Sommaire
Littérature scientifique sur le sujet « Rivelatori gamma »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Rivelatori gamma ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Rivelatori gamma"
Pacciani, Luigi. « Identification of activity peaks in time-tagged data with a scan-statistics driven clustering method and its application to gamma-ray data samples ». Astronomy & ; Astrophysics 615 (juillet 2018) : A56. http://dx.doi.org/10.1051/0004-6361/201732115.
Texte intégralSalvatore, De Rosa, Cuocolo Alberto, Buongiorno Pietro et Izzo Giacomo. « Simultaneous dual isotope (i123/tc99m) cardiac spect by using CZT camera ». Journal of Advanced Health Care, 13 janvier 2020. http://dx.doi.org/10.36017/jahc2001-008.
Texte intégralThèses sur le sujet "Rivelatori gamma"
TURTURICI, Accursio Antonio. « Fenomeni di polarizzazione in rivelatori Al/CdTe/Pt per spettroscopia X e gamma ». Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/90865.
Texte intégralOver the years the use of semiconductor detectors has had a strategic importance in X and gamma (1 keV – 2 MeV) spectroscopy, with excellent results both in medical and astrophysics applications. The medical imaging (mammography, computed tomography), environmental monitoring (CMB) from the focal plane detectors for X telescopes and astrophysical systems, X-ray fluorescence in the Cultural Heritage represent some important applications. The semiconductor detectors have been widely used due to their interesting properties especially when compared with the conventional detection systems (gas and scintillators); a better signal-noise ratio and therefore a better energy resolution, thanks to the small average energy of ionization. Moreover, thanks to their high density compared to gas detectors provide improved detection efficiency with the possibility of achieving compact and portable systems. The materials traditionally used for the realization of detectors for X and gamma spectroscopy are silicon (Si) and germanium (Ge). Despite the good transport properties of charge carriers and the excellent level of purity, the low atomic number (Si: Z = 14; Ge Z = 32) limits the detection efficiency in the range of high energy (hard X-rays and gamma), while the narrow band gap (Si ~ 1.1 eV, Ge: ~ 0.7 eV) does not allow to operate in ambient temperature conditions. Over the past two decades, have been proposed and studied new detectors based on compound semiconductors (GaAs, Hgl2, CdTe, CdZnTe, TlBr) with band gap and atomic number greater than the Si and Ge, which are able to ensure good performance even at room temperature. The cadmium telluride (CdTe) represents one of the most promising materials, characterized by a high atomic number (ZCd = 48; ZTe = 52; Eg 1.44 eV) and a large band gap (~ 1.44 eV). Despite the interesting physical properties, the main disadvantages of these detectors are related to the phenomena of trapping of charge carriers due to defects and impurities present in the crystals. CdTe detectors are usually realized with ohmic contacts (Pt, Au) on both electrodes (anode and cathode), due to the low leakage currents (< 10 nA). In order to be able to increase the electric field, with consequent improvements of the collection efficiency, without excessive increases of the leakage current, the CdTe detectors are also made with anode blocking contacts (e.g. In, Al) and ohmic on the cathode (Pt, Au). The main critical aspect of such a configuration is the inability to create anode pixel structures, which are useful for improving the spectroscopic properties. For this reason, have been proposed and studied new CdTe detectors with aluminium contacts. However, the main drawback of these detectors is the temporal instability (polarization), which entails a degradation of spectroscopic performance over time, namely, a deterioration of the energy resolution, the variation of the calibration in energy and the reduction in the detection efficiency. This phenomenon, which is due to the over time reduction of the active zone of the detector, occurs more rapidly at high temperatures and low bias voltages and is due to the ionization of deep acceptor centers (detrapping) present in the semiconductor. In this work are presented new prototypes of CdTe detectors with blocking contact, made with anode aluminium (Al), with planar and pixel structures. The purpose of this work is to study experimentally the electrical and spectroscopic properties of these detectors, focusing on the mechanisms of charge transport and the phenomenon of polarization. The present work is part a research project, carried out by a research group of the Department of Physics and Chemistry, University of Palermo, which aims to develop advanced portable detection systems, able to do imaging and high-resolution spectroscopy, in a wide energy range (1 – 150 keV), and to operate also under high fluences (> 106 fotoni/mm2/sec), that can be used for medical (mammography, tomography) and industrial (inspections and controls quality) applications. The first chapter presents the basic physical properties of the CdTe material, the specific mechanisms that regulate the metal-semiconductor contact, the phenomena of polarization and finally the main applications of CdTe detectors. The second chapter presents the results of the electrical characterization of planar CdTe detectors, focusing on the charge transport mechanisms and the polarization phenomenon. The third chapter summarizes the results of the spectroscopic characterization of the investigated detectors in the 22 – 122 keV range, focusing on the effects of the polarization and the correlation between electrical and spectroscopic phenomena. The fourth chapter presents the results of electro-optical characterization. These experiments were carried out at the Institute of Physics of the Charles University in Prague, during a period spent living abroad, under the guidance of the Director of the Institute, the Prof. Jan Franc. Finally, in the fifth chapter the results of the electrical characterization of a pixel CdTe detector are presented.
Frosin, Catalin. « Tecniche di analisi digitale dei segnali prodotti da rivelatori per neutroni ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6691/.
Texte intégralXHIXHA, Gerti. « Advanced gamma-ray spectrometry for environmental radioactivity monitoring ». Doctoral thesis, Università degli studi di Ferrara, 2012. http://hdl.handle.net/11392/2388782.
Texte intégralSTRINGHINI, GIANLUCA. « Development of an innovative PET module ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241249.
Texte intégralPositron emission tomography (PET) is a technique based on the detection of two back to back 511 keV gamma rays originated by a positron-electron annihilation. The aim of this project is to develop an innovative PET detector module with high performances, in term of spatial, energy and timing resolution while maintaining the overall complexity reasonably low. The proposed module is based on a pixellated LYSO matrix and MPPC detector. Compared to double side readout configuration in which the scintillators are read on both sides by detectors, one detector is replaced by an optical light guide and a reflector. The light collected by the second detector in the double side readout approach is instead recirculated and collected by the nearby detectors thanks to the light guide on top of the module. Enabling this light sharing mechanism allows rea- ching the same performances of a double side readout configuration decreasing the number of detector channels needed. Furthermore, it is possible to adopt a more than one to one coupling between scintillators and detector in order to further decrease the number of channels needed and to improve the spatial re- solution of the system. Studying the shared light distribution allows identifying the crystal in which the gamma ray interaction took place. Several matrices are tested with different coupling between scintillators and detectors (one to one, four to one and nine to one) and the results show good crystals identification capabilities and an energy resolution in the order of 12% FWHM (one to one and four to one configurations) and 16% FWHM (nine o one configuration). For small animal and organ dedicated PET devices, there is a spatial resolution degradation close to the edges of the field of view (FOV) due to parallax error. This effect is mitigated by knowing the interaction position along the crystal main axis and this information is known as depth of interaction (DOI). The DOI capabilities of the proposed module are tested and a value of 3 mm FWHM DOI resolution is reached for the one to one and four to one coupling configuration. For the nine to one configuration a DOI resolution of 4 mm FWHM is obtained. In order to reach the DOI information, an attenuation behavior over the crystal length is introduced but, as drawback, it decreases the timing performances of the proposed module. A method to reduce this effect is presented by including the DOI information in the evaluation of the timing resolution. The module shows a coincidence time resolution of 353 ps FWHM. The second part of this project is focused on the development of an image reconstruction software able to include both the DOI and timing information. The reconstruction algorithm is described and presented and a simulation study is performed in order to confirm the benefits of the DOI and timing in the image quality. Furthermore, a complete time of flight (TOF) study is performed evaluating the improvement of the signal to noise (SNR) ratio and spatial resolution as a function of the timing performances.
Guidotti, Simone. « Effetti del rumore sulla PSF del satellite eASTROGAM tramite l'utilizzo del simulatore Geant4 per la rivelazione dei Gamma-Ray Burst ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13945/.
Texte intégralBELLI, FRANCESCO. « Design, costruzione e test del tracciatore del LAT di GLAST ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/727.
Texte intégralThe Gamma-Ray Large Area Space Telescope (GLAST), projected by NASA, is a next generation space observatory conceived for observation of the sky gamma ray sources in the energy range extending from 10 KeV to more than 300 GeV. Compared to its predecessor EGRET, GLAST will have a larger (6 times) effective area, wider field of view, range and energy resolution, resulting in a sensitivity improvement of more than a factor 30. Its main scientific goals are the survey of all the gamma radiation sources such as blazars, gamma-ray bursts, supernova remnants, pulsars, diffuse radiation and unidentified sources. The main instrument onboard GLAST is the Large Area Telescope (LAT), whose tracker has been entirely built and tested in Italy, thanks to the collaboration of many INFN sections and industrial partners, obtaining the largest (73m2 of silicon microstrip detectors), highly efficient, low noise instrument of this kind ever produced before. In the present Thesis work, after introducing the gamma astrophysics goals, the GLAST innovative design and operation are described, comparing its performances with the ones reached by previous experiments. The workflow of construction and test of the LAT tracker is then described, giving special attention to the tasks carried out by the INFN Section of the Rome University “Tor Vergata”, describing for every step of the construction the reasons and methodologies of the environmental and performance tests of its mechanical parts, sensors and reading electronics. For sake of completeness it’s also briefly described the final LAT components integration, performed into the Stanford laboratories (USA). In the end the final LAT performances are shown, resulting better than the ones required by the original project, proving the high quality of the performed work and ensuring a great observation and discovery potential in cosmology and astrophysics to GLAST, whose launch is scheduled for the year 2008.
De, Lucia Chiara. « Studio di un rivelatore per neutroni di alta energia ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9530/.
Texte intégralVichi, Sara. « Caratterizzazione di un rivelatore portatile CZT per applicazioni di spettrometria gamma in medicina nucleare ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5759/.
Texte intégralRiga, Stefano. « Prove sperimentali per la produzione diretta di 68Ga in ciclotrone mediante target liquido ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14828/.
Texte intégralStevanato, Luca. « Innovative techniques for non destructive analysis ». Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422631.
Texte intégralQuesto lavoro descrive lo sviluppo di un sistema mobile per ispezioni radiometriche, chiamato SMANDRA (Sistema Mobile per Analisi Non Distruttive e Radiometriche). SMANDRA fa parte di un grande progetto chiamato SLIMPORT, finanziato dal Ministero Italiano dello sviluppo Economico (MISE), rivolto allo sviluppo di un sistema di sicurezza integrato per il monitoraggio del flusso di persone e merci nei porti. Il sistema è stato progettato come uno strumento mobile e flessibile, da usare in combinazione con postazioni fisse come portali, scanners x-ray e grandi array di rivelatori. Più in particolare, lo scopo di SMANDRA è quello di identificare sorgenti radioattive e materiali illegali e/o pericolosi nascosti dentro container e bagagli segnalati come “sospetti” dai sistemi di sicurezza tradizionali. L’intero apparato è stato disegnato per minimizzare il volume ed il peso in modo da essere facilmente trasportabile su un muletto o su altri veicoli leggeri per ispezioni mirate. In aggiunta il sistema può essere alimentato a batterie, rendendolo completamente indipendente dall’allacciamento elettrico. Il sistema è composto di due unità che hanno un volume totale minore di 0.1 m3: 1) Un’unità passiva composta da due rivelatori di raggi gamma (5”x5” NaI(Tl) e 2”x2” LaBr3(Ce)) e due rivelatori di neutroni (scintillatore liquido NE-213 da 5”x2” e un contatore proporzionale ad 3He). L’unità contiene le batterie, l’alimentazione, l’elettronica digitale e la CPU per l’acquisizione ed analisi dati. 2) Un’unità passiva che include un generatore portatile di neutroni per l’identificazione dei materiali illeciti e/o pericolosi tramite la tecnica TNIS (Tagged Neutron Inspection System). La prima unità può essere usata da sola come un radiometro spettroscopico ad alta efficienza per la rivelazione di radiazioni ionizzanti come raggi-gamma, neutroni veloci e neutroni termici e per identificare materiale radioattivo come ad esempio il Materiale Speciale Nucleare (SNM). Questa unità è poi usata insieme al generatore di neutroni per interrogazioni attive di specifiche porzioni di volume all’interno di container, grazie alla tecnica TNIS. Tutti i rivelatori di SMANDRA sono stati totalmente caratterizzati: i test iniziali sono stati fatti con elettronica analogica NIM seguiti da quelli effettuati con la nuova elettronica digitale basata su digitizer veloci. E’ stata dimostrata la possibilità di rivelare e identificare le sorgenti radioattive standard (raggi-gamma e neutroni) con un livello di confidenza migliore di quello richiesta dallo standard per questo tipo di strumentazione. La rivelazione di materiale speciale nucleare è stata testata sia in modalità passiva con la prima unità sia in modalità attiva usando il generatore di neutroni. Il riconoscimento di un campione di plutonio è possibile con la sola interrogazione passiva anche in caso di campioni molto piccoli (qualche grammo) grazie all’alta emissione di raggi-gamma e neutroni. Come è noto, invece, la rivelazione di campioni di Uranio è più difficoltosa vista la bassa emissione di neutroni e la possibilità di schermare facilmente i pochi raggi-gamma; in questo caso è necessario intervenire con un’interrogazione attiva. I risultati dimostrano la possibilità di discriminare fra campioni di Uranio rispetto a metalli pesanti (come il piombo) guardando i conteggi assoluti di raggi-gamma e neutroni in coincidenza con l’emissione di un neutrone da parte del generatore o, in alternativa, guardando alla correlazione degli eventi fra due rivelatori (NaI(Tl) e NE-213). E’ importante sottolineare che SMANDRA è un sistema spettrometrico mobile multi-funzione, non disegnato specificamente per la rivelazione di materiale speciale nucleare. Tuttavia i risultati mostrano la possibilità in futuro di poter implementare sistemi portatili disegnati specificatamente per l’identificazione di Materiale Speciale Nucleare con l’ausilio di un generatore di neutroni.