Littérature scientifique sur le sujet « Relativistic mean field »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Relativistic mean field ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Relativistic mean field"
Afanasjev, A. V. « Superdeformations in Relativistic and Non-Relativistic Mean Field Theories ». Physica Scripta T88, no 1 (2000) : 10. http://dx.doi.org/10.1238/physica.topical.088a00010.
Texte intégralWang, S. J., et W. Cassing. « Extended relativistic mean field theory and relativistic transport equations ». Nuclear Physics A 495, no 1-2 (avril 1989) : 371–80. http://dx.doi.org/10.1016/0375-9474(89)90334-5.
Texte intégralRego, R. A. « Mean free path in the relativistic mean field ». Physical Review C 44, no 5 (1 novembre 1991) : 1944–46. http://dx.doi.org/10.1103/physrevc.44.1944.
Texte intégralROTA NODARI, SIMONA. « THE RELATIVISTIC MEAN-FIELD EQUATIONS OF THE ATOMIC NUCLEUS ». Reviews in Mathematical Physics 24, no 04 (mai 2012) : 1250008. http://dx.doi.org/10.1142/s0129055x12500080.
Texte intégralDel Zanna , Luca, Niccolò Tomei, Kevin Franceschetti, Matteo Bugli et Niccolò Bucciantini. « General Relativistic Magnetohydrodynamics Mean-Field Dynamos ». Fluids 7, no 2 (21 février 2022) : 87. http://dx.doi.org/10.3390/fluids7020087.
Texte intégralDiakonov, Dmitri. « Relativistic mean field approximation to baryons ». European Physical Journal A 24, S1 (février 2005) : 3–8. http://dx.doi.org/10.1140/epjad/s2005-05-001-3.
Texte intégralWARRIER, LATHA S., J. P. MAHARANA et Y. K. GAMBHIR. « ALPHA STAGGERING : RELATIVISTIC MEAN FIELD DESCRIPTION ». Modern Physics Letters A 09, no 26 (30 août 1994) : 2371–80. http://dx.doi.org/10.1142/s0217732394002240.
Texte intégralGambhir, Y. K., et A. Bhagwat. « Relativistic mean field for nuclear periphery ». Nuclear Physics A 722 (juillet 2003) : C354—C359. http://dx.doi.org/10.1016/s0375-9474(03)01389-7.
Texte intégralFogaça, D. A., et F. S. Navarra. « Solitons in relativistic mean field models ». Physics Letters B 639, no 6 (août 2006) : 629–34. http://dx.doi.org/10.1016/j.physletb.2006.07.002.
Texte intégralBARRIOS, S. CRUZ, et M. C. NEMES. « ANATOMY OF RELATIVISTIC MEAN-FIELD APPROXIMATIONS ». Modern Physics Letters A 07, no 21 (10 juillet 1992) : 1915–21. http://dx.doi.org/10.1142/s0217732392001622.
Texte intégralThèses sur le sujet "Relativistic mean field"
Centelles, Aixalà Mario. « Semiclassical approach to relativistic nuclear mean field theory ». Doctoral thesis, Universitat de Barcelona, 1992. http://hdl.handle.net/10803/1593.
Texte intégralThe success of semi-classical models in non-relativistic nuclear physics provides a very strong motivation for investigating similar methods in the relativistic context, where only the pure Thomas-Fermi approximation had been studied. In this thesis we set up the semi-classical expansion in relativistic nuclear mean field theory, including gradient corrections of order h(2) to the Thomas-Fermi model, and investigate several applications to nuclear systems.
On the basis of Wigner transform techniques, a. recursive scheme to obtain the semi-classical h(2) expansion of the propagator associated with a time-independent single-particle Hamiltonian with matrix structure is presented. We focus our attention on the application of the method to a Dirac Hamiltonian related to relativistic nuclear mean field theory, i.e., including a position-dependent effective mass and the time-like component of a. four-vector field. Compared with the non-relativistic case, the procedure is considerably more complicated owing to the matrix structure of the Hamiltonian. For this reason the "h", expansion is pushed to order h(2) only. A detailed derivation is given of the h(2)-order Wigner-Kirkwood expansion of the relativistic density matrix, in terms of the gradients of the vector and the scalar field, as well as of the expansion of the particle and energy densities. The idempotency of the semi-classical density matrix to second order in "h" is proven. The Wigner-Kirkwood expressions, as they stand, are not suitable to be employed in a self-consistent problem. Therefore, we obtain the corresponding density functional results. In this case the energy densities are expressed as a functional of the local density, the effective mass and their gradients.
The accuracy of the Wigner-Kirkwood series is tested on a. relativistic harmonic oscillator and perfect agreement with the Strutinsky averaged observables is found even in the highly relativistic regime. The density functional version is shown to be slightly less accurate, a feature already known in the non-relativistic case. It turns out that the semi-classical expressions represent the different quantities on average, that is, quantum fluctuations are averaged out. This model study shows that, for positive energy states, the derived semi-classical expansions contain all the relativistic ingredients, the difference with quantal results being due mainly to shell effects.
Extended Thomas-Fermi calculations, which· include h(2)-order gradient corrections, are performed for relativistic non-linear "sigma"- "omega" models using two kinds of Lagrangians which differ in the form of the scalar coupling for the isoscalar sigma meson. Comparing the semi-classical results of order h(2) (TFh(2)) with the Hartree results, we find that the TFh(2) approximation yields some underbinding when the effective mass (mº) of the model is small, and some overbinding when mº is large. For a value around mº/m = 0.65, both TFh(2) and Hartree would roughly yield the same binding energy. However, since semi-classical and quantal results must differ in the so-called shell energy, this indicates that it is not properly estimated by the TFh(2) approximation.
When the h(2)-order gradient corrections are taken into account (TFh(2), we have found a numerical instability in the solution of the semi-classical Klein-Gordon equation obeyed by the scalar field in the case of parameterizations which have mº/m = 0.60, which can be eliminated if the q-meson mass mº is reduced (with the ratio g(2-0)/m(2-0) unaltered).
Second-order corrections in "h" to the TFh(0) approximation improve the agreement with Hartree solutions in a sensitive way, always yielding more bound nuclei than within the Hartree approach. The sign of the h(2) corrections depends on mº, and they are found to vanish around mº/m = 0.75 for the models of the type considered here. In several respects, the semi-classical relativistic phenomenology quite resembles the one met in the non-relativistic regime using Skyrme forces, in spite of the different origin of mº in both situations. Extending the so-called expectation value method to the relativistic problem, and using the TFh(2) semi-classical mean field as a starting point, perturbative quantal solutions are found which are in good agreement with the Hartree results.
The semi-classical TFh(0) and TFh(2) density distributions do not present oscillations due to the absence of shell effects, but they average the Hartree results. In the interior of the nucleus the TFh(0) and TF1i2 densities are very similar. However, in the surface and the outer region the TF1i2 densities come appreciably closer than TFh(0) to the Hartree results, due to the gradient corrections incorporated by the TF1i2 functionals, and show an exponential drop off.
Liquid drop model coefficients are calculated for some parameter sets of the "sygma-omega" model. We have found reasonable results for the surface thickness and for the surface and curvature energies, which are within the range of the values obtained in non-relativistic calculations using density-dependent Skyrme forces. Therefore, the relativistic effects do not seem to avoid the disagreement of the calculated value of the curvature energy with the empirical value.
In this work we also study the effects of the density-dependent Dirac spinor for the nucleons, as is determined microscopically in the DBHF approach, on various properties of the structure and scattering of finite nuclei. To enable this, we construct a relativistic energy density functional that contains the semi-classical kinetic energy density of order h(2). The effective mass and the volume term in the potential energy arise from a DBHF calculation of nuclear matter. This volume term is supplemented by some conventional correction terms and the few free parameters are suitably adjusted. It turns out that the radii of nuclei calculated with the present approach agree better with the experimental value than those obtained in similar studies using a potential energy derived from a non-relativistic G-matrix. This demonstrates that the Dirac effects improve the calculation of ground-state properties of finite nuclei also in our relativistic extended Thomas-Fermi (RETF) approximation.
However, this study of ground-state properties is not the main goal of our investigation.
The capabilities of our RETF functional are actually appraised in situations in which a full microscopic relativistic calculation, or even a phenomenological one, cannot be easily made, such as nuclear fission of rotating nuclei and heavy ion scattering. In these situations, the method constitutes a reliable tool. For the nuclear fission barriers, the present calculations are the first ones carried out with a relativistic model. We have shown that the model yields results comparable to the non-relativistic ones, with the conceptual-advantage of being relativistic and thus automatically incorporating the spin-orbit force. For the calculations of heavy ion elastic scattering cross sections, we have been able to improve previous results due to achieving a better description of the nuclear, densities.
Let us summarize the two apparent merits which the TFh(2) approximation has over the simple TFh(0) one. On the one hand, it provides fully variational densities that go exponential to zero. On the other hand, it takes into account non-local spin-orbit and effective mass contributions up to order h(2), yielding a more reliable average value.
Se establece el desarrollo semi-clásico hasta orden h(2) en la teoría nuclear relativista de campo medio. Así, se obtienen las densidades semi-clásicas relativistas de partículas y de energía para un conjunto de fermiones sometidos a un campo escalar y a un campo vector, en las teorías de campo medio de Wigner-Kirkwood y de Thomas-Fermi, incluyendo correcciones en gradientes hasta orden h(2). El método semi-clásico se aplica a un oscilador armónico relativista. Después se utiliza en modelos T-W no lineales, para los cuales se resuelven las ecuaciones variacionales en núcleos finitos y en materia nuclear semi-infinita. Los resultados semi-clásicos son comparados con los correspondientes resultados cuánticos Hartree.
Para estudiar los efectos de los espinores de Dirac para los nucleones sobre diversas propiedades de la estructura y de la dispersión de núcleos finitos, se construye un funcional de la densidad de energía relativista. El funcional contiene la densidad de energía cinética relativista de orden h(2). La masa efectiva y la parte potencial se obtienen a partir de cálculos Dirac-Brueckner de materia nuclear. Se presta especial atención al cálculo de barreras de fisión de núcleos en rotación y del potencial óptico para la dispersión de iones pesados a energías intermedias.
Ban, Shufang. « Investigation of effective interactions in relativistic mean field theory ». Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4074.
Texte intégral姚昌銓 et Cheong-chuen Yao. « Properties of neutron stars in the relativistic mean field theory ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B30409135.
Texte intégralYao, Cheong-chuen. « Properties of neutron stars in the relativistic mean field theory / ». Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19668867.
Texte intégralPaar, Nils. « Relativistic mean field description of exotic excitations in finite nuclei ». [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969358199.
Texte intégralDiener, Jacobus Petrus Willem. « Relativistic mean-field theory applied to the study of neutron star properties ». Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/760.
Texte intégralAcar, Fatma. « Spinodal Instabilities In Symmetric Nuclear Matter Within A Nonlinear Relativistic Mean-field Approach ». Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613472/index.pdf.
Texte intégralB = 0.4 &rho
0 , while most unstable behavior occurs in shorter wavelengths at lower baryon densities &rho
B = 0.2 &rho
0 . The unstable response of the system shifts towards longer wavelengths with the increasing temperature at both densities. The early growth of the density correlation functions are calculated, which provide valuable information about the initial size of the condensation and the average speed of condensing fragments. Furthermore, the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results are found in both non-relativistic and relativistic descriptions.
Danisman, Betul. « Spinodal Instabilities In Symmetric Nuclear Matter Within A Density-dependent Relativistic Mean-field Approach ». Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613473/index.pdf.
Texte intégralb &asymp
&rho
0/4 (below the saturation density) and at low temperatures. We therefore present our results at low temperature T=1 MeV and at higher temperature T=5 MeV, and also at a lower initial baryon density &rho
b = 0.2 &rho
0 and a higher value &rho
b = 0.4 &rho
0 where unstable behavior is within them. Calculations in density-dependent model are compared with the other calculations obtained in a relativistic non-linear model and in a Skyrme type nonivrelativistic model. Our results are consistent with them. Qualitatively similar results show that the physics of the quantities are model-independent. The size of clusterization is estimated in two ways, by using half-wavelength of the most unstable mode and from the width of correlation function at half maximum. Furthermore, the average speed of condensing fragments during the initial phase of spinodal decomposition are determined by using the current density correlation functions.
Voskresenskaya, Maria Verfasser], Karlheinz [Akademischer Betreuer] [Langanke et Robert [Akademischer Betreuer] Roth. « Correlations in nuclear matter at low densities in an extended relativistic mean-field model / Maria Voskresenskaya. Betreuer : Karlheinz Langanke ; Robert Roth ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://d-nb.info/1106454383/34.
Texte intégralVoskresenskaya, Maria [Verfasser], Karlheinz [Akademischer Betreuer] Langanke et Robert [Akademischer Betreuer] Roth. « Correlations in nuclear matter at low densities in an extended relativistic mean-field model / Maria Voskresenskaya. Betreuer : Karlheinz Langanke ; Robert Roth ». Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2013. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-33606.
Texte intégralLivres sur le sujet "Relativistic mean field"
Bednarek, Ilona. Relativistic mean field models of neutron stars. Katowice : Wydawn. Uniwersytetu Śla̜skiego, 2007.
Trouver le texte intégralBednarek, Ilona. Relativistic mean field models of neutron stars. Katowice : Wydawn. Uniwersytetu Śla̜skiego, 2007.
Trouver le texte intégralRutz, Klemens. Struktur von Atomkernen im Relativistic-Mean-Field-Modell. Ibidem Verlag, 1999.
Trouver le texte intégralTriaxial deformation of unstable nuclei in the relativistic mean field theory. Wako, Saitama, Japan : Institute of Physical and Chemical Research (RIKEN), 1996.
Trouver le texte intégralFreeman, Richard R., James A. King et Gregory P. Lafyatis. Electromagnetic Radiation. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198726500.001.0001.
Texte intégralBaulieu, Laurent, John Iliopoulos et Roland Sénéor. From Classical to Quantum Fields. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.001.0001.
Texte intégralChapitres de livres sur le sujet "Relativistic mean field"
Reinhard, P. G., et M. Bender. « 9 Mean Field : Relativistic versus Non-relativistic ». Dans Extended Density Functionals in Nuclear Structure Physics, 249–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39911-7_9.
Texte intégralJaminon, M., et C. Mahaux. « Critical survey of relativistic mean field approaches ». Dans Medium Energy Nucleon and Antinucleon Scattering, 479–96. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-16054-x_188.
Texte intégralSavushkin, Lev N., et Hiroshi Toki. « The Relativistic Mean-Field Approximation for Nuclear Structure ». Dans The Atomic Nucleus as a Relativistic System, 39–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10309-8_4.
Texte intégralGinocchio, Joseph N. « 7 Symmetry in the Relativistic Mean Field Approximation ». Dans Extended Density Functionals in Nuclear Structure Physics, 219–37. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39911-7_7.
Texte intégralMareš, J. « Hyperon(S) in the Relativistic Mean Field Theory ». Dans Mesons and Light Nuclei, 423–29. Vienna : Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-7617-7_54.
Texte intégralAfanasjev, A. V., S. G. Frauendorf et P. Ring. « Rotating Nuclei in the Relativistic Mean Field Theory ». Dans The Nuclear Many-Body Problem 2001, 103–10. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0460-2_14.
Texte intégralCentelles, M. « Density Functional Formalism in Relativistic Nuclear Mean Field Theory ». Dans NATO ASI Series, 173–89. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9975-0_8.
Texte intégralEstal, M., M. Centelles, X. Viñas et S. K. Patra. « Pairing Properties in Relativistic Mean Field Models Based on Effective Field Theory ». Dans The Nuclear Many-Body Problem 2001, 175–80. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0460-2_24.
Texte intégralReinhard, P. G., H. G. Döbereiner, V. Blum, J. Fink, M. Rufa, J. Maruhn, H. Stöcker et W. Greiner. « The Relativistic Mean-Field Model of Nuclear Structure and Dynamics ». Dans The Nuclear Equation of State, 635–47. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0583-5_50.
Texte intégralTypel, S., et H. H. Wolter. « Relativistic Mean Field Approach with Density and Momentum-Dependent Coupling Vertices ». Dans The Nuclear Many-Body Problem 2001, 89–96. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0460-2_12.
Texte intégralActes de conférences sur le sujet "Relativistic mean field"
Taurines, Andre R., Cesar A. Z. Vasconcellos et Manuel Malheiro. « Naturalness in relativistic mean field theories ». Dans Proceedings of the International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811653_0038.
Texte intégralToki, Hiroshi. « RELATIVISTIC MEAN FIELD THEORY AND SPIN EXCITATIONS ». Dans Proceedings of the RCNP-TMU Symposium. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792297_0011.
Texte intégralLEJA, J., et Š. GMUCA. « RELATIVISTIC MEAN-FIELD DESCRIPTION OF LIGHT NUCLEI ». Dans Proceedings of the 6th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812837530_0027.
Texte intégralSulaksono, A., P. T. P. Hutauruk, C. K. Williams et T. Mart. « Relativistic Mean Field Models at High Densities ». Dans Proceedings of the 3rd Asia-Pacific Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706881_0068.
Texte intégralAFANASJEV, A. V. « RELATIVISTIC MEAN FIELD STUDIES OF SUPERHEAVY NUCLEI ». Dans Proceedings of the Fourth International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812833433_0040.
Texte intégralLALAZISSIS, G. A., D. VRETENAR, N. PAAR et P. RING. « RELATIVISTIC MEAN-FIELD DESCRIPTION OF EXOTIC NUCLEAR STRUCTURE ». Dans Proceedings of the 5th International Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776723_0032.
Texte intégralMoszkowski, S. A. « Relativistic nuclear mean field and equation of state ». Dans Strong, weak, and electromagnetic interactions in nuclei, atoms, and astrophysics. AIP, 1991. http://dx.doi.org/10.1063/1.41437.
Texte intégralSoares, Bruno Alves de Moura, César Henrique Lenzi et Mariana Dutra. « Relativistic Mean Field Model constrained by Astrophysical Measurements ». Dans XV International Workshop on Hadron Physics. Trieste, Italy : Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.408.0033.
Texte intégralDutra, M., O. Lourenço, B. V. Carlson, A. Delfino, D. P. Menezes, S. S. Avancini, J. R. Stone, C. Provide^ncia et S. Typel. « Relativistic mean-field models and nuclear matter constraints ». Dans XXXV BRAZILIAN WORKSHOP ON NUCLEAR PHYSICS. AIP, 2013. http://dx.doi.org/10.1063/1.4804125.
Texte intégralGangopadhyay, G., Madhubrata Bhattacharya et Subinit Roy. « Relativistic mean field calculations in neutron-rich nuclei ». Dans FRONTIERS IN GAMMA-RAY SPECTROSCOPY 2012 - FIG12. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4893254.
Texte intégralRapports d'organisations sur le sujet "Relativistic mean field"
Glendenning, N. K., D. Von-Eiff, M. Haft, H. Lenske et M. K. Weigel. Relativistic mean-field calculations of {Lambda} and {Sigma} hypernuclei. Office of Scientific and Technical Information (OSTI), octobre 1992. http://dx.doi.org/10.2172/10163884.
Texte intégral