Sommaire
Littérature scientifique sur le sujet « Ricorrenza quant »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ricorrenza quant ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ricorrenza quant"
Carfora, Vincenzo, et Agostino Lopizzo. « Dissezione coronarica spontanea, quanto conta la familiarità ? » Cardiologia Ambulatoriale 30, no 3 (9 décembre 2022) : 184–89. http://dx.doi.org/10.17473/1971-6818-2022-3-7.
Texte intégralMalusa, Luciano. « UN CONFRONTO RICORRENTE NELLA CULTURA CATTOLICA : IL CASO GALILEI ED IL CASO ROSMINI ». Trans/Form/Ação 37, spe (2014) : 117–34. http://dx.doi.org/10.1590/s0101-3173201400ne00008.
Texte intégralCalafŕ, Laura. « Tribunale di Milano, sez. I civile - ordinanza 20 dicembre 2010, giud. Bichi, B. e altri contro Comune Milano e altri ». QUESTIONE GIUSTIZIA, no 1 (avril 2011) : 141–48. http://dx.doi.org/10.3280/qg2011-001012.
Texte intégralTedeschi, Antonella. « Clodia, Celio e la retorica dell’abbandono (A proposito di Cic. Cael. 61) ». Cuadernos de Filología Clásica. Estudios Latinos 42, no 2 (20 janvier 2023) : 187–95. http://dx.doi.org/10.5209/cfcl.85040.
Texte intégralFarinella, Romeo, et Edoardo Seconi. « Il delta del Po ferrarese. Racconto di una fragilità ambientale e politica ». ECONOMIA E SOCIETÀ REGIONALE, no 3 (février 2021) : 51–62. http://dx.doi.org/10.3280/es2020-003004.
Texte intégralLattanzi, Rosaria. « Problemi anestesiologici con il paziente gravemente disabile ». CHILD DEVELOPMENT & ; DISABILITIES - SAGGI, no 3 (avril 2012) : 29–32. http://dx.doi.org/10.3280/cdd2010-003005.
Texte intégralBoero, Pino. « Per un Rodari “ecologico” ». Italica Wratislaviensia 13, no 1 (30 juin 2022) : 29–51. http://dx.doi.org/10.15804/iw.2022.13.1.02.
Texte intégralDe Corso, E., G. Bastanza, V. Di Donfrancesco, M. L. Guidi, G. Morelli Sbarra, G. Passali, A. Poscia, C. de Waure, G. Paludetti et J. Galli. « Riduzione volumetrica dei turbinati inferiori con radiofrequenze : risultati clinici a lungo termine ». Acta Otorhinolaryngologica Italica 36, no 3 (mai 2016) : 199–205. http://dx.doi.org/10.14639/0392-100x-964.
Texte intégralBattistella, P. A., D. L. Fiore, M. Pellone et K. Pardatscher. « Il trattamento endovascolare dell'aneurisma della vena di Galeno ». Rivista di Neuroradiologia 7, no 4 (août 1994) : 671–81. http://dx.doi.org/10.1177/197140099400700416.
Texte intégralMasina, Filippo. « Wutausbrüche und Bittgesuche ». Quellen und Forschungen aus italienischen Archiven und Bibliotheken 97, no 1 (20 décembre 2017) : 24–43. http://dx.doi.org/10.1515/qfiab-2017-0004.
Texte intégralThèses sur le sujet "Ricorrenza quant"
GIROTTI, FEDERICO. « Absorption in Invariant Domains for quantum Markov evolutions ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364224.
Texte intégralThis thesis addresses the study of absorption dynamics in invariant domains (enclosures) for semigroups of quantum Markov maps. The work is divided in three chapters. In Chapter 1 we recall the main definitions, properties and results about the mathematical objects involved in this work: W*-algebras, normal states, semigroups of quantum Markov maps. In Chapter 2 we introduce the notion of absorption operator associated to an invariant domain, which is a generalization of absorption probabilities in the noncommutative setting; absorption operators turn out to share many remarkable features with their classical counterpart. We start showing some first properties of absorption operators, especially the interplay between their spectral resolution and the communication structure of the semigroup. We then move on to study the relationship between absorption operators and recurrence; as a relevant byproduct, we show that the null recurrent space is an enclosure and this allows to complete the result about the decomposition of semigroups of quantum Markov maps into their transient, positive recurrent and null recurrent restrictions. Absorption operators are also fixed points of the semigroup and, under the assumption that the recurrent space is absorbing, we are able to provide a description in terms of absorption operators of the fixed points set of the semigroup; this allows us to deduce some useful properties about fixed points and enclosures. Moreover, we analyze the role played by absorption operators in ergodic theory and we are able to prove a noncommutative generalization of the ergodic theorem for Markov chains. We conclude the chapter presenting and studying some concrete models showing non-trivial absorption dynamics and ranging from finite to infinite dimension, from discrete to continuous time. Chapter 3 is devoted to study the long-time behavior of the position process associated to a homogeneous open quantum random walk on a lattice with finite dimensional local space. We prove that the properly rescaled position process asymptotically approaches a mixture of Gaussian measures. We can generalize the existing central limit type results and give more explicit expressions for the involved asymptotic quantities, dropping any additional condition on the walk. We use deformation and spectral techniques, together with reducibility properties of the local map associated with the open quantum walk; a key role is also played by absorption operators. Further, we can provide a large deviation principle in the case of a positive recurrent local map and at least lower and upper bounds in the general case. Finally, we are able to show the almost sure convergence of the mean shift on the lattice to a random variable that we can completely describe.