Littérature scientifique sur le sujet « Rilievo anomalie »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Rilievo anomalie ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Rilievo anomalie"

1

Arcieri, Salvatore, Roberta Epifanio, Nicoletta Zanotta et Claudio Zucca. « Dislessia, discalculia e sindromi epilettiche ». CHILD DEVELOPMENT & ; DISABILITIES - SAGGI, no 3 (avril 2012) : 79–93. http://dx.doi.org/10.3280/cdd2010-s03005.

Texte intégral
Résumé :
Il crescente interesse per i Disturbi Specifici dell'Apprendimento e, in particolare, per la dislessia, sta oggi alla base di molte ricerche mirate a chiarirne le determinanti neurobiologiche, a scopo sia preventivo che terapeutico. In questo contesto assume un particolare rilievo anche la questione dei rapporti tra DSA e patologia epilettica. L'articolo contiene un'esauriente revisione degli studi finora condotti sulle relazioni tra i quadri di dislessia e discalculia e le forme di epilessia idiopatiche e sintomatiche, soffermandosi inoltre sul discusso rapporto tra questi tipi di DSA e la presenza di anomalie EEG epilettiformi.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Roncallo, F., A. Bartolini, G. Michelozzi, A. Leonardi, P. Gazzola, B. Gasparetto et E. Favale. « Evoluzione di una emorragia intraassiale associata ad anomalia venosa di sviluppo a drenaggio transpontino ». Rivista di Neuroradiologia 8, no 4 (août 1995) : 577–83. http://dx.doi.org/10.1177/197140099500800413.

Texte intégral
Résumé :
Vengono presentati i rilievi clinici, semeiotici e morfologici TC, Angio-TC e RM di un caso di emorragia intraaassiale in fossa posteriore, associata ad Anomalia Venosa di Sviluppo con drenaggio attraverso il ponte e la successiva evoluzione sintomatologica e strumentale.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Edefonti, Alberto, Antonio Vergori, Giovanni Montini et Francesco Emma. « Attualità in nefrologia pediatrica : le conoscenze di rilievo per il nefrologo dell’adulto ». Giornale di Clinica Nefrologica e Dialisi 33 (12 mai 2021) : 67–76. http://dx.doi.org/10.33393/gcnd.2021.2248.

Texte intégral
Résumé :
Examples of innovative research in pediatric nephrology include: a) the typically pediatric field of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), which has benefited from the discovery of numerous gene mutations responsible for the various malformations and the demonstration of the congenital origin of most of the renal damage, resulting in a decrease of invasive imaging, antibiotic prophylaxis and surgery; b) the approach to glomerular diseases that appear in childhood, like idiopathic nephrotic syndrome (INS), IgA nephropathy (IgAN) and C3 glomerulopathies (C3G). B and T lymphocyte disregulations and molecular podocyte alterations of immunological and genetic origin have been described in INS as main determinants of proteinuria. In IgAN, the discovery of an abnormal IgA glycosilation in the mucosal B cells has driven to new trials with Budesonide and Sparsentan and to innovative therapies, like atacicept. A new classification of C3G has been proposed after the description of genetic mutations of factors inhibiting activation of the alternative complement pathway, and monoclonal anti-C5 antibody Eculizumab has consequently entered the therapeutic armamentarium; c) the initial attempts at gene therapy, with promising results obtained in Alport syndrome, nephropathic cystinosis and Dent syndrome. Moreover, a clear example of precision medicine is represented by the refinement of the dosage of Eculizumab in the treatment of atypical HUS, while slow-medicine recommendations exist for common clinical conditions, like urinary tract infections, microscopic hematuria and proteinuria.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Caserta, Giannamaria. « UNA BREVE NOTA SULLE SINDROMI E ANOMALIE PSICO- FISICHE RILEVANTI NELLA TRADIZIONE CANONICA CHE LIMITANO O ESCLUDONO LA CAPACITà DI GIUDIZIO A NORMA DEI CANN. 1095 NN. 2-3 ». Revista Española de Derecho Canónico 72, no 179 (1 juillet 2015) : 383–93. http://dx.doi.org/10.36576/summa.46445.

Texte intégral
Résumé :
Rilievi preliminari. Nevrosi ansioso-fobica, dottrina canonica e giurisprudenza rotale nella tradizione ecclesiale. Patologia sifilidica, «impotentia coeundi» e malattie fisiche nella mens del can. 1095 CIC. Osservazioni riassuntive e conclusive.
Styles APA, Harvard, Vancouver, ISO, etc.
5

D'Aprile, P., F. Macina, M. Palma, G. Tripoli et A. Carella. « Studio Angio-RM della arteria trigeminale persistente ». Rivista di Neuroradiologia 7, no 6 (décembre 1994) : 929–34. http://dx.doi.org/10.1177/197140099400700612.

Texte intégral
Résumé :
Tra le connessioni carotido-basilari embrionarie persistenti la arteria trigeminale (atp) è quella di più frequente riscontro, con una frequenza variabile, all'angiografia tradizionale, compresa tra lo 0,1 e lo 0,6%. Nella massima parte dei casi si tratta di un reperto accidentale evidenziato in soggetti esaminati per altre patologie. Sono ancora sporadiche, in letteratura, le segnalazioni di atp evidenziate nel corso di esami RM ed Angio-RM. Il significato clinico patologico della anomalia è alquanto controverso e, se nella massima parte dei casi si tratta di un reperto asintomatico, la presenza di situazioni patologiche ad essa associate è stata invocata, di volta in volta, per giustificare lesioni ischemiche (da «furto») o emorragiche (da rottura di aneurismi a carico del vaso anomalo) o situazioni irritative (per il moto di pulsazione trasmesso alle strutture nervose viciniori). L'avvento della RM e dell'Angio-RM ha permesso di ottenere mappe vascolari cerebrali comparabili a quelle angiografiche tradizionali, consentendo un rapido, semplice ed accurato rilievo di atp.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Rilievo anomalie"

1

PICCOLI, FLAVIO. « Visual Anomaly Detection For Automatic Quality Control ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241219.

Texte intégral
Résumé :
Il controllo di qualità automatico nei processi di produzione è uno degli elementi chiave della quarta rivoluzione industriale che porterà alla creazione della cosiddetta industria 4.0. In questo contesto, un elemento fondamentale è il rilievo di difetti, anomalie o guasti del prodotto in tempo compatibile con quello di produzione. Questa tesi si focalizza esattamente su questo tema: il rilevamento delle anomalie per il controllo automatico di qualità, attraverso l'analisi di immagini raffiguranti il prodotto sotto ispezione. Questa analisi verrà fatta tramite l'utilizzo di tecniche di machine learning, in particolare tramite l'uso di reti neurali convoluzionali (CNN) che sono uno strumento molto potente utilizzato nell'analisi di immagini. In primo luogo questa tesi esegue uno studio estensivo sull'argomento per introdurre il lettore e propone una una sequenza di elaborazioni per il rilevamento automatico di anomalie. Le elaborazioni sono: 1) il miglioramento delle immagini per evidenziare i difetti; 2) il rilievo delle anomalie. La prima elaborazione viene risolta utilizzando una trasformazione colore globale in grado di rimuovere effetti di luce indesiderati ed aumentare il contrasto. Questa trasformazione è ottenuta grazie all'utilizzo di SpliNet, un metodo basato su CNN che viene presentato in questa tesi, che è in grado di migliorare le immagini di input inferendo i parametri di un insieme di spline. La seconda elaborazione, e cioè il rilievo di anomalie, è stata affrontata proponendo due diversi metodi. Il primo ha l'obiettivo di modellare la normalità imparando un dizionario ed utilizzandolo in fase di test per determinare il grado di abnormalità di una immagine incognita. Questo metodo è basato su CNNs, che notoriamente richiedono grandi quantità di dati per essere addestrate. Tuttavia l'algoritmo proposto è in grado di lavorare su un insieme di immagini di addestramento molto piccolo (nell'ordine delle cinque immagini). Il metodo presentato aumenta le performances rispetto allo stato dell'arte relativo al dataset delle nanofibre acquisite con microscopio SEM del 5%, ottenendo un'area sottesa alla curva di 97.4%. Il secondo metodo proposto usa un insieme di trasformazioni locali per restaurare le immagini di input. Specificamente, queste trasformazioni sono un insieme di polinomi di grado due, i cui parametri vengono determinati attraverso l'utilizzo di una rete neurale convoluzionale. Il metodo è progettato in maniera tale che è possibile, attraverso un parametro, modulare l'accuratezza e il tempo di calcolo in maniera tale da soddisfare le esigenze dell'utente finale. Per affrontare la mancanza di dati che affligge il campo del rilievo automatico di anomalie, è stato presentato un metodo innovativo di aumento dei dati basato su deep learning. Questo metodo è in grado di generare migliaia di nuovi campioni sintetici a partire da pochi dati reali e pertanto è particolarmente adatto per aumentare dataset di tipo long-tail. La qualità dei campioni sintetizzati è stata dimostrata misurando l'accuratezza delle performance di algoritmi di machine learning addestrati sul dataset aumentato. Questo metodo è stato utilizzato per espandere un dataset di immagini raffiguranti asfalti difettosi. In questo contesto, l'utilizzo del dataset aumentato ha portato ad un incremento delle performance medie sulla segmentazione di anomalie fino a 17.5 punti percentuali. Nel caso di classi aventi bassa cardinalità, l'aumento arriva fino a 54.5 punti percentuali. Tutti i metodi presentati sovraperformano lo stato dell'arte.
Automatic quality control is one of the key ingredients for the fourth industrial revolution that will lead to the development of the so called industry 4.0. In this context, a crucial element is a production-compatible-time detection of defects, anomalies or product failures. This thesis focuses exactly on this theme: anomaly detection for industrial quality inspection, ensured through the analysis of images depicting the product under inspection. This analysis will be done through the use of machine learning, and especially through the use of convolutional neural networks (CNNs), a powerful instrument used in image analysis. This thesis starts with an extensive study on the subject to introduce the reader and to propose a pipeline for automatic anomaly detection. This pipeline is composed by two steps: 1) the enhancement of the input images for highlighting defects; 2) the detection of the anomalies. The first step is addressed with the use of a global color transformation able to remove undesired light effects and to enhance the contrast. This transformation is inferred through the use of SpliNet, a new CNN-based method here presented, that is able to enhance the input images by inferring the parameters of a set of splines. In the context of anomaly detection, two methods are presented. The first one has the aim of modeling normality by learning a dictionary and using it in test time to determine the degree of abnormality of an inquiry image. This method is based on deep learning, which is known to be data-hungry. However, the proposed algorithm is able to work also on very small trainsets (in the order of five images). The presented method boosts the performances of 5% with respect to the state-of-the art for the SEM-acquired nanofibers dataset, achieving an area under curve of 97.4%. The second proposed algorithm is a generative method able to restore the input, creating an anomaly-free version of the inquiry image. This method uses a set of local transforms to restore the input images. Specifically, these transforms are sets of polynomials of degree two, whose parameters are determined through the use of a convolutional neural network. In this context, the method can be tuned with a parameter toward accuracy or speed, for matching the needs of the final user. To address the lack of data that is suffered in this field, a totally new method for data augmentation based on deep learning is presented. This method is able to generate thousands of new synthesized samples starting from a few and thus is particularly suitable for augmenting long-tail datasets. The quality of the synthesized samples is demonstrated by showing the increase in performance of machine learning algorithms trained on the augmented dataset. This method has been employed to enlarge a dataset of defective asphalts. In this context, the use of the augmented dataset permitted to increase the average performance on anomaly segmentation of up to 17.5 percentage points. In the case of classes having a low cardinality, the improvement is up to 54.5 percentage points. For all the methods here presented I show their effectiveness by analyzing the results with the respective state-of-the-art and show their ability in outperforming the existing methods.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie