Articles de revues sur le sujet « Regulation of food intake »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Regulation of food intake.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Regulation of food intake ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Danker-Hopfe, Heidi, Kirsten Roczen et Ute Löwenstein-Wagner. « Regulation of food intake during the menstrual cycle ». Anthropologischer Anzeiger 53, no 3 (28 juin 1995) : 231–38. http://dx.doi.org/10.1127/anthranz/53/1995/231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Klein, Samuel. « Regulation of Food Intake ». Journal of Parenteral and Enteral Nutrition 32, no 5 (septembre 2008) : 563. http://dx.doi.org/10.1177/0148607108321710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

FURUSE, Mitsuhiro. « Food Intake Regulation in Poultry. » Japanese poultry science 33, no 5 (1996) : 275–85. http://dx.doi.org/10.2141/jpsa.33.275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Seeley, RJ, et MW Schwartz. « Neuroendocrine regulation of food intake ». Acta Paediatrica 88, s428 (février 1999) : 58–61. http://dx.doi.org/10.1111/j.1651-2227.1999.tb14352.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cummings, David E., et Joost Overduin. « Gastrointestinal regulation of food intake ». Journal of Clinical Investigation 117, no 1 (2 janvier 2007) : 13–23. http://dx.doi.org/10.1172/jci30227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chaptini, Louis, et Steven Peikin. « Neuroendocrine regulation of food intake ». Current Opinion in Gastroenterology 24, no 2 (mars 2008) : 223–29. http://dx.doi.org/10.1097/mog.0b013e3282f3f4d8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

York, David A. « Metabolic Regulation of Food Intake ». Nutrition Reviews 48, no 2 (27 avril 2009) : 64–70. http://dx.doi.org/10.1111/j.1753-4887.1990.tb02907.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Karhunen, Leila, et Karl-Heinz Herzig. « Neuroendocrinological regulation of food intake ». Regulatory Peptides 149, no 1-3 (août 2008) : 1–2. http://dx.doi.org/10.1016/j.regpep.2008.03.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

BIRCH, LEANN L., et JENNIFER O. FISHER. « Food Intake Regulation in Children. » Annals of the New York Academy of Sciences 819, no 1 Nutritional I (mai 1997) : 194–220. http://dx.doi.org/10.1111/j.1749-6632.1997.tb51809.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cupples, W. A. « Physiological regulation of food intake ». American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 288, no 6 (juin 2005) : R1438—R1443. http://dx.doi.org/10.1152/ajpregu.00195.2005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Stanley, Sarah, Katie Wynne, Barbara McGowan et Stephen Bloom. « Hormonal Regulation of Food Intake ». Physiological Reviews 85, no 4 (octobre 2005) : 1131–58. http://dx.doi.org/10.1152/physrev.00015.2004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.
12

Hagan, Scott, et Kevin D. Niswender. « Neuroendocrine regulation of food intake ». Pediatric Blood & ; Cancer 58, no 1 (23 septembre 2011) : 149–53. http://dx.doi.org/10.1002/pbc.23376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Denbow, D. Michael. « Food intake regulation in birds ». Journal of Experimental Zoology 283, no 4-5 (1 mars 1999) : 333–38. http://dx.doi.org/10.1002/(sici)1097-010x(19990301/01)283:4/5<333 ::aid-jez3>3.0.co;2-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Plata-Salaman, C. R. « Interferons and central regulation of feeding ». American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 263, no 6 (1 décembre 1992) : R1222—R1227. http://dx.doi.org/10.1152/ajpregu.1992.263.6.r1222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Interferons (IFNs) are immunomodulators with neuromodulatory activities. To study the effects of IFNs on the central regulation of feeding, rats were subjected to various applications. The results show the following. 1) Intracerebroventricular microinfusion of rat IFN (15-225 IU/rat) decreased short-term (2-h) food intake in rats. Computerized analysis of behavioral patterns demonstrated a reduction of meal size and meal duration, whereas meal frequency slightly increased. Nighttime and total daily food intakes were not significantly affected. 2) Short-term food intake suppression by intracerebroventricular rat IFN was accompanied by a small increase in cerebrospinal fluid and rectal temperatures. 3) Intracerebroventricular microinfusion of heat-treated rat IFN or of recombinant human interferon-alpha (rhIFN-alpha) did not affect food intake. Only one dose of rhIFN-gamma (400 ng/rat) decreased 2-h food intake. These results are consistent with the species specificity to the effects of IFNs. 4) Peripheral administration of rat IFN in doses equivalent to those administered centrally had no effect on food intake. The results suggest that IFN acts directly in the central nervous system to decrease short-term feeding.
15

Boon, Brigitte, Wolfgang Stroebe, Henk Schut et Anita Jansen. « Food for thought : Cognitive regulation of food intake ». British Journal of Health Psychology 3, no 1 (février 1998) : 27–40. http://dx.doi.org/10.1111/j.2044-8287.1998.tb00553.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Cupples, W. A. « Integrating the regulation of food intake ». American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 283, no 2 (1 août 2002) : R356—R357. http://dx.doi.org/10.1152/ajpregu.00269.2002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Flatt, J. P. « Carbohydrate balance and food intake regulation ». American Journal of Clinical Nutrition 62, no 1 (1 juillet 1995) : 155–57. http://dx.doi.org/10.1093/ajcn/62.1.155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Minokoshi, Yasuhiko. « Food intake regulation by hypothalamic AMPK ». Folia Pharmacologica Japonica 137, no 4 (2011) : 172–76. http://dx.doi.org/10.1254/fpj.137.172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ohinata, Kousaku, et Masaaki Yoshikawa. « Central prostaglandins in food intake regulation ». Nutrition 24, no 9 (septembre 2008) : 798–801. http://dx.doi.org/10.1016/j.nut.2008.06.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lo Verme, J., S. Gaetani, J. Fu, F. Oveisi, K. Burton et D. Piomelli. « Regulation of food intake by oleoylethanolamide ». Cellular and Molecular Life Sciences 62, no 6 (mars 2005) : 708–16. http://dx.doi.org/10.1007/s00018-004-4494-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Challet, Etienne. « The circadian regulation of food intake ». Nature Reviews Endocrinology 15, no 7 (9 mai 2019) : 393–405. http://dx.doi.org/10.1038/s41574-019-0210-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Forestell, C. A., E. Ege et I. R. Sesay. « Solid food intake regulation in infants ». Appetite 57 (juillet 2011) : S16. http://dx.doi.org/10.1016/j.appet.2011.05.170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ingvartsen, K. L., N. C. Friggens et P. Faverdin. « Food intake regulation in late pregnancy and early lactation ». BSAP Occasional Publication 24 (1999) : 37–54. http://dx.doi.org/10.1017/s1463981500043065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractThe dip in food intake, which starts in late pregnancy and continues into early lactation, has traditionally been interpreted as a depression in intake due to physical constraints. However, the rôle of physical constraints on intake has been overemphasized, particularly in early lactation. There is mounting evidence that the presence and mobilization of body reserves in early lactation play an important rôle in regulating intake at this time.Conceptually, the dip in intake in early lactation observed when cows have access to non-limiting foods can be accounted for by assuming that the cow has a desired level of body reserves. When the cow is not compromised, the changes with time in body reserves and the dip in intake represent the normal case and provide the basis against which to assess true depressions in intake which may occur when the cow is compromised by limiting nutrition or environment.The regulation of body reserves and intake in the periparturient cow is orchestrated through nervous and hormonal signals. Likely factors that are involved in intake regulation are reproductive hormones, neuropeptides, adrenergic signals, insulin and insulin resistance and leptin. Furthermore, oxidation of NEFA in the liver may result in feedback signals that reduce intake. The relative importance of these is discussed. A better understanding of the physiological signals involved in intake regulation and their interrelations with body weight regulation may provide important indicators of the degree of compromise that periparturient cows may experience.
24

Mikulášková, B., L. Maletínská, J. Zicha et J. Kuneš. « The role of food intake regulating peptides in cardiovascular regulation ». Molecular and Cellular Endocrinology 436 (novembre 2016) : 78–92. http://dx.doi.org/10.1016/j.mce.2016.07.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

WOODS, STEPHEN C., et JAMES GIBBS. « The Regulation of Food Intake by Peptides ». Annals of the New York Academy of Sciences 575, no 1 The Psychobio (décembre 1989) : 236–43. http://dx.doi.org/10.1111/j.1749-6632.1989.tb53246.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jain, Swati, et Som Nath Singh. « Regulation of Food Intake : A Complex Process ». Defence Life Science Journal 3, no 2 (23 mars 2018) : 182. http://dx.doi.org/10.14429/dlsj.3.12401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
<p>Researchers have created a wealth of knowledge about the mechanisms that regulate food intake, appetite and therefore weight control. The control of appetite is a complex mechanism and involves the coordination of inputs from both physiological and environmental sources. Early theoretical approaches were based on the idea that the control mechanism was dedicated exclusively to signals from glucose metabolism, amino acids or proteins, or adipose tissue. However, a complex system of biologic and environmental factors regulates our appetite. The brain integrates chemical and nervous signals to control hunger and satiety. These controls include sensory and gastrointestinal signals, neurotransmitters and neuropeptides. This review paper summarizes the existing plethora of the highly convoluted process of appetite regulation and food intake.</p>
27

Nederkoorn, Chantal, et Anita Jansen. « Cue reactivity and regulation of food intake ». Eating Behaviors 3, no 1 (mars 2002) : 61–72. http://dx.doi.org/10.1016/s1471-0153(01)00045-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kitamura, Tadahiro, et Tsutomu Sasaki. « Hypothalamic Sirt1 and regulation of food intake ». Diabetology International 3, no 3 (22 août 2012) : 109–12. http://dx.doi.org/10.1007/s13340-012-0088-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dhillo, W. S., et S. R. Bloom. « Gastrointestinal Hormones and Regulation of Food Intake ». Hormone and Metabolic Research 36, no 11/12 (novembre 2004) : 846–51. http://dx.doi.org/10.1055/s-2004-826174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Denbow, D. Michael. « Peripheral Regulation of Food Intake in Poultry ». Journal of Nutrition 124, suppl_8 (1 août 1994) : 1349S—1354S. http://dx.doi.org/10.1093/jn/124.suppl_8.1349s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hirscbberg, Angelica Lindén. « Hormonal regulation of appetite and food intake ». Annals of Medicine 30, no 1 (janvier 1998) : 7–20. http://dx.doi.org/10.3109/07853899808999380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Baynes, Kevin CR, Waljit S. Dhillo et Stephen R. Bloom. « Regulation of food intake by gastrointestinal hormones ». Current Opinion in Gastroenterology 22, no 6 (novembre 2006) : 626–31. http://dx.doi.org/10.1097/01.mog.0000245537.43142.63.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Melanson, Kathleen J. « Food Intake Regulation in Body Weight Management ». Nutrition Today 39, no 5 (septembre 2004) : 203–13. http://dx.doi.org/10.1097/00017285-200409000-00006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Schwartz, Michael W. « Central Nervous System Regulation of Food Intake ». Obesity 14, no 2S (février 2006) : 1S—8S. http://dx.doi.org/10.1038/oby.2006.275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Rampone, A. J., et P. J. Reynolds. « Food intake regulation by diet-induced thermogenesis ». Medical Hypotheses 34, no 1 (janvier 1991) : 7–12. http://dx.doi.org/10.1016/0306-9877(91)90057-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ukkola, O. « Peripheral regulation of food intake : New insights ». Journal of Endocrinological Investigation 27, no 1 (janvier 2004) : 96–98. http://dx.doi.org/10.1007/bf03350918.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Mayer, Jean. « GLUCOSTATIC MECHANISM OF REGULATION OF FOOD INTAKE* ». Obesity Research 4, no 5 (septembre 1996) : 493–96. http://dx.doi.org/10.1002/j.1550-8528.1996.tb00260.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Deutsch, J. A., et Sonia Jang Ahn. « The splanchnic nerve and food intake regulation ». Behavioral and Neural Biology 45, no 1 (janvier 1986) : 43–47. http://dx.doi.org/10.1016/s0163-1047(86)80004-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Tremblay, Angelo, Marie-Pascale Gagné, Louis Pérusse, Catherine Fortier, Véronique Provencher, Ronan Corcuff, Sonia Pomerleau, Nicoletta Foti et Vicky Drapeau. « Sodium and Human Health : What Can Be Done to Improve Sodium Balance beyond Food Processing ? » Nutrients 16, no 8 (18 avril 2024) : 1199. http://dx.doi.org/10.3390/nu16081199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Sodium plays a key role in the regulation of water balance and is also important in food formulation due to its contribution to the taste and use in the preservation of many foods. Excessive intake of any essential nutrient is problematic and this seems to be particularly the case for sodium since a high intake makes it the nutrient most strongly associated with mortality. Sodium intake has been the object of recommendations by public health agencies such as the WHO and this has resulted in efforts by the food industry to reduce the sodium content of packaged foods, although there is still room for improvement. The recent literature also emphasizes the need for other strategies, e.g., regulations and education, to promote adequate sodium intake. In the present paper, we also describe the potential benefits of a global healthy lifestyle that considers healthy eating but also physical activity habits that improve body functionality and may help to attenuate the detrimental effects of high sodium intake on body composition and cardiometabolic health. In conclusion, a reduction in sodium intake, an improvement in body functioning, and educational interventions promoting healthy eating behaviours seem to be essential for the optimal regulation of sodium balance.
40

Flood, J. F., S. A. Farr, H. J. Perry III, F. E. Kaiser, P. M. K. Morley et J. E. Morley. « Effects of amylin on appetite regulation and memory ». Canadian Journal of Physiology and Pharmacology 73, no 7 (1 juillet 1995) : 1042–46. http://dx.doi.org/10.1139/y95-147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Amylin has been demonstrated to decrease food intake in mice and rats. Amylin is effective when delivered both peripherally and directly into the central nervous system. Amylin's effect on food intake is not aversive. Amylin may produce its effect on food intake by modulating nitric oxide synthesis. Calcitonin gene related peptide also decreases food intake after peripheral and central administration. In addition, amylin has been demonstrated to modulate memory at both peripheral and central sites.Key words: appetite, retention, satiety, memory, amylin.
41

Cupples, W. A. « Regulating food intake ». American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 284, no 3 (1 mars 2003) : R652—R654. http://dx.doi.org/10.1152/ajpregu.00650.2002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

French, Stephen, et Kate Castiglione. « Recent advances in the physiology of eating ». Proceedings of the Nutrition Society 61, no 4 (novembre 2002) : 489–96. http://dx.doi.org/10.1079/pns2002190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Since the discovery of the protein product of theob/obgene, leptin, knowledge of the neurochemical pathways involved in the regulation of feeding has increased enormously. Our understanding of the mechanisms regulating food intake in man has also progressed greatly over a similar time span. Previous research into the regulation of food intake has largely proceeded through a reductionist approach, defining ever-smaller components of these mechanisms. This research strategy has been very productive and instructive, and has yielded a great deal of information on the specific putative components linking energy status and food intake. However, to fully understand the regulation of feeding it is important that these components are systematically reconstructed to investigate relevant interactions. In the present review recent data relating to interactions between systems proposed to be involved in feeding regulation will be highlighted. The review will be directed predominantly (but not exclusively) towards the regulation of human feeding.
43

Crespi, Erica J., et Margaret K. Unkefer. « Development of food intake controls : Neuroendocrine and environmental regulation of food intake during early life ». Hormones and Behavior 66, no 1 (juin 2014) : 74–85. http://dx.doi.org/10.1016/j.yhbeh.2014.04.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lim, Jia Jiet, et Sally D. Poppitt. « How Satiating Are the ‘Satiety’ Peptides : A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake ». Nutrients 11, no 7 (4 juillet 2019) : 1517. http://dx.doi.org/10.3390/nu11071517.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.
45

OOMURA, Yutaka. « Endogenous organic chemical substances and food intake regulation. » Journal of Synthetic Organic Chemistry, Japan 44, no 2 (1986) : 127–36. http://dx.doi.org/10.5059/yukigoseikyokaishi.44.127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Wójcik-Gładysz, A., et M. Szlis. « Hypothalamo-gastrointestinal axis – role in food intake regulation ». Journal of Animal and Feed Sciences 25, no 2 (19 mai 2016) : 97–108. http://dx.doi.org/10.22358/jafs/65569/2016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

ROSSO, PEDRO. « Regulation of Food Intake During Pregnancy and Lactation ». Annals of the New York Academy of Sciences 499, no 1 (17 décembre 2006) : 191–96. http://dx.doi.org/10.1111/j.1749-6632.1987.tb36210.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Woods, Stephen C., Michael W. Schwartz, Denis G. Baskin et Randy J. Seeley. « Food Intake and the Regulation of Body Weight ». Annual Review of Psychology 51, no 1 (février 2000) : 255–77. http://dx.doi.org/10.1146/annurev.psych.51.1.255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Fredrickson, P., M. Boules et E. Richelson. « Neurotensin agonists in the regulation of food intake ». International Journal of Obesity 38, no 3 (17 juillet 2013) : 474. http://dx.doi.org/10.1038/ijo.2013.129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Koch, Marco, Joel K. Elmquist, Yury M. Morozov, Pasko Rakic, Ingo Bechmann, Michael A. Cowley, Marcelo O. Dietrich, Sabrina Diano et Tamas L. Horvath. « Novel insights into central regulation of food intake ». Neuropeptides 55 (février 2016) : 30. http://dx.doi.org/10.1016/j.npep.2015.11.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie