Articles de revues sur le sujet « RNA therapeutic »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : RNA therapeutic.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « RNA therapeutic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mahy, BWJ. « Therapeutic RNA ? » Reviews in Medical Virology 15, no 6 (2005) : 349–50. http://dx.doi.org/10.1002/rmv.485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, Xiang, Yu Zhang, Shurong Zhou, Lauren Dain, Lei Mei et Guizhi Zhu. « Circular RNA : An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines ». Journal of Controlled Release 348 (août 2022) : 84–94. http://dx.doi.org/10.1016/j.jconrel.2022.05.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

EVERTS, SARAH. « RNA DISTRACTION IS THERAPEUTIC ». Chemical & ; Engineering News 87, no 29 (20 juillet 2009) : 15. http://dx.doi.org/10.1021/cen-v087n029.p015a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Poller, Wolfgang, Juliane Tank, Carsten Skurk et Martina Gast. « Cardiovascular RNA Interference Therapy ». Circulation Research 113, no 5 (16 août 2013) : 588–602. http://dx.doi.org/10.1161/circresaha.113.301056.

Texte intégral
Résumé :
Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

&NA;. « Therapeutic potential of RNA??interference ». Inpharma Weekly &NA;, no 1411 (novembre 2003) : 2. http://dx.doi.org/10.2165/00128413-200314110-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Stevenson, Mario. « Therapeutic Potential of RNA Interference ». New England Journal of Medicine 351, no 17 (21 octobre 2004) : 1772–77. http://dx.doi.org/10.1056/nejmra045004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Han, Xuexiang, Michael J. Mitchell et Guangjun Nie. « Nanomaterials for Therapeutic RNA Delivery ». Matter 3, no 6 (décembre 2020) : 1948–75. http://dx.doi.org/10.1016/j.matt.2020.09.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sioud, Mouldy, et Marianne Leirdal. « Therapeutic RNA and DNA enzymes ». Biochemical Pharmacology 60, no 8 (octobre 2000) : 1023–26. http://dx.doi.org/10.1016/s0006-2952(00)00395-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Novina, C. D. « Therapeutic potential of RNA interference ». Biomedicine & ; Pharmacotherapy 58, no 4 (mai 2004) : 270. http://dx.doi.org/10.1016/j.biopha.2002.12.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

van Ommen, Gert-Jan B., et Annemieke Aartsma-Rus. « Advances in therapeutic RNA-targeting ». New Biotechnology 30, no 3 (mars 2013) : 299–301. http://dx.doi.org/10.1016/j.nbt.2013.01.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jana, S., C. Chakraborty, S. Nandi et J. K. Deb. « RNA interference : potential therapeutic targets ». Applied Microbiology and Biotechnology 65, no 6 (15 septembre 2004) : 649–57. http://dx.doi.org/10.1007/s00253-004-1732-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hastings, Michelle L., et Adrian R. Krainer. « RNA therapeutics ». RNA 29, no 4 (16 mars 2023) : 393–95. http://dx.doi.org/10.1261/rna.079626.123.

Texte intégral
Résumé :
“RNA therapeutics” refers to a disease treatment or drug that utilizes RNA as a component. In this context, RNA may be the direct target of a small-molecule drug or RNA itself may be the drug, designed to bind to a protein, or to mimic or target another RNA. RNA has gained attention in the drug-development world, as recent clinical successes and breakthrough technologies have revolutionized the drug-like qualities of the molecule or its usefulness as a drug target. In this special issue ofRNA, we gathered expert perspectives on the past, present, and future of the field, to serve as a primer and also a challenge to the broad scientific community to incorporate RNA into their experimental design and problem-solving process, and to imagine and realize the potential of RNA as a therapeutic drug or target.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Li, Xinyi, Wenchen Pu, Song Chen et Yong Peng. « Therapeutic targeting of RNA-binding protein by RNA-PROTAC ». Molecular Therapy 29, no 6 (juin 2021) : 1940–42. http://dx.doi.org/10.1016/j.ymthe.2021.04.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Adachi, Hironori, Martin Hengesbach, Yi-Tao Yu et Pedro Morais. « From Antisense RNA to RNA Modification : Therapeutic Potential of RNA-Based Technologies ». Biomedicines 9, no 5 (14 mai 2021) : 550. http://dx.doi.org/10.3390/biomedicines9050550.

Texte intégral
Résumé :
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lundstrom, Kenneth. « Self-Replicating RNA Viruses for RNA Therapeutics ». Molecules 23, no 12 (13 décembre 2018) : 3310. http://dx.doi.org/10.3390/molecules23123310.

Texte intégral
Résumé :
Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Dejong, Eric, Burkhard Luy et John Marino. « RNA and RNA-Protein Complexes as Targets for Therapeutic Intervention ». Current Topics in Medicinal Chemistry 2, no 3 (1 mars 2002) : 289–302. http://dx.doi.org/10.2174/1568026023394245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Tafech, Alaeddin, Tyler Bassett, Dan Sparanese et Chow Lee. « Destroying RNA as a Therapeutic Approach ». Current Medicinal Chemistry 13, no 8 (1 avril 2006) : 863–81. http://dx.doi.org/10.2174/092986706776361021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ghosal, Anubrata, Ahmad Kabir et Abul Mandal. « RNA interference and its therapeutic potential ». Open Medicine 6, no 2 (1 avril 2011) : 137–47. http://dx.doi.org/10.2478/s11536-011-0005-5.

Texte intégral
Résumé :
AbstractRNA interference is a technique that has become popular in the past few years. This is a biological method to detect the activity of a specific gene within a cell. RNAi is the introduction of homologous double stranded RNA to specifically target a gene’s product resulting in null or hypomorphic phenotypes. This technique involves the degradation of specific mRNA by using small interfering RNA. Both microRNA (miRNA) and small interfering RNA (siRNA) are directly related to RNA interference. RNAi mechanism is being explored as a new technique for suppressing gene expression. It is an important issue in the treatment of various diseases. This review considers different aspects of RNAi technique including its history of discovery, molecular mechanism, gene expression study, advantages of this technique against previously used techniques, barrier associated with this technique, and its therapeutic application.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Goyal, Bhoomika R., Mayur M. Patel, Mithil K. Soni et Shraddha V. Bhadada. « Therapeutic opportunities of small interfering RNA ». Fundamental & ; Clinical Pharmacology 23, no 4 (août 2009) : 367–86. http://dx.doi.org/10.1111/j.1472-8206.2009.00694.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Krueger, Robert J. « Ribozymes : RNA as a Therapeutic Agent ». American Pharmacy 35, no 1 (janvier 1995) : 12–13. http://dx.doi.org/10.1016/s0160-3450(16)33859-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Read, Martin L., Mark Stevenson, Paul J. Farrow, Lee B. Barrett et Leonard W. Seymour. « RNA-based therapeutic strategies for cancer ». Expert Opinion on Therapeutic Patents 13, no 5 (mai 2003) : 627–38. http://dx.doi.org/10.1517/13543776.13.5.627.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Stein, Richard A. « RNA Silencing Finds Its Therapeutic Voice ». Genetic Engineering & ; Biotechnology News 40, no 3 (1 mars 2020) : 28–30. http://dx.doi.org/10.1089/gen.40.03.08.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Mintz, Paul, Vikash Reebye, Pål Sætrom, John J. Rossi et Nagy A. Habib. « Exploiting RNA activation for therapeutic applications ». Cell and Gene Therapy Insights 1, no 1 (15 septembre 2015) : 14–18. http://dx.doi.org/10.18609/cgti.2015.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Sundaram, Padma, Helena Kurniawan, Mark E. Byrne et Jacek Wower. « Therapeutic RNA aptamers in clinical trials ». European Journal of Pharmaceutical Sciences 48, no 1-2 (janvier 2013) : 259–71. http://dx.doi.org/10.1016/j.ejps.2012.10.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Uprichard, Susan L. « The therapeutic potential of RNA interference ». FEBS Letters 579, no 26 (15 août 2005) : 5996–6007. http://dx.doi.org/10.1016/j.febslet.2005.08.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kerr, Thomas A., et Nicholas O. Davidson. « Therapeutic RNA manipulation in liver disease ». Hepatology 51, no 3 (mars 2010) : 1055–61. http://dx.doi.org/10.1002/hep.23344.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Piotrowska, Anna, Agnieszka Rybarczyk, Piotr Wierzbicki, Marzena Kotwas, Agata Wrońska et Zbigniew Kmieć. « RNA interference – mechanism and therapeutic possibilities ». Polish Annals of Medicine 16, no 1 (15 mars 2023) : 138–47. http://dx.doi.org/10.29089/paom/162206.

Texte intégral
Résumé :
<b>Introduction.</b> In the early 1990s, during experiments aimed at intensifying the colour of Petunia hybryda flowers, a new mechanism of regulation of gene expression was discovered; however, its mechanism, i.e. inhibition of gene expression at a post-transcriptional stage, remained unknown. In 1998 two groups led by A. Fire and C. Mello found a molecular basis for the phenomenon called RNA interference (RNAi). Delivery of a double stranded RNA to a model organism, Caenorhabditis elegans, triggered silencing of complementary messenger RNA sequences. This discovery opened new perspectives for research involving gene functions due to the possibility of inhibiting the expression of a specific gene through its mRNA degradation in the cytosol. <b>Aim.</b> The aim of this paper is to present a potential role of RNAi as a therapeutic method for various diseases. <b>Discussion.</b> RNAi provides a powerful technique for the derivation and analysis of loss-of-function phenotypes in vertebrate cells. This technique may be also applied as a therapeutic strategy, e.g. in genetic and viral diseases, and clinical trials to test this possibility have been already initiated. <b>Conclusions.</b> RNAi-based therapy may become a powerful tool to treat many diseases whose molecular pathogenesis mechanisms have been thoroughly understood.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Bajan, Sarah, et Gyorgy Hutvagner. « RNA-Based Therapeutics : From Antisense Oligonucleotides to miRNAs ». Cells 9, no 1 (7 janvier 2020) : 137. http://dx.doi.org/10.3390/cells9010137.

Texte intégral
Résumé :
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ferdows, Bijan Emiliano, Dylan Neal Patel, Wei Chen, Xiangang Huang, Na Kong et Wei Tao. « RNA cancer nanomedicine : nanotechnology-mediated RNA therapy ». Nanoscale 14, no 12 (2022) : 4448–55. http://dx.doi.org/10.1039/d1nr06991h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Paluszczak, Jarosław. « Therapeutic targeting of alternative splicing ». Farmacja Polska 75, no 11 (29 décembre 2019) : 605–16. http://dx.doi.org/10.32383/farmpol/115754.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Aziz Ahmad, Kashif, Saleha Akram Nizami et Muhammad Haroon Ghous. « Coronavirus - Drug Discovery and Therapeutic Drug Monitoring Options ». Pharmaceutics and Pharmacology Research 5, no 2 (6 janvier 2022) : 01–04. http://dx.doi.org/10.31579/2693-7247/044.

Texte intégral
Résumé :
COVID-19 is basically a medium size RNA virus and the nucleic acid is about 30 kb long, positive in sense, single stranded and polyadenylated. The RNA which is found in this virus is the largest known RNA and codes for a large polyprotein. In addition, coronaviruses are capable of genetic recombination if 2 viruses infect the same cell at the same time. SARS-CoV emerged first in southern China and rapidly spread around the globe in 2002–2003. In November 2002, an unusual epidemic of atypical pneumonia with a high rate of nosocomial transmission to health-care workers occurred in Foshan, Guangdong, China. In March 2003, a novel CoV was confirmed to be the causative agent for SARS, and was thus named SARS-CoV. Despite the report of a large number of virus-based and host-based treatment options with potent in vitro activities for SARS and MERS, only a few are likely to fulfil their potential in the clinical setting in the foreseeable future. Most drugs have one or more major limitations that prevent them from proceeding beyond the in vitro stage. First, many drugs have high EC50/Cmax ratios at clinically relevant dosages
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chen, Genghao, Dhruva Katrekar et Prashant Mali. « RNA-Guided Adenosine Deaminases : Advances and Challenges for Therapeutic RNA Editing ». Biochemistry 58, no 15 (3 avril 2019) : 1947–57. http://dx.doi.org/10.1021/acs.biochem.9b00046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bennett, C. Frank, et Eric E. Swayze. « RNA Targeting Therapeutics : Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform ». Annual Review of Pharmacology and Toxicology 50, no 1 (février 2010) : 259–93. http://dx.doi.org/10.1146/annurev.pharmtox.010909.105654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Haque, Sakib, Kiri Cook, Gaurav Sahay et Conroy Sun. « RNA-Based Therapeutics : Current Developments in Targeted Molecular Therapy of Triple-Negative Breast Cancer ». Pharmaceutics 13, no 10 (15 octobre 2021) : 1694. http://dx.doi.org/10.3390/pharmaceutics13101694.

Texte intégral
Résumé :
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive cancer that has the highest mortality rate out of all breast cancer subtypes. Conventional clinical treatments targeting ER, PR, and HER2 receptors have been unsuccessful in the treatment of TNBC, which has led to various research efforts in developing new strategies to treat TNBC. Targeted molecular therapy of TNBC utilizes knowledge of key molecular signatures of TNBC that can be effectively modulated to produce a positive therapeutic response. Correspondingly, RNA-based therapeutics represent a novel tool in oncology with their ability to alter intrinsic cancer pathways that contribute to poor patient prognosis. Current RNA-based therapeutics exist as two major areas of investigation—RNA interference (RNAi) and RNA nanotherapy, where RNAi utilizes principles of gene silencing, and RNA nanotherapy utilizes RNA-derived nanoparticles to deliver chemotherapeutics to target cells. RNAi can be further classified as therapeutics utilizing either small interfering RNA (siRNA) or microRNA (miRNA). As the broader field of gene therapy has advanced significantly in recent years, so too have efforts in the development of effective RNA-based therapeutic strategies for treating aggressive cancers, including TNBC. This review will summarize key advances in targeted molecular therapy of TNBC, describing current trends in treatment using RNAi, combination therapies, and recent efforts in RNA immunotherapy, utilizing messenger RNA (mRNA) in the development of cancer vaccines.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Malik, Amarila. « RNA THERAPEUTIC, PENDEKATAN BARU DALAM TERAPI GEN ». Majalah Ilmu Kefarmasian 2, no 2 (août 2005) : 51–61. http://dx.doi.org/10.7454/psr.v2i2.3384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Neil, Christopher R., Michael W. Seiler, Dominic J. Reynolds, Jesse J. Smith, Frédéric H. Vaillancourt, Peter G. Smith et Anant A. Agrawal. « Reprogramming RNA processing : an emerging therapeutic landscape ». Trends in Pharmacological Sciences 43, no 5 (mai 2022) : 437–54. http://dx.doi.org/10.1016/j.tips.2022.02.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gao, Minsong, Qingyi Zhang, Xin-Hua Feng et Jianzhao Liu. « Synthetic modified messenger RNA for therapeutic applications ». Acta Biomaterialia 131 (septembre 2021) : 1–15. http://dx.doi.org/10.1016/j.actbio.2021.06.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ziemniak, Marcin, Malwina Strenkowska, Joanna Kowalska et Jacek Jemielity. « Potential therapeutic applications of RNA cap analogs ». Future Medicinal Chemistry 5, no 10 (juin 2013) : 1141–72. http://dx.doi.org/10.4155/fmc.13.96.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Li, Y., H. Wu, Y. Niu, Y. Hu, Q. Li, C. Cao et J. Cai. « Development of RNA Aptamer-Based Therapeutic Agents ». Current Medicinal Chemistry 20, no 29 (1 août 2013) : 3655–63. http://dx.doi.org/10.2174/0929867311320290011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kim, Young Joon, et Omar Abdel-Wahab. « Therapeutic targeting of RNA splicing in myelodysplasia ». Seminars in Hematology 54, no 3 (juillet 2017) : 167–73. http://dx.doi.org/10.1053/j.seminhematol.2017.06.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Cejka, Daniel, Doris Losert et Volker Wacheck. « Short interfering RNA (siRNA) : tool or therapeutic ? » Clinical Science 110, no 1 (12 décembre 2005) : 47–58. http://dx.doi.org/10.1042/cs20050162.

Texte intégral
Résumé :
Gene silencing by siRNA (short interfering RNA) is a still developing field in biology and has evolved as a novel post-transcriptional gene silencing strategy with therapeutic potential. With siRNAs, virtually every gene in the human genome contributing to a disease becomes amenable to regulation, thus opening unprecedented opportunities for drug discovery. Besides the well-established role for siRNA as a tool for target screening and validation in vitro, recent progress of siRNA delivery in vivo raised expectations for siRNA drugs as the up-and-coming ‘magic bullet’. Whether siRNA compounds will make it as novel chemical entities from ‘bench to bedside’ will probably depend largely on improving their pharmacokinetics in terms of plasma stability and cellular uptake. Whereas locally administered siRNAs have already entered the first clinical trials, strategies for successful systemic delivery of siRNA are still in a preclinical stage of development. Irrespective of its therapeutic potential, RNAi (RNA interference) has unambiguously become a valuable tool for basic research in biology and thereby it will continue to have a major impact on medical science. In this review, we will give a brief overview about the history and current understanding of RNAi and focus on potential applications, especially as a therapeutic option to treat human disease.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Thiel, Kristina W., et Paloma H. Giangrande. « Therapeutic Applications of DNA and RNA Aptamers ». Oligonucleotides 19, no 3 (septembre 2009) : 209–22. http://dx.doi.org/10.1089/oli.2009.0199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Egli, Martin, et Muthiah Manoharan. « Re-Engineering RNA Molecules into Therapeutic Agents ». Accounts of Chemical Research 52, no 4 (26 mars 2019) : 1036–47. http://dx.doi.org/10.1021/acs.accounts.8b00650.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

ROSSI, J., et N. SARVER. « RNA enzymes (ribozymes) as antiviral therapeutic agents ». Trends in Biotechnology 8 (1990) : 179–83. http://dx.doi.org/10.1016/0167-7799(90)90169-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Takeshita, Fumitaka, et Takahiro Ochiya. « Therapeutic potential of RNA interference against cancer ». Cancer Science 97, no 8 (août 2006) : 689–96. http://dx.doi.org/10.1111/j.1349-7006.2006.00234.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Mirón-Barroso, Sofía, Joana S. Correia, Adam E. Frampton, Mark P. Lythgoe, James Clark, Laura Tookman, Silvia Ottaviani et al. « Polymeric Carriers for Delivery of RNA Cancer Therapeutics ». Non-Coding RNA 8, no 4 (2 août 2022) : 58. http://dx.doi.org/10.3390/ncrna8040058.

Texte intégral
Résumé :
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Veedu, Rakesh N., et Jesper Wengel. « Locked nucleic acid as a novel class of therapeutic agents ». RNA Biology 6, no 3 (juillet 2009) : 321–23. http://dx.doi.org/10.4161/rna.6.3.8807.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Aigner, Achim. « Transkingdom RNA interference (tkRNAi) as a new delivery tool for therapeutic RNA ». Expert Opinion on Biological Therapy 9, no 12 (22 septembre 2009) : 1533–42. http://dx.doi.org/10.1517/14712590903307354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wang, Yanyan, Varada Anirudhan, Ruikun Du, Qinghua Cui et Lijun Rong. « RNA‐dependent RNA polymerase of SARS‐CoV‐2 as a therapeutic target ». Journal of Medical Virology 93, no 1 (19 juillet 2020) : 300–310. http://dx.doi.org/10.1002/jmv.26264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Aartsma-Rus, Annemieke. « Antisense-mediated modulation of splicing : Therapeutic implications for Duchenne muscular dystrophy ». RNA Biology 7, no 4 (juillet 2010) : 453–61. http://dx.doi.org/10.4161/rna.7.4.12264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie