Mao, Yang Hu, Fengquan Yu et al. « Novel RNA Viruses Discovered in Weeds in Rice Fields ». Viruses 14, no 11 (10 novembre 2022) : 2489. http://dx.doi.org/10.3390/v14112489.

Texte intégral
Résumé :
Weeds often grow alongside crop plants. In addition to competing with crops for nutrients, water and space, weeds host insect vectors or act as reservoirs for viral diversity. However, little is known about viruses infecting rice weeds. In this work, we used metatranscriptomic deep sequencing to identify RNA viruses from 29 weed samples representing 23 weed species. A total of 224 RNA viruses were identified: 39 newly identified viruses are sufficiently divergent to comprise new families and genera. The newly identified RNA viruses clustered within 18 viral families. Of the identified viruses, 196 are positive-sense single-stranded RNA viruses, 24 are negative-sense single-stranded RNA viruses and 4 are double-stranded RNA viruses. We found that some novel RNA viruses clustered within the families or genera of several plant virus species and have the potential to infect plants. Collectively, these results expand our understanding of viral diversity in rice weeds. Our work will contribute to developing effective strategies with which to manage the spread and epidemiology of plant viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Yang, Siwy Ling, Riccardo Delli Ponti, Yue Wan et Roland G. Huber. « Computational and Experimental Approaches to Study the RNA Secondary Structures of RNA Viruses ». Viruses 14, no 8 (16 août 2022) : 1795. http://dx.doi.org/10.3390/v14081795.

Texte intégral
Résumé :
Most pandemics of recent decades can be traced to RNA viruses, including HIV, SARS, influenza, dengue, Zika, and SARS-CoV-2. These RNA viruses impose considerable social and economic burdens on our society, resulting in a high number of deaths and high treatment costs. As these RNA viruses utilize an RNA genome, which is important for different stages of the viral life cycle, including replication, translation, and packaging, studying how the genome folds is important to understand virus function. In this review, we summarize recent advances in computational and high-throughput RNA structure-mapping approaches and their use in understanding structures within RNA virus genomes. In particular, we focus on the genome structures of the dengue, Zika, and SARS-CoV-2 viruses due to recent significant outbreaks of these viruses around the world.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Boonrod, Kajohn, et Gabriele Krczal. « Inhibitions of Positive-Sense (ss) RNA Viruses RNA-Dependent RNA Polymerases ». Current Enzyme Inhibition 5, no 4 (1 décembre 2009) : 234–44. http://dx.doi.org/10.2174/157340809789630262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Nicholson, Beth L., et K. Andrew White. « Functional long-range RNA–RNA interactions in positive-strand RNA viruses ». Nature Reviews Microbiology 12, no 7 (16 juin 2014) : 493–504. http://dx.doi.org/10.1038/nrmicro3288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Swaminathan, Gokul, Julio Martin-Garcia et Sonia Navas-Martin. « RNA viruses and microRNAs : challenging discoveries for the 21st century ». Physiological Genomics 45, no 22 (15 novembre 2013) : 1035–48. http://dx.doi.org/10.1152/physiolgenomics.00112.2013.

Texte intégral
Résumé :
RNA viruses represent the predominant cause of many clinically relevant viral diseases in humans. Among several evolutionary advantages acquired by RNA viruses, the ability to usurp host cellular machinery and evade antiviral immune responses is imperative. During the past decade, RNA interference mechanisms, especially microRNA (miRNA)-mediated regulation of cellular protein expression, have revolutionized our understanding of host-viral interactions. Although it is well established that several DNA viruses express miRNAs that play crucial roles in their pathogenesis, expression of miRNAs by RNA viruses remains controversial. However, modulation of the miRNA machinery by RNA viruses may confer multiple benefits for enhanced viral replication and survival in host cells. In this review, we discuss the current literature on RNA viruses that may encode miRNAs and the varied advantages of engineering RNA viruses to express miRNAs as potential vectors for gene therapy. In addition, we review how different families of RNA viruses can alter miRNA machinery for productive replication, evasion of antiviral immune responses, and prolonged survival. We underscore the need to further explore the complex interactions of RNA viruses with host miRNAs to augment our understanding of host-virus interplay.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kolakofsky, Daniel. « A short biased history of RNA viruses ». RNA 21, no 4 (16 mars 2015) : 667–69. http://dx.doi.org/10.1261/rna.049916.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ortín, Juan, et Jaime Martín-Benito. « The RNA synthesis machinery of negative-stranded RNA viruses ». Virology 479-480 (mai 2015) : 532–44. http://dx.doi.org/10.1016/j.virol.2015.03.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wang, Wenqing, Xianhong Wang, Chunyan Tu, Mengmeng Yang, Jun Xiang, Liping Wang, Ni Hong, Lifeng Zhai et Guoping Wang. « Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus ». Viruses 14, no 11 (18 novembre 2022) : 2552. http://dx.doi.org/10.3390/v14112552.

Texte intégral
Résumé :
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (−ssRNA) viruses. In these viruses, five +ssRNA and four −ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel −ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Bwalya, John, et Kook-Hyung Kim. « The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses ». Plant Pathology Journal 39, no 1 (1 février 2023) : 28–38. http://dx.doi.org/10.5423/ppj.rw.10.2022.0139.

Texte intégral
Résumé :
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host’s machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins’ role in replicating plant (+)ss RNA viruses.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie