Littérature scientifique sur le sujet « Right-angled group »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Right-angled group ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Right-angled group"
Kim, Sang-Hyun, et Thomas Koberda. « The geometry of the curve graph of a right-angled Artin group ». International Journal of Algebra and Computation 24, no 02 (mars 2014) : 121–69. http://dx.doi.org/10.1142/s021819671450009x.
Texte intégralGutierrez, Mauricio, et Anton Kaul. « Automorphisms of Right-Angled Coxeter Groups ». International Journal of Mathematics and Mathematical Sciences 2008 (2008) : 1–10. http://dx.doi.org/10.1155/2008/976390.
Texte intégralHAUBOLD, NIKO, MARKUS LOHREY et CHRISTIAN MATHISSEN. « COMPRESSED DECISION PROBLEMS FOR GRAPH PRODUCTS AND APPLICATIONS TO (OUTER) AUTOMORPHISM GROUPS ». International Journal of Algebra and Computation 22, no 08 (décembre 2012) : 1240007. http://dx.doi.org/10.1142/s0218196712400073.
Texte intégralCRISP, JOHN, MICHAH SAGEEV et MARK SAPIR. « SURFACE SUBGROUPS OF RIGHT-ANGLED ARTIN GROUPS ». International Journal of Algebra and Computation 18, no 03 (mai 2008) : 443–91. http://dx.doi.org/10.1142/s0218196708004536.
Texte intégralClay, Matt. « When does a right-angled Artin group split over ℤ ? » International Journal of Algebra and Computation 24, no 06 (septembre 2014) : 815–25. http://dx.doi.org/10.1142/s0218196714500350.
Texte intégralCOSTA, ARMINDO, et MICHAEL FARBER. « TOPOLOGY OF RANDOM RIGHT ANGLED ARTIN GROUPS ». Journal of Topology and Analysis 03, no 01 (mars 2011) : 69–87. http://dx.doi.org/10.1142/s1793525311000490.
Texte intégralSentinelli, Paolo. « Artin group injection in the Hecke algebra for right-angled groups ». Geometriae Dedicata 214, no 1 (22 février 2021) : 193–210. http://dx.doi.org/10.1007/s10711-021-00611-4.
Texte intégralJensen, C., et J. Meier. « The Cohomology of Right-Angled Artin Groups with Group Ring Coefficients ». Bulletin of the London Mathematical Society 37, no 5 (octobre 2005) : 711–18. http://dx.doi.org/10.1112/s0024609305004571.
Texte intégralPaolini, Gianluca, et Saharon Shelah. « No Uncountable Polish Group Can be a Right-Angled Artin Group ». Axioms 6, no 4 (11 mai 2017) : 13. http://dx.doi.org/10.3390/axioms6020013.
Texte intégralKato, Motoko. « Embeddings of right-angled Artin groups into higher-dimensional Thompson groups ». Journal of Algebra and Its Applications 17, no 08 (8 juillet 2018) : 1850159. http://dx.doi.org/10.1142/s0219498818501591.
Texte intégralThèses sur le sujet "Right-angled group"
Toinet, Emmanuel. « Automorphisms of right-angled Artin groups ». Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS003.
Texte intégralThe purpose of this thesis is to study the automorphisms of right-angled Artin groups. Given a finite simplicial graph G, the right-angled Artin group GG associated to G is the group defined by the presentation whose generators are the vertices of G, and whose relators are commuta-tors of pairs of adjacent vertices. The first chapter is intended as a general introduction to the theory of right-angled Artin groups and their automor-phisms. In a second chapter, we prove that every subnormal subgroup ofp-power index in a right-angled Artin group is conjugacy p-separable. As an application, we prove that every right-angled Artin group is conjugacy separable in the class of torsion-free nilpotent groups. As another applica-tion, we prove that the outer automorphism group of a right-angled Artin group is virtually residually p-finite. We also prove that the Torelli group ofa right-angled Artin group is residually torsion-free nilpotent, hence residu-ally p-finite and bi-orderable. In a third chapter, we give a presentation of the subgroup Conj(GG) of Aut(GG) consisting of the automorphisms thats end each generator to a conjugate of itself
Wade, Richard D. « Symmetries of free and right-angled Artin groups ». Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b856e2b5-3689-472b-95c1-71b5748affc9.
Texte intégralBounds, Jordan. « On the quasi-isometric rigidity of a class of right-angled Coxeter groups ». Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1561561078356503.
Texte intégralFONIQI, ISLAM. « Results on Artin and twisted Artin groups ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/374264.
Texte intégralThis thesis consists of three main chapters, and they all evolve around Artin groups. Proving results for all Artin groups is a serious challenge, so one usually focuses on particular subclasses. Among the most well-understood subfamilies of Artin groups is the family of right-angled Artin groups (RAAGs shortly). One can define them using simplicial graphs, which determine the group up to isomorphism. They are also interesting as there are a variety of methods for studying them, coming from different viewpoints, such as geometry, algebra, and combinatorics. This has resulted in the understanding of many problems in RAAGs, like the word problem, the spherical growth, intersections of parabolic subgroups, etc. In Chapter 2 we focus on the geodesic growth of RAAGs, over link-regular graphs, and we extend a result in that direction, by providing a formula of the growth over link-regular graphs without tetrahedrons. In Chapter 3 we work with slightly different groups, the class of twisted right-angled Artin groups (tRAAGs shortly). They are defined using mixed graphs, which are simplicial graphs where edges are allowed to be directed edges. We find a normal form for presenting the elements in a tRAAG. If we forget about the directions of edges, we obtain an underlying undirected graph, which we call the naïve graph. Over the naïve graph, which is simplicial, one can define a RAAG, which corresponds naturally to our tRAAG. We will discuss some algebraic and geometric similarities and differences between tRAAGs and RAAGs. Using the normal form we are able to conclude that the spherical and geodesic growth of a tRAAG agrees with the respective growth of the underlying RAAG. Chapter 4 has a different theme, and it consists of the study of parabolic subgroups in even Artin groups. The work is motivated by the corresponding results in RAAGs, and we generalize some of these results to certain subclasses of even Artin groups.
Fullarton, Neil James. « Palindromic automorphisms of free groups and rigidity of automorphism groups of right-angled Artin groups ». Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5323/.
Texte intégralKarrer, Annette [Verfasser], et P. [Akademischer Betreuer] Schwer. « Contracting boundaries of amalgamated free products of CAT(0) groups with applications for right-angled Coxeter groups / Annette Karrer ; Betreuer : P. Schwer ». Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1227450982/34.
Texte intégralGirão, Darlan Rabelo. « Rank gradient in co-final towers of certain Kleinian groups ». Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-12-4673.
Texte intégraltext
Livres sur le sujet "Right-angled group"
From riches to raags : 3-manifolds, right-angled artin groups, and cubical geometry. Providence, Rhode Island : Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, Rhode Island with support from the National Science Foundation, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Right-angled group"
Koberda, Thomas. « Geometry and Combinatorics via Right-Angled Artin Groups ». Dans In the Tradition of Thurston II, 475–518. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97560-9_15.
Texte intégralBell, Robert W., et Matt Clay. « Right-Angled Artin Groups ». Dans Office Hours with a Geometric Group Theorist. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691158662.003.0014.
Texte intégral« 14. Right-Angled Artin Groups ». Dans Office Hours with a Geometric Group Theorist, 291–309. Princeton University Press, 2017. http://dx.doi.org/10.1515/9781400885398-016.
Texte intégralOtuma, Nick Vincent. « Mismatch between Spoken Language and Visual Representation of Mathematical Concepts ». Dans Building on the Past to Prepare for the Future, Proceedings of the 16th International Conference of The Mathematics Education for the Future Project, King's College,Cambridge, Aug 8-13, 2022, 384–88. WTM-Verlag, 2022. http://dx.doi.org/10.37626/ga9783959872188.0.073.
Texte intégral« Cubulating malnormal graphs of cubulated groups ». Dans From Riches to Raags : 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 69–76. Providence, Rhode Island : American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/08.
Texte intégral« Hyperbolic groups with a quasiconvex hierachy ». Dans From Riches to Raags : 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 121–24. Providence, Rhode Island : American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/14.
Texte intégral« Overview ». Dans From Riches to Raags : 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 1–5. Providence, Rhode Island : American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/01.
Texte intégral« Nonpositively curved cube complexes ». Dans From Riches to Raags : 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 7–14. Providence, Rhode Island : American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/02.
Texte intégral« Cubical disk diagrams, hyperplanes, and convexity ». Dans From Riches to Raags : 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 15–30. Providence, Rhode Island : American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/03.
Texte intégral« Special cube complexes ». Dans From Riches to Raags : 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 31–42. Providence, Rhode Island : American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/04.
Texte intégralActes de conférences sur le sujet "Right-angled group"
Belluco, Rosana Zabulon Feijó, Flávio Lúcio Vasconcelos, Paulo Eduardo Silva Belluco, Júllia Eduarda Feijó Belluco et Carmelia Matos Santiago Reis. « NIPPLE MINIMUM PAGET DISEASE : A CASE REPORT ». Dans XXIV Congresso Brasileiro de Mastologia. Mastology, 2022. http://dx.doi.org/10.29289/259453942022v32s1059.
Texte intégral