Littérature scientifique sur le sujet « Reliability of mechanical systems »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Reliability of mechanical systems ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Reliability of mechanical systems"
Manshin, Yu P., et E. Yu Manshina. « Reliability in mechanical systems projects ». Journal of Physics : Conference Series 2131, no 2 (1 décembre 2021) : 022029. http://dx.doi.org/10.1088/1742-6596/2131/2/022029.
Texte intégralMoss, T. R., et J. D. Andrews. « Reliability Assessment of Mechanical Systems ». Proceedings of the Institution of Mechanical Engineers, Part E : Journal of Process Mechanical Engineering 210, no 3 (octobre 1996) : 205–16. http://dx.doi.org/10.1243/pime_proc_1996_210_315_02.
Texte intégralChegodaev, D. E., et V. N. Samsonov. « Evaluating the reliability of mechanical systems ». Strength of Materials 19, no 12 (décembre 1987) : 1720–23. http://dx.doi.org/10.1007/bf01523136.
Texte intégralBen-Haim, Yakov. « Non-Probabilistic Reliability of Mechanical Systems ». IFAC Proceedings Volumes 27, no 5 (juin 1994) : 281–86. http://dx.doi.org/10.1016/s1474-6670(17)48041-4.
Texte intégralBernstein, N. « Reliability analysis techniques for mechanical systems ». Quality and Reliability Engineering International 1, no 4 (octobre 1985) : 235–48. http://dx.doi.org/10.1002/qre.4680010405.
Texte intégralKwak, Byung Man. « 1704 Algorithms in reliability analysis and optimization for structural and mechanical systems ». Proceedings of The Computational Mechanics Conference 2005.18 (2005) : 125–26. http://dx.doi.org/10.1299/jsmecmd.2005.18.125.
Texte intégralIvanović, Miloš. « Reliability Distribution in Mechanical Systems for Given Reliability and Cost ». Advanced Materials Research 633 (janvier 2013) : 301–11. http://dx.doi.org/10.4028/www.scientific.net/amr.633.301.
Texte intégralAvontuur, G. C., et K. van der Werff. « Systems reliability analysis of mechanical and hydraulic drive systems ». Reliability Engineering & ; System Safety 77, no 2 (août 2002) : 121–30. http://dx.doi.org/10.1016/s0951-8320(02)00039-x.
Texte intégralLv, H., et Y. Zhang. « Gradual reliability analysis of mechanical component systems ». Materials Research Innovations 18, sup1 (mars 2014) : S1–29—S1–32. http://dx.doi.org/10.1179/1432891713z.000000000349.
Texte intégralTelyshev, D. V. « Mechanical Circulatory Support Systems Reliability Prediction and Assessment ». Proceedings of Universities. ELECTRONICS 25, no 1 (février 2020) : 58–68. http://dx.doi.org/10.24151/1561-5405-2020-25-1-58-68.
Texte intégralThèses sur le sujet "Reliability of mechanical systems"
Stephenson, John Antony. « Design for reliability in mechanical systems ». Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/251589.
Texte intégralZhao, Jian-Hua. « The reliability optimization of mechanical systems using metaheuristic approach ». Mémoire, École de technologie supérieure, 2005. http://espace.etsmtl.ca/326/1/ZHAO_Jian%2DHua.pdf.
Texte intégralCampean, Ioan Felician. « Product reliability analysis and prediction : applications to mechanical systems ». Thesis, Bucks New University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714448.
Texte intégralPu, Jun. « Reliability and availability analysis of three-state device systems ». Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/10384.
Texte intégralAnude, Okezie. « The analysis of redundant reliability systems with common-cause failures ». Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6847.
Texte intégralBurnham, Michael Richard. « Three competing risk problems in the study of mechanical systems reliability ». Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16853.
Texte intégralCrk, Vladimir 1958. « Component and system reliability assessment from degradation data ». Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282820.
Texte intégralAzarkhail, Mohammadreza. « Agent autonomy approach to physics-based reliability modeling of structures and mechanical systems ». College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7680.
Texte intégralThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wei, Frank L. (Frank Lili) 1977. « Effects of mechanical properties on the reliability of Cu/low-k metallization systems ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42026.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaves 211-217).
Cu and low-dielectric-constant (k) metallization schemes are critical for improved performance of integrated circuits. However, low elastic moduli, a characteristic of the low-k materials, lead to significant reliability degradation in Cu-interconnects. A thorough understanding of the effects of mechanical properties on electromigration induced failures is required for accurate reliability assessments. During electromigration inside Cu-interconnects, a change in atomic concentration correlates with a change in stress through the effective bulk modulus of the materials system, B, which decreases as the moduli of low-k materials used as inter-level dielectrics (ILDs) decrease. This property is at the core of discussions on electromigration-induced failures by all mechanisms. B is computed using finite element modeling analyses, using experimentally determined mechanical properties of the individual constituents. Characterization techniques include nanoindentation, cantilever deflection, and pressurized membrane deflection for elastic properties measurements, and chevron-notched double-cantilever pull structures for adhesion measurements. The dominant diffusion path in Cu-interconnects is the interface between Cu and the capping layer, which is currently a Si3N4-based film. We performed experiments on Cu-interconnect segments to investigate the kinetics of electromigration. A steady resistance increase over time prior to open-circuit failure, a result of void growth, correlates with the electromigration drift velocity. Diffusive measurements made in this fashion are more fundamental than lifetime measurements alone, and correlate with the combined effects of the electron wind and the back stress forces during electromigration induced void growth.
(cont.)Using this method, the electromigration activation energy was determined to be 0.80±0.06eV. We conducted experiments using Cu-interconnects with different lengths to study line length effects. Although a reliability improvement is observed as the segment length decreases, there is no deterministic current-density line-length product, jL, for which all segments are immortal. This is because small, slit-like voids forming directly below vias will cause open-failures in Cu-interconnects. Therefore, the probabilistic jLcrit values obtained from via-above type nterconnects approximate the thresholds for void nucleation. The fact that jLcrit,nuc monotonically decreases with B results from an energy balance between the strain energy released and surface energy cost for void nucleation and the critical stress required for void nucleation is proportional to B. We also performed electromigration experiments using Cu/low-k interconnect trees to investigate the effects of active atomic sinks and reservoirs on interconnect reliability. In all cases, failures were due to void growth. Kinetic parameters were extracted to be ... Quantitative analysis demonstrates that the reliability of the failing segments is modulated by the evolution of stress in the whole interconnect tree. During this process, not only the diffusive parameters but also B play critical roles. However, as B decreases, the positive effects of reservoirs on reliability are diminished, while the negative effects of sinks on reliability are amplified.
(cont.) Through comprehensive failure analyses, we also successfully identified the mechanism of electromigration-induced extrusions in Cu/low-k interconnects to be nearmode-I interfacial fracture between the Si3N4-based capping layer and the metallization/ILD layer below. The critical stress required for extrusion is found to depend not only on B but also on the layout and dimensions of the interconnects. As B decreases, sparsely packed, wide interconnects are most prone to extrusion-induced failures. Altogether, this research accounts for the effects of mechanical properties on all mechanisms of failure due to electromigration. The results provide an improved experimental basis for accurate circuit-level, layout-specific reliability assessments.
by Frank LiLi Wei.
Ph.D.
Singh, Naveen Chandra Lall Pradeep. « Thermo-mechanical reliability models for life prediction of area array electronics in extreme environments ». Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/master's/SINGH_NAVEEN_54.pdf.
Texte intégralLivres sur le sujet "Reliability of mechanical systems"
Woo, Seongwoo. Reliability Design of Mechanical Systems. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-7236-0.
Texte intégralWoo, Seongwoo. Reliability Design of Mechanical Systems. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50829-0.
Texte intégral1926-, Davidson J. F., et Hunsley Cathy, dir. The Reliability of mechanical systems. 2e éd. London : Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1994.
Trouver le texte intégralF, Davidson J., dir. The Reliability of mechanical systems. London : Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1988.
Trouver le texte intégral1926-, Davidson J. F., Hunsley Cathy et Institution of Mechanical Engineers, dir. The reliability of mechanical systems. 2e éd. London : Mechanical Engineering for the Institution of Mechanical Engineers, 1994.
Trouver le texte intégralTitenok, Aleksandr, V. Sidoro et A. V. Kirichek. Ensuring the operational reliability of mechanical systems. ru : INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1096388.
Texte intégralUnited States. National Aeronautics and Space Administration., dir. Mechanical system reliability for long life space systems : Final report. Nashville, Tenn : Dept. of Mechanical Engineering, Vanderbilt University, 1994.
Trouver le texte intégralDaniels, B. K. Achieving Safety and Reliability with Computer Systems. Dordrecht : Springer Netherlands, 1987.
Trouver le texte intégralE, Cabrera, Vela Antonio F et International Course on Improving Efficiency and Reliability in Water Distribution Systems (1994 : Valencia, Spain), dir. Improving efficiency and reliability in water distribution systems. Dordrecht : Kluwer Academic Publishers, 1995.
Trouver le texte intégralMahadevan, Sankaran. Multidisciplinary system reliability analysis. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 2001.
Trouver le texte intégralChapitres de livres sur le sujet "Reliability of mechanical systems"
El Hami, Abdelkhalak, et Bouchaïb Radi. « Reliability in Mechanical Systems ». Dans Uncertainty and Optimization in Structural Mechanics, 17–41. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118711903.ch2.
Texte intégralWoo, Seongwoo. « Mechanical System Failures ». Dans Reliability Design of Mechanical Systems, 139–70. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_6.
Texte intégralWoo, Seongwoo. « Mechanical System Failures ». Dans Reliability Design of Mechanical Systems, 249–306. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_7.
Texte intégralCarter, A. D. S. « System or equipment reliability ». Dans Mechanical Reliability, 331–45. London : Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-18478-1_11.
Texte intégralGrynchenko, Oleksandr, et Oleksiy Alfyorov. « Prediction of System Reliability ». Dans Mechanical Reliability, 69–97. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41564-8_4.
Texte intégralWoo, Seongwoo. « Fluid Motion and Mechanical Vibration ». Dans Reliability Design of Mechanical Systems, 205–48. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_6.
Texte intégralZhang, Yu, Zhuo Wang et Yanhui Wang. « Reliability Analysis of Complex Mechanical Systems ». Dans Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021, 354–61. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9913-9_40.
Texte intégralBen-Haim, Yakov. « Robust Reliability of Static Systems ». Dans Robust Reliability in the Mechanical Sciences, 31–63. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61154-4_3.
Texte intégralWoo, Seongwoo. « Modern Definitions in Reliability Engineering ». Dans Reliability Design of Mechanical Systems, 35–59. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_3.
Texte intégralWoo, Seongwoo. « Modern Definitions in Reliability Engineering ». Dans Reliability Design of Mechanical Systems, 53–99. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_3.
Texte intégralActes de conférences sur le sujet "Reliability of mechanical systems"
Abdelkhalakl, El Hami, et ITMI Mhamed. « Reliability of Mechanical System of Systems ». Dans 5th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center (AIRCC), 2018. http://dx.doi.org/10.5121/csit.2018.80410.
Texte intégralTadigadapa, Srinivas, et Nader Najafi. « Reliability of micro-electro-mechanical systems (MEMS) ». Dans Micromachining and Microfabrication, sous la direction de Rajeshuni Ramesham. SPIE, 2001. http://dx.doi.org/10.1117/12.443002.
Texte intégralHassan, Maguid H. M. « Reliability Evaluation of Smart Structural Systems ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79125.
Texte intégralFarley, D., A. Dasgupta, M. Al-Bassyiouni et J. W. C. de Vries. « System-Level Reliability Qualification of Complex Electronic Systems ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11762.
Texte intégralXu, Shuzhen, et Enrique A. Susemihl. « Reliability Analysis of Water Mist Systems ». Dans ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41046.
Texte intégralXU, Wenkai, Jiankang SUN, Bo FAN et Kunming HONG. « Dynamic Reliability Evaluation of Complex Mechanical System ». Dans The 2015 International Conference on Mechanical Engineering and Control Systems (MECS2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814740616_0011.
Texte intégralRekvava, Paata. « Seismic Reliability Analysis of Structural Systems ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10686.
Texte intégralLall, Pradeep, Robert Hinshaw, Ranjit Pandher, Mahendra Harsha et Jeff Suhling. « Thermo-mechanical reliability of SAC leadfree alloys ». Dans 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2010. http://dx.doi.org/10.1109/itherm.2010.5501303.
Texte intégralYin, Chang, Wei Dai et Yuanxing Huang. « Reliability Improvement of mechanical components based on TRIZ ». Dans 2015 First International Conference on Reliability Systems Engineering (ICRSE). IEEE, 2015. http://dx.doi.org/10.1109/icrse.2015.7366463.
Texte intégralAugusti, G., M. Ciampoli et F. Petrini. « Reliability of Structural Systems Under Wind Action ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12357.
Texte intégralRapports d'organisations sur le sujet "Reliability of mechanical systems"
Poerner. PR-015-11211-R02 Mechanical Seal Auxiliary Systems Best Practices Summary. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), janvier 2014. http://dx.doi.org/10.55274/r0010817.
Texte intégralPoerner. PR-015-11211-R01 Mechanical Seal Auxiliary Systems Guideline. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), octobre 2013. http://dx.doi.org/10.55274/r0010789.
Texte intégralN. Ramirez. Reliability Analysis of the Mechanical System in Selected Portions of the Nuclear HVAC System. Office of Scientific and Technical Information (OSTI), mars 2005. http://dx.doi.org/10.2172/850443.
Texte intégralGroeneveld, Andrew B., Stephanie G. Wood et Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), février 2021. http://dx.doi.org/10.21079/11681/39601.
Texte intégralCox, James V., Sam A. Candelaria, Michael Thomas Dugger, Michelle Ann Duesterhaus, Danelle Mary Tanner, Shannon J. Timpe, James Anthony Ohlhausen et al. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS). Office of Scientific and Technical Information (OSTI), juin 2006. http://dx.doi.org/10.2172/923082.
Texte intégralLozev. L52022 Validation of Current Approaches for Girth Weld Defect Sizing Accuracy. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), juillet 2002. http://dx.doi.org/10.55274/r0011325.
Texte intégralTehrani, Fariborz M., Kenneth L. Fishman et Farmehr M. Dehkordi. Extending the Service-Life of Bridges using Sustainable and Resilient Abutment Systems : An Experimental Approach to Electrochemical Characterization of Lightweight Mechanically Stabilized Earth. Mineta Transportation Institute, juillet 2023. http://dx.doi.org/10.31979/mti.2023.2225.
Texte intégralSadlon, Richard J. Mechanical Applications in Reliability Engineering. Fort Belvoir, VA : Defense Technical Information Center, août 1993. http://dx.doi.org/10.21236/ada363860.
Texte intégralMcHenry, K. D., et B. G. Koepke. Mechanical Reliability of Piezoelectric and Dielectric Ceramics. Fort Belvoir, VA : Defense Technical Information Center, juin 1988. http://dx.doi.org/10.21236/ada198458.
Texte intégralJadaan, Osama M., et Andrew A. Wereszczak. Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs. Office of Scientific and Technical Information (OSTI), mai 2009. http://dx.doi.org/10.2172/953658.
Texte intégral