Littérature scientifique sur le sujet « Respiratory rhythm generation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Respiratory rhythm generation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Respiratory rhythm generation"

1

Anderson, Tatiana M., et Jan-Marino Ramirez. « Respiratory rhythm generation : triple oscillator hypothesis ». F1000Research 6 (14 février 2017) : 139. http://dx.doi.org/10.12688/f1000research.10193.1.

Texte intégral
Résumé :
Breathing is vital for survival but also interesting from the perspective of rhythm generation. This rhythmic behavior is generated within the brainstem and is thought to emerge through the interaction between independent oscillatory neuronal networks. In mammals, breathing is composed of three phases – inspiration, post-inspiration, and active expiration – and this article discusses the concept that each phase is generated by anatomically distinct rhythm-generating networks: the preBötzinger complex (preBötC), the post-inspiratory complex (PiCo), and the lateral parafacial nucleus (pFL), respectively. The preBötC was first discovered 25 years ago and was shown to be both necessary and sufficient for the generation of inspiration. More recently, networks have been described that are responsible for post-inspiration and active expiration. Here, we attempt to collate the current knowledge and hypotheses regarding how respiratory rhythms are generated, the role that inhibition plays, and the interactions between the medullary networks. Our considerations may have implications for rhythm generation in general.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Duffin, James, et Seward Hung. « Respiratory rhythm generation ». Canadian Anaesthetists’ Society Journal 32, no 2 (mars 1985) : 124–37. http://dx.doi.org/10.1007/bf03010035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Richter, Diethelm W., et Jeffrey C. Smith. « Respiratory Rhythm Generation In Vivo ». Physiology 29, no 1 (janvier 2014) : 58–71. http://dx.doi.org/10.1152/physiol.00035.2013.

Texte intégral
Résumé :
The cellular and circuit mechanisms generating the rhythm of breathing in mammals have been under intense investigation for decades. Here, we try to integrate the key discoveries into an updated description of the basic neural processes generating respiratory rhythm under in vivo conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Greer, John J. « Development of respiratory rhythm generation ». Journal of Applied Physiology 104, no 4 (avril 2008) : 1211–12. http://dx.doi.org/10.1152/japplphysiol.00043.2008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Richter, Diethelm W., Klaus Ballanyi et Stephen Schwarzacher. « Mechanisms of respiratory rhythm generation ». Current Biology 2, no 12 (décembre 1992) : 628. http://dx.doi.org/10.1016/0960-9822(92)90094-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Richter, Diethelm W., Klaus Ballanyi et Stephan Schwarzacher. « Mechanisms of respiratory rhythm generation ». Current Opinion in Neurobiology 2, no 6 (décembre 1992) : 788–93. http://dx.doi.org/10.1016/0959-4388(92)90135-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Duffin, James. « A model of respiratory rhythm generation ». NeuroReport 2, no 10 (octobre 1991) : 623–26. http://dx.doi.org/10.1097/00001756-199110000-00018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fortin, Gilles, Arthur S. Foutz et Jean Champagnat. « Respiratory rhythm generation in chick hindbrain ». NeuroReport 5, no 9 (mai 1994) : 1137–40. http://dx.doi.org/10.1097/00001756-199405000-00029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Haji, Akira, Mari Okazaki et Ryuji Takeda. « Neurotransmission mechanisms in respiratory rhythm generation ». Japanese Journal of Pharmacology 79 (1999) : 15. http://dx.doi.org/10.1016/s0021-5198(19)34088-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Smith, J. C., A. P. L. Abdala, H. Koizumi, I. A. Rybak et J. F. R. Paton. « Spatial and Functional Architecture of the Mammalian Brain Stem Respiratory Network : A Hierarchy of Three Oscillatory Mechanisms ». Journal of Neurophysiology 98, no 6 (décembre 2007) : 3370–87. http://dx.doi.org/10.1152/jn.00985.2007.

Texte intégral
Résumé :
Mammalian central pattern generators (CPGs) producing rhythmic movements exhibit extremely robust and flexible behavior. Network architectures that enable these features are not well understood. Here we studied organization of the brain stem respiratory CPG. By sequential rostral to caudal transections through the pontine-medullary respiratory network within an in situ perfused rat brain stem–spinal cord preparation, we showed that network dynamics reorganized and new rhythmogenic mechanisms emerged. The normal three-phase respiratory rhythm transformed to a two-phase and then to a one-phase rhythm as the network was reduced. Expression of the three-phase rhythm required the presence of the pons, generation of the two-phase rhythm depended on the integrity of Bötzinger and pre-Bötzinger complexes and interactions between them, and the one-phase rhythm was generated within the pre-Bötzinger complex. Transformation from the three-phase to a two-phase pattern also occurred in intact preparations when chloride-mediated synaptic inhibition was reduced. In contrast to the three-phase and two-phase rhythms, the one-phase rhythm was abolished by blockade of persistent sodium current ( INaP). A model of the respiratory network was developed to reproduce and explain these observations. The model incorporated interacting populations of respiratory neurons within spatially organized brain stem compartments. Our simulations reproduced the respiratory patterns recorded from intact and sequentially reduced preparations. Our results suggest that the three-phase and two-phase rhythms involve inhibitory network interactions, whereas the one-phase rhythm depends on INaP. We conclude that the respiratory network has rhythmogenic capabilities at multiple levels of network organization, allowing expression of motor patterns specific for various physiological and pathophysiological respiratory behaviors.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Respiratory rhythm generation"

1

Lewis, John E. « Dynamics of neural networks and respiratory rhythm generation ». Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60568.

Texte intégral
Résumé :
The phase resetting effects of stimulating the superior laryngeal nerve at different phases of the respiratory cycle in cats were measured in terms of the latency of onset of the cycle following stimulation. Fixed-delay stimulation was also used; for certain combinations of delay, stimulus intensity, and cycles between stimuli, it resulted in (1) a variable, rather than consistent, response, and (2) a transient increase in cycle duration during and after stimulation. Phase resetting and fixed-delay stimulation of a simple three-phase model for neural rhythm generation produce responses that are qualitatively similar to those obtained experimentally.
We consider the dynamical properties of a class of theoretical models of neural networks that have the same mathematical formulation as the above three-phase model, but consist of a larger number of randomly connected elements. A simple transformation of these models shows correspondence with previous neural network models and enables a theoretical analysis of steady states and cycles. Complex aperiodic dynamics are found in networks consisting of 6 or more elements.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gajda, Barbara Marie. « Species and developmental differences in mammalian respiratory rhythm generation ». Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31755.

Texte intégral
Résumé :
Mammalian neonates can recover spontaneously from hypothermia-induced respiratory arrest when re-warmed (termed autoresuscitation). As a rat ages, autoresuscitation ability is lost during a transitional period ('developmental window') between 16 - 20 post-natal days (PND) so that hypothermic respiratory arrest results in death for a mature rat. Hamsters retain the ability to autoresuscitate past this developmental window. The retention of this ability in hamsters implies that there may be fundamental differences in the central rhythm generator (CRG) of rats and hamsters. This study tests the hypothesis that the contribution to respiratory rhythm generation of the putatively rhythmogenic persistent Na⁺ current (INaP) and Ca²⁺activated non-selective cation current (ICAN). two currents which may facilitate the initiation of breathing after arrest, is different between rats and hamsters. Because autoresuscitation ability is lost during development, we also test the hypothesis that the INaP and I CANcontribution to respiratory rhythm generation change as a rat ages. We applied riluzole (INaP blocker) and flufenamic acid (FFA; ICAN blocker) to the arterially perfused in situ working heart-brainstem preparation in hamsters and two age groups of rats (12 - 14 PND, >23 PND). Application of riluzole and FFA to rats and hamsters showed that elimination of INaP and ICAN resulted in profound decrease in phrenic burst frequency in hamsters with little change in rats. This result is consistent with the hypothesis that a phylogenetic difference exists in the mechanism of setting respiratory rhythm in the CRG of rats and hamsters. Comparisons between young and weaned rats showed that young rats tended to be more sensitive to the application of riluzole and FFA than weaned rats. The small differences observed between young and weaned rats in the reliance on INaP and ICAN for respiratory rhythm generation are consistent with the hypothesis that a developmental change occurs in the CRG of rats during maturation. Increasing the proportion of CO₂ that the preparations were exposed to increased neural ventilation in weaned rats suggesting that INaP and ICAN provide a source of excitatory drive to the CRG.
Science, Faculty of
Zoology, Department of
Graduate
Styles APA, Harvard, Vancouver, ISO, etc.
3

Torgerson, Cory S. « Respiratory chemoreception and rhythm generation in the tadpole brainstem ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ34705.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Phillips, Wiktor Samuel. « Studies of Respiratory Rhythm Generation Maintained in Organotypic Slice Cultures ». W&M ScholarWorks, 2016. https://scholarworks.wm.edu/etd/1499449864.

Texte intégral
Résumé :
Breathing is an important rhythmic motor behavior whose underlying neural mechanisms can be studied in vitro. The study of breathing rhythms in vitro has depended upon reduced preparations of the brainstem that both retain respiratory-active neuronal populations and spontaneously generate respiratory-related motor output from cranial and spinal motor nerves. Brainstem-spinal cord en bloc preparations and transverse medullary slices of the brainstem have greatly improved the ability of researchers to experimentally access and thus characterize interneurons important in respiratory rhythmogenesis. These existing in vitro preparations are, however, not without their limitations. For example, the window of time within which experiments may be conducted is limited to several hours. Moreover, these preparations are poorly suited for studying subcellular ion channel distributions and synaptic integration in dendrites of rhythmically active respiratory interneurons because of tortuous tissue properties in slices and en bloc, which limits imaging approaches. Therefore, there is a need for an alternative experimental approach. Acute transverse slices of the medulla containing the preBötzinger complex (preBötC) have been exploited for the last 25 years as a model to study the neural basis of inspiratory rhythm generation. Here we transduce such preparations into a novel organotypic slice culture that retains bilaterally synchronized rhythmic activity for up to four weeks in vitro. Properties of this culture model of inspiratory rhythm are compared to analogous acute slice preparations and the rhythm is confirmed to be generated by neurons with similar electrophysiological and pharmacological properties. The improved optical environment of the cultured brain tissue permits detailed quantitative calcium imaging experiments, which are subsequently used to examine the subcellular distribution of a transient potassium current, IA, in rhythmically active preBötC interneurons. IA is found on the dendrites of these rhythmically active neurons, where it influences the electrotonic properties of dendrites and has the ability to counteract depolarizing inputs, such as post-synaptic excitatory potentials, that are temporally sparse in their occurrence (i.e., do not summate). These results suggest that excitatory input can be transiently inhibited by IA prior to its steady-state inactivation, which would occur as temporally and spatially summating synaptic inputs cause persistent depolarization. Thus, rhythmically active interneurons are equipped to appropriately integrate the activity state of the inspiratory network, inhibiting spurious inputs and yet yielding to synaptic inputs that summate, which thus coordinates the orderly recruitment of network constituents for rhythmic inspiratory bursts. In sum, the work presented here demonstrates the viability and potential usefulness of a new experimental model of respiratory rhythm generation, and further leverages its advantages to answer questions about dendritic synaptic integration that could not previously be addressed in the acute slice models of respiration. We argue that this new organotypic slice culture will have widespread applicability in studies of respiratory rhythm generation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Picardo, Maria Cristina De Guzman. « Physiological and Morphological Characterization of Genetically Defined Classes of Interneurons in Respiratory Rhythm and Pattern Generation in Neonatal Mice ». W&M ScholarWorks, 2012. https://scholarworks.wm.edu/etd/1539623604.

Texte intégral
Résumé :
Breathing in mammals depends on an inspiratory-related rhythm that is generated by glutamatergic neurons in the preBotzinger complex (preBotC), a specialized site of the lower brainstem. Rhythm-generating preBotC neurons are derived from a single lineage that expresses the transcription factor (TF) Dbx1, but the cellular mechanisms of rhythmogenesis remain incompletely understood. to elucidate these mechanisms we comparatively analyzed Dbx1-expressing neurons (Dbx1 +) and Dbxl- neurons in the preBotC in knock-in transgenic mice. Whole-cell recordings in rhythmically active newborn mouse slice preparations showed that Dbx1 + neurons activate earlier in the respiratory cycle and discharge greater magnitude inspiratory bursts compared to Dbxl - neurons. Furthermore, Dbx1+ neurons required significantly less input current to discharge spikes (rheobase) in the context of network activity. The expression of intrinsic membrane properties indicative of A-current (IA) and hyperpolarization-activated current (Ih) was generally mutually exclusive in Dbx1 + neurons, which may indicate rhythmogenic function. In contrast, there was no such relationship in the expression of intrinsic currents I A and Ih in Dbxl- neurons. Confocal imaging and digital reconstruction of recorded neurons revealed dendritic spines on Dbxl- neurons, but Dbx1 + neurons were spineless. Dbx1 + neuron morphology was largely confined to the transverse plane whereas Dbxl- neurons projected dendrites to a greater extent in the parasagittal plane (rostrocaudally). A greater percentage of Dbx1 + neurons showed contralaterally projecting axons whereas Dbxl- neurons showed axons projecting in the rostral direction, which were severed by transverse cutting of the slice. Our data suggest that the rhythmogenic properties of Dbx1+ neurons include a higher level of intrinsic excitability that promotes burst generation in the context of network activity, which may be attributable to dendritic active properties that are recruited by excitatory synaptic transmission. Along with Dbxl, the TF Math1 has been shown to give rise to neurons that have important respiratory functions, including a potential role in coordinating the inspiratory and expiratory phases. to evaluate this role, we performed physiological and morphological characterizations of Math1+ neurons in transgenic mice and found that one out of six recorded Math1+ neurons showed expiratory activity. The expiratory Math1+ neuron appeared to be have a larger soma as well as a greater somatodendritic span in all axes (dorsal-ventral, medial-lateral and rostral-caudal) than the non-respiratory modulated Math1+ neurons. This suggests that respiratory modulated Math1+ neurons may be physiologically and morphologically specialized compared to non-rhythmic Mathl+ neurons. their larger morphological span and rhythmic expiratory modulation could be indicative of a function in coordinating phasic activity between inspiratory and expiratory oscillators. Although our findings are still preliminary, the data thus far are consistent with a hypothesized respiratory network model wherein the Math1+ neurons function in coordinating the pattern of inspiration and expiration. Identifying and characterizing hindbrain interneurons according to developmental genetic origins as well as physiological properties provides complementary information to help elucidate the cellular mechanisms underlying the generation and coordination of the respiratory rhythm.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sheikhbahaei, Shahriar. « Astroglial control of respiratory rhythm generating circuits ». Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10037956/.

Texte intégral
Résumé :
Astrocytes, the most numerous glial cells of the central nervous system, are well known to provide neuronal circuits with essential structural and metabolic support. There is also evidence that astrocytes may modulate the activities of neuronal circuits controlling motor rhythms including those of the brainstem’s preBötzinger complex (preBötC) that generates the rhythm of breathing in mammals. However, the extent and mechanisms of active astroglial control of the respiratory rhythm-generating circuits remain unknown. The morphological features of astrocytes in this critical brainstem region are also unknown. In this dissertation, viral gene transfer approaches designed to block or activate astroglial signaling pathways were used to determine the role of preBötC astrocytes in the control of breathing using in vitro and in vivo experimental models. Computer-aided morphometric analyses were used to investigate the structural features of brainstem astrocytes potentially contributing to their functional role. The results from these complementary, multi-faceted experiments show that (i) morphologically, preBötC astrocytes are larger, have more branches, and longer processes when compared to astrocytes residing in other regions of the brainstem; (ii) in conscious adult rats, blockade of vesicular release mechanisms or ATP-mediated signaling in preBötC astrocytes by virally-induced bilateral expression of either the light chain of tetanus toxin (TeLC), the dominant-negative SNARE proteins (dnSNARE), or a potent ectonucleotidase – transmembrane prostatic acid phosphatase – results in a significant reduction of resting respiratory frequency and frequency of sighs, augmented breaths that engage preBötC circuits to increase inspiratory effort; (iii) hypoxic- and CO2-induced ventilatory responses are significantly reduced when vesicular release mechanisms in preBötC astrocytes are blocked; (iv) activation of preBötC astrocytes expressing Gq-coupled Designer Receptor Exclusively Activated by Designer Drug is associated with higher frequency of both normal inspirations and sighs; (v) blockade of vesicular release mechanisms (expression of TeLC or dnSNARE) in preBötC astrocytes is associated with a dramatic reduction of exercise capacity. These data suggest that astroglial mechanisms involving exocytotic vesicular release of signaling molecules (gliotransmitters), provides tonic excitatory drive to the inspiratory rhythm-generating circuits of the preBötC and contributes to the generation of sighs. The role of preBötC astrocytes in central nervous mechanisms controlling breathing becomes especially important in conditions of metabolic stress requiring homeostatic adjustments of breathing such as systemic hypoxia, hypercapnia, and exercise, when enhanced respiratory efforts are critical to support physiological and behavioral demands of the body.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Burns, Whitney Elizabeth. « The Effects of Nicotine Exposure on the Respiratory Rhythm Generator of Neonatal Rats ». Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/243875.

Texte intégral
Résumé :
Many children are exposed to environmental tobacco smoke prenatally and postnatally, which can have adverse health affects throughout life, induding an increased risk of low birth weight, Sudden Infant Death Syndrome (SIDS), obstructive lung disease, cancers, childhood infections, and altered neurodevelopment. The goal of this study was to determine whether postnatal nicotine exposure affects the respiratory rhythm generator in neonatal rats. Brainstem spinal cord preparations from neonatal rats will be exposed to small amounts of nicotine. Spontaneous respiratory activity from C4-C5 ventral roots were recorded with glass suction electrodes. C4-C5 ventral roots contain the phrenic motor axons that supply the diaphragm musde. The results indicate that nicotine exposure affects the respiratory rhythm generator and causes an increase in respiratory frequency.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Weragalaarachchi, Krishanthi Tharanga Harshani. « Morphological Study of Dbx1+ Respiratory Rhythm-Generating Neurons in PreBoetzinger Complex in Neonatal Mice ». W&M ScholarWorks, 2012. https://scholarworks.wm.edu/etd/1539626922.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gezelius, Henrik. « Studies of Spinal Motor Control Networks in Genetically Modified Mouse Models ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-109889.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

CINELLI, ELENIA. « Control of respiratory activity by α7 nicotinic acetylcholine receptors within the paratrigeminal respiratory group of the lamprey ». Doctoral thesis, 2011. http://hdl.handle.net/2158/591955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Respiratory rhythm generation"

1

von Euler, Curt. « Rhythm Generation ». Dans Respiratory Physiology, 251–88. New York, NY : Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4614-7520-0_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bruce, Eugene N. « A Three-Phase Model of Respiratory Rhythm Generation ». Dans Modeling and Parameter Estimation in Respiratory Control, 107–11. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0621-4_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Negro, Christopher A. Del, Ryland W. Pace et John A. Hayes. « What Role Do Pacemakers Play in the Generation of Respiratory Rhythm ? » Dans Integration in Respiratory Control, 88–93. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73693-8_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maass-Moreno, Roberto, et Peter G. Katona. « Ventilatory Responses to Short Carotid Sinus Pressure Stimuli : Interpretation Using a Model of Rhythm Generation ». Dans Respiratory Control, 361–68. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0529-3_39.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Onimaru, Hiroshi, et Ikuo Homma. « Two Modes of Respiratory Rhythm Generation in the Newborn Rat Brainstem-Spinal Cord Preparation ». Dans Integration in Respiratory Control, 104–8. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73693-8_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

McCrimmon, Donald R., Armelle Monnier, Krzysztof Ptak, Greer Zummo, Zhong Zhang et George F. Alheid. « Respiratory Rhythm Generation : Prebötzinger Neuron Discharge Patterns and Persistent Sodium Current ». Dans Advances in Experimental Medicine and Biology, 147–52. Boston, MA : Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1375-9_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Morgado-Valle, Consuelo, et Luis Beltran-Parrazal. « Respiratory Rhythm Generation : The Whole Is Greater Than the Sum of the Parts ». Dans Advances in Experimental Medicine and Biology, 147–61. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62817-2_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pham, Joël, Khashayar Pakdaman et Jean-Francois Vibert. « Simulation of Spontaneous Activity Generation in an Excitatory Network Involved in the Control of the Respiratory Rhythm ». Dans Computational Neuroscience, 455–61. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_73.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Peña, Fernando. « Contribution of Pacemaker Neurons to Respiratory Rhythms Generation in vitro ». Dans Integration in Respiratory Control, 114–18. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73693-8_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Forster, Hubert V., Katie L. Krause, Tom Kiner, Suzanne E. Neumueller, Josh M. Bonis, Baogang Qian et Lawrence G. Pan. « Plasticity of Respiratory Rhythm-Generating Mechanisms in Adult Goats ». Dans Advances in Experimental Medicine and Biology, 151–55. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-5692-7_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Respiratory rhythm generation"

1

Amos, LB, et AK Tryba. « Role of Metabotropic Glutamate Receptors in Respiratory Rhythm Generation. » Dans American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a6332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tsechpenakis, G., J. Eugenin, J. G. Nicholls et K. J. Muller. « Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms ». Dans 2009 IEEE International Symposium on Biomedical Imaging : From Nano to Macro (ISBI). IEEE, 2009. http://dx.doi.org/10.1109/isbi.2009.5193289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie