Articles de revues sur le sujet « Refined Zigzag Theory »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Refined Zigzag Theory.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Refined Zigzag Theory ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Iurlaro, Luigi, Marco Gherlone, Massimiliano Mattone et Marco Di Sciuva. « Experimental assessment of the Refined Zigzag Theory for the static bending analysis of sandwich beams ». Journal of Sandwich Structures & ; Materials 20, no 1 (12 juin 2016) : 86–105. http://dx.doi.org/10.1177/1099636216650614.

Texte intégral
Résumé :
In the present work, for the first time, the accuracy of the Refined Zigzag Theory in reproducing the static bending response of sandwich beams is experimentally assessed. The theory is briefly reviewed and an analytical solution of the equilibrium equations is presented for the boundary and loading conditions under investigation (four-point bending). The experimental campaign is described, including the material characterization and the bending tests. The experimentally measured deflections and axial strains are compared with those provided by Refined Zigzag Theory and by the Timoshenko Beam Theory with an ad hoc shear correction factor. The Refined Zigzag Theory is shown to be more accurate than the Timoshenko Beam Theory, in particular for beams with higher face-to-core thickness and stiffness ratios and with a reduced slenderness.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tessler, Alexander, Marco Di Sciuva et Marco Gherlone. « A Refined Zigzag Beam Theory for Composite and Sandwich Beams ». Journal of Composite Materials 43, no 9 (29 janvier 2009) : 1051–81. http://dx.doi.org/10.1177/0021998308097730.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ghorbanpour-Arani, A., F. Kolahdouzan et M. Abdollahian. « Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory ». Applied Mathematics and Mechanics 39, no 4 (20 février 2018) : 529–46. http://dx.doi.org/10.1007/s10483-018-2319-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wimmer, Heinz, Werner Hochhauser et Karin Nachbagauer. « Refined Zigzag Theory : an appropriate tool for the analysis of CLT-plates and other shear-elastic timber structures ». European Journal of Wood and Wood Products 78, no 6 (28 août 2020) : 1125–35. http://dx.doi.org/10.1007/s00107-020-01586-x.

Texte intégral
Résumé :
Abstract Cross laminated timber (CLT), as a structural plate-like timber product, has been established as a load bearing product for walls, floor and roof elements. In a bending situation due to the transverse shear flexibility of the crossing layers, the warping of the cross section follows a zigzag pattern which should be considered in the calculation model. The Refined Zigzag Theory (RZT) can fulfill this requirement in a very simple and efficient way. The RZT, founded in 2007 by A. Tessler (NASA Langley Research Center), M. Di Sciuva and M. Gherlone (Politecnico Torino) is a very robust and accurate analysis tool, which can handle the typical zigag warping of the cross section by introducing only one additional kinematic degree of freedom in case of plane beams and two more in case of biaxial bending of plates. Thus, the RZT-kinematics is able to reflect the specific and local stress behaviour near concentrated loads in combination with a warping constraint, while most other theories do not. A comparison is made with different methods of calculation, as the modified Gamma-method, the Shear Analogy method (SA) and the First Order Shear Deformation Theory (FSDT). For a test example of a two-span continuous beam, an error estimation concerning the maximum bending stress is presented depending on the slenderness L/h and the width of contact area at the intermediate support. A stability investigation shows that FSDT provides sufficiently accurate results if the ratio of bending and shear stiffness is in a range as stated in the test example. It is shown that by a simple modification in the determination of the zigzag function, the scope can be extended to beams with arbitrary non-rectangular cross section. This generalization step considerably improves the possibilities for the application of RZT. Furthermore, beam structures with interlayer slip can easily be treated. So the RZT is very well suited to analyze all kinds, of shear-elastic structural element like CLT-plate, timber-concrete composite structure or doweled beam in an accurate and unified way.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Flores, Fernando G., Sergio Oller et Liz G. Nallim. « On the analysis of non-homogeneous laminates using the refined zigzag theory ». Composite Structures 204 (novembre 2018) : 791–802. http://dx.doi.org/10.1016/j.compstruct.2018.08.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ascione, Alessia, et Marco Gherlone. « Nonlinear static response analysis of sandwich beams using the Refined Zigzag Theory ». Journal of Sandwich Structures & ; Materials 22, no 7 (23 août 2018) : 2250–86. http://dx.doi.org/10.1177/1099636218795381.

Texte intégral
Résumé :
The Refined Zigzag Theory (RZT) is assessed for the buckling and nonlinear static response analysis of multilayered composite and sandwich beams. A nonlinear formulation of the RZT is developed taking into account geometric imperfections and nonlinearities using the Von Kármán nonlinear strain-displacement relations. FE analyses are conducted employing C0-beam elements based on the RZT and the Timoshenko Beam Theory (TBT) to model three sandwich beams with different core materials and slenderness ratios, in both simply supported and cantilever configurations. The reference solutions are obtained by high-fidelity FE commercial codes, Abaqus® and Nastran®. The first two buckling loads are evaluated for the beams without initial imperfections. Several shapes are then assumed as geometric imperfections to calculate the beams’ nonlinear response to axial-compressive loads. The comparisons show the very high accuracy of the RZT (comparable to high fidelity FE commercial codes) for both the buckling and nonlinear static analyses and its superior capability with respect to the TBT to deal with sandwich beams with low slenderness ratio and higher face-to-core stiffness ratio.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Treviso, Alessandra, Domenico Mundo et Michel Tournour. « Dynamic response of laminated structures using a Refined Zigzag Theory shell element ». Composite Structures 159 (janvier 2017) : 197–205. http://dx.doi.org/10.1016/j.compstruct.2016.09.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hasim, K. Ahmet. « Isogeometric static analysis of laminated composite plane beams by using refined zigzag theory ». Composite Structures 186 (février 2018) : 365–74. http://dx.doi.org/10.1016/j.compstruct.2017.12.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gherlone, Marco, Daniele Versino et Vincenzo Zarra. « Multilayered triangular and quadrilateral flat shell elements based on the Refined Zigzag Theory ». Composite Structures 233 (février 2020) : 111629. http://dx.doi.org/10.1016/j.compstruct.2019.111629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nallim, Liz G., Sergio Oller, Eugenio Oñate et Fernando G. Flores. « A hierarchical finite element for composite laminated beams using a refined zigzag theory ». Composite Structures 163 (mars 2017) : 168–84. http://dx.doi.org/10.1016/j.compstruct.2016.12.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fares, M. E., et M. Kh Elmarghany. « A refined zigzag nonlinear first-order shear deformation theory of composite laminated plates ». Composite Structures 82, no 1 (janvier 2008) : 71–83. http://dx.doi.org/10.1016/j.compstruct.2006.12.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kutlu, Akif. « Mixed finite element formulation for bending of laminated beams using the refined zigzag theory ». Proceedings of the Institution of Mechanical Engineers, Part L : Journal of Materials : Design and Applications 235, no 7 (juillet 2021) : 1712–22. http://dx.doi.org/10.1177/14644207211018839.

Texte intégral
Résumé :
This study presents a mixed finite element formulation for the stress analysis of laminated composite beams based on the refined zigzag theory. The Hellinger–Reissner variational principle is employed to obtain the first variation of the functional that is expressed in terms of displacements and stress resultants. Due to C0 continuity requirements of the formulation, linear shape functions are adopted to discretize the straight beam domain with two-noded finite elements. The proposed formulation is shear locking free from nature since it introduces displacement and stress resultant terms as independent field variables. A monolithic solution of the global finite element equations is preferred, hence the stress resultants are directly obtained from the solution of these equations. The in-plane strain measures of the beam are obtained directly at the nodes over the compliance matrix and stress resultants by avoiding error-prone spatial derivatives. Following, transverse shear stresses are calculated from the equilibrium equations at the post-processing level. This simple but effective finite element formulation is first verified and tested for convergence behavior. The robustness of the approach is shown through some examples and its accuracy in predicting the displacement and stress components is revealed.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Iurlaro, Luigi, Alessia Ascione, Marco Gherlone, Massimiliano Mattone et Marco Di Sciuva. « Free vibration analysis of sandwich beams using the Refined Zigzag Theory : an experimental assessment ». Meccanica 50, no 10 (3 avril 2015) : 2525–35. http://dx.doi.org/10.1007/s11012-015-0166-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Dorduncu, Mehmet. « Stress analysis of laminated composite beams using refined zigzag theory and peridynamic differential operator ». Composite Structures 218 (juin 2019) : 193–203. http://dx.doi.org/10.1016/j.compstruct.2019.03.035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hasim, Kazim Ahmet, Adnan Kefal et Erdogan Madenci. « Isogeometric plate element for unstiffened and blade stiffened laminates based on refined zigzag theory ». Composite Structures 222 (août 2019) : 110931. http://dx.doi.org/10.1016/j.compstruct.2019.110931.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hasim, K. A., et A. Kefal. « Isogeometric static analysis of laminated plates with curvilinear fibers based on Refined Zigzag Theory ». Composite Structures 256 (janvier 2021) : 113097. http://dx.doi.org/10.1016/j.compstruct.2020.113097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Dorduncu, Mehmet. « Peridynamic modeling of adhesively bonded beams with modulus graded adhesives using refined zigzag theory ». International Journal of Mechanical Sciences 185 (novembre 2020) : 105866. http://dx.doi.org/10.1016/j.ijmecsci.2020.105866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Flores, Fernando G. « Implementation of the refined zigzag theory in shell elements with large displacements and rotations ». Composite Structures 118 (décembre 2014) : 560–70. http://dx.doi.org/10.1016/j.compstruct.2014.07.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Reid, Joel W., James A. Kaduk et Lidia Matei. « The crystal structure of MoO2(O2)H2O ». Powder Diffraction 33, no 1 (14 février 2018) : 49–54. http://dx.doi.org/10.1017/s0885715618000118.

Texte intégral
Résumé :
The crystal structure of MoO2(O2)H2O has been solved by analogy with the WO2(O2)H2O structure and refined with synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded monoclinic lattice parameters of a = 12.0417(4) Å, b = 3.87003(14) Å, c = 7.38390(24) Å, and β = 78.0843(11)° (Z = 4, space group P21/n). The structure is composed of double zigzag molybdate chains running parallel to the b-axis. The Rietveld refined structure was compared with density functional theory (DFT) calculations performed with CRYSTAL14, and show strong agreement with the DFT optimized structure.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Di Sciuva, M., M. Gherlone et M. Sorrenti. « Buckling analysis of angle-ply multilayered and sandwich plates using the enhanced Refined Zigzag Theory ». Proceedings of the Estonian Academy of Sciences 71, no 1 (2022) : 84. http://dx.doi.org/10.3176/proc.2022.1.08.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ascione, Alessia, Marco Gherlone et Adrian C. Orifici. « Nonlinear static analysis of composite beams with piezoelectric actuator patches using the Refined Zigzag Theory ». Composite Structures 282 (février 2022) : 115018. http://dx.doi.org/10.1016/j.compstruct.2021.115018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Iurlaro, Luigi, Marco Gherlone et Marco Di Sciuva. « Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag Theory ». Journal of Sandwich Structures & ; Materials 16, no 6 (26 août 2014) : 669–99. http://dx.doi.org/10.1177/1099636214548618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Versino, Daniele, Marco Gherlone et Marco Di Sciuva. « Four-node shell element for doubly curved multilayered composites based on the Refined Zigzag Theory ». Composite Structures 118 (décembre 2014) : 392–402. http://dx.doi.org/10.1016/j.compstruct.2014.08.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Iurlaro, Luigi, Marco Gherlone, Marco Di Sciuva et Alexander Tessler. « Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner’s Mixed Variational Theorem ». Composite Structures 133 (décembre 2015) : 809–17. http://dx.doi.org/10.1016/j.compstruct.2015.08.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Versino, Daniele, Marco Gherlone, Massimiliano Mattone, Marco Di Sciuva et Alexander Tessler. « C0 triangular elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates ». Composites Part B : Engineering 44, no 1 (janvier 2013) : 218–30. http://dx.doi.org/10.1016/j.compositesb.2012.05.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Gherlone, Marco, Alexander Tessler et Marco Di Sciuva. « C0 beam elements based on the Refined Zigzag Theory for multilayered composite and sandwich laminates ». Composite Structures 93, no 11 (octobre 2011) : 2882–94. http://dx.doi.org/10.1016/j.compstruct.2011.05.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Eijo, A., E. Oñate et S. Oller. « A four-noded quadrilateral element for composite laminated plates/shells using the refined zigzag theory ». International Journal for Numerical Methods in Engineering 95, no 8 (20 mai 2013) : 631–60. http://dx.doi.org/10.1002/nme.4503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Chen, Chung-De. « A distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory ». Smart Materials and Structures 27, no 4 (7 mars 2018) : 045009. http://dx.doi.org/10.1088/1361-665x/aaa725.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tessler, Alexander. « Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle ». Meccanica 50, no 10 (8 juillet 2015) : 2621–48. http://dx.doi.org/10.1007/s11012-015-0222-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Farhatnia, F., et M. Sarami. « Finite Element Approach of Bending and Buckling Analysis of FG Beams Based on Refined Zigzag Theory ». Universal Journal of Mechanical Engineering 7, no 4 (juillet 2019) : 147–58. http://dx.doi.org/10.13189/ujme.2019.070402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Oñate, E., A. Eijo et S. Oller. « Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory ». Computer Methods in Applied Mechanics and Engineering 213-216 (mars 2012) : 362–82. http://dx.doi.org/10.1016/j.cma.2011.11.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chen, Chung-De, et Po-Wen Su. « An analytical solution for vibration in a functionally graded sandwich beam by using the refined zigzag theory ». Acta Mechanica 232, no 11 (11 octobre 2021) : 4645–68. http://dx.doi.org/10.1007/s00707-021-03063-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Dorduncu, Mehmet. « Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory ». Thin-Walled Structures 146 (janvier 2020) : 106468. http://dx.doi.org/10.1016/j.tws.2019.106468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Iurlaro, L., M. Gherlone et M. Di Sciuva. « The (3,2)-Mixed Refined Zigzag Theory for generally laminated beams : Theoretical development and C0 finite element formulation ». International Journal of Solids and Structures 73-74 (novembre 2015) : 1–19. http://dx.doi.org/10.1016/j.ijsolstr.2015.07.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Sorrenti, M., M. Di Sciuva et A. Tessler. « A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory ». Computers & ; Structures 242 (janvier 2021) : 106369. http://dx.doi.org/10.1016/j.compstruc.2020.106369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Di Sciuva, Marco, Marco Gherlone, Luigi Iurlaro et Alexander Tessler. « A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory ». Composite Structures 132 (novembre 2015) : 784–803. http://dx.doi.org/10.1016/j.compstruct.2015.06.071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Barut, A., E. Madenci et A. Tessler. « C0-continuous triangular plate element for laminated composite and sandwich plates using the {2,2} – Refined Zigzag Theory ». Composite Structures 106 (décembre 2013) : 835–53. http://dx.doi.org/10.1016/j.compstruct.2013.07.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Reid, Joel W., James A. Kaduk et Lidia Matei. « The crystal structure of MoO2(O2)(H2O)·H2O ». Powder Diffraction 34, no 1 (7 février 2019) : 44–49. http://dx.doi.org/10.1017/s0885715619000095.

Texte intégral
Résumé :
The crystal structure of MoO2(O2)(H2O)·H2O has been solved using parallel tempering with the FOX software package and refined using synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded monoclinic lattice parameters of a = 17.3355(5) Å, b = 3.83342(10) Å, c = 6.55760(18) Å, and β = 91.2114(27)° (Z = 4, space group I2/m). The structure is composed of double zigzag molybdate chains running parallel to the b-axis. The Rietveld refined structure was compared with density functional theory (DFT) calculations performed with CRYSTAL14, and shows comparable agreement with two DFT optimized structures of similar energy, which differ by the location of the molybdate coordinated water molecule. The true structure is likely a disordered combination of the two DFT optimized structures.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ascione, Alessia, Adrian C. Orifici et Marco Gherlone. « Experimental and Numerical Investigation of the Refined Zigzag Theory for Accurate Buckling Analysis of Highly Heterogeneous Sandwich Beams ». International Journal of Structural Stability and Dynamics 20, no 07 (juillet 2020) : 2050078. http://dx.doi.org/10.1142/s0219455420500789.

Texte intégral
Résumé :
The Refined Zigzag Theory (RZT) is a structural theory developed for the analysis of composite multilayer and sandwich beams. However, the accuracy of RZT for buckling analysis of sandwich beams has not been experimentally investigated, and for RZT and Timoshenko Beam Theory (TBT) the effect of the degree of heterogeneity on their accuracy requires further study. The aim of this work was to validate the use of the RZT for predicting the critical buckling loads of sandwich beams, even with highly heterogeneous material properties, and to assess the use of the TBT for the same application. Buckling experiments were conducted on five foam-core sandwich beams, which varied in geometry and included highly heterogeneous configurations. For each beam, two finite element (FE) models were analyzed using RZT- and TBT-beam FEs. The comparison between the numerical and the experimental results highlighted a major capability of RZT to correctly predict the critical buckling load for all the beams considered. The dependence of the TBT results on the beam characteristics was further investigated through a parametric analysis, which showed the dominant effect to be a close to linear relationship between the TBT error and the beam face-to-core thickness ratio. The work demonstrated the outstanding accuracy of the RZT predictions, including the superior capabilities with respect to TBT, and has application for rapid and accurate analysis of industrial structures.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Honda, Shinya, Takahito Kumagai, Kazuya Tomihashi et Yoshihiro Narita. « Frequency maximization of laminated sandwich plates under general boundary conditions using layerwise optimization method with refined zigzag theory ». Journal of Sound and Vibration 332, no 24 (novembre 2013) : 6451–62. http://dx.doi.org/10.1016/j.jsv.2013.07.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Eijo, A., E. Oñate et S. Oller. « Delamination in laminated plates using the 4-noded quadrilateral QLRZ plate element based on the refined zigzag theory ». Composite Structures 108 (février 2014) : 456–71. http://dx.doi.org/10.1016/j.compstruct.2013.09.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Dorduncu, Mehmet, et M. Kemal Apalak. « Elastic flexural analysis of adhesively bonded similar and dissimilar beams using refined zigzag theory and peridynamic differential operator ». International Journal of Adhesion and Adhesives 101 (septembre 2020) : 102631. http://dx.doi.org/10.1016/j.ijadhadh.2020.102631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Singh, S. K., et A. Chakrabarti. « Static, Vibration and Buckling Analysis of Skew Composite and Sandwich Plates Under Thermo Mechanical Loading ». International Journal of Applied Mechanics and Engineering 18, no 3 (1 août 2013) : 887–98. http://dx.doi.org/10.2478/ijame-2013-0053.

Texte intégral
Résumé :
Abstract Static, vibration and buckling behavior of laminated composite and sandwich skew plates is studied using an efficient C0 FE model developed based on refined higher order zigzag theory. The C0 FE model satisfies the interlaminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and bottom. In this model, the first derivatives of transverse displacement have been treated as independent variables to overcome the problem of C1 continuity associated with the plate theory. The C0 continuity of the present element is compensated in the stiffness matrix formulation by adding a suitable term. In order to avoid stress oscillations observed in the displacement based finite element, the stress field derived from temperature is made consistent with the total strain field by using field consistent approach. Numerical results are presented for different static, vibration and buckling problems by applying the FE model under thermo mechanical loading, where a nine noded C0 continuous isoparametric element is used. It is observed that there are very few results available in the literature on laminated composite and sandwich skew plates based on refined theories. As such many new results are also generated for future reference
Styles APA, Harvard, Vancouver, ISO, etc.
44

Di Sciuva, M., et M. Sorrenti. « Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory ». Composite Structures 227 (novembre 2019) : 111324. http://dx.doi.org/10.1016/j.compstruct.2019.111324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Ghorbanpour Arani, A., M. Mosayyebi, F. Kolahdouzan, R. Kolahchi et M. Jamali. « Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 231, no 13 (14 septembre 2016) : 2464–78. http://dx.doi.org/10.1177/0954410016667150.

Texte intégral
Résumé :
Damped free vibration of carbon nanotube reinforced composite microplate bounded with piezoelectric sensor and actuator layers are investigated in this study. For the mathematical modeling of sandwich structure, the refined zigzag theory is applied. In addition, to present a realistic model, the material properties of system are supposed as viscoelastic based on Kelvin–Voigt model. Distributions of single-walled carbon nanotubes along the thickness direction of the viscoelastic carbon nanotube reinforced composite microplate are considered as four types of functionally graded distribution patterns. The viscoelastic functionally graded carbon nanotube reinforced composite microplate subjected to electromagnetic field is embedded in an orthotropic visco-Pasternak foundation. Hamilton’s principle is employed to establish the equations of motion. In order to calculate the frequency and damping ratio of sandwich plate, boundary condition of plate is assumed as simply-supported and an exact solution is used. The effects of some significant parameters such as damping coefficient of viscoelastic plates, volume fraction of carbon nanotubes, different types of functionally graded distributions of carbon nanotubes, magnetic field, and external voltage on the damped free vibration of system are investigated. Results clarify that considering viscoelastic property for system to achieve accurate results is essential. Furthermore, the effects of volume fraction and distribution type of carbon nanotubes are remarkable on the vibration of sandwich plate. In addition, electric and magnetic fields are considerable parameters to control the behavior of viscoelastic carbon nanotube reinforced composite microplate. It is hoped that the results of this study could be applied in design of nano/micromechanical sensor and actuator systems.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dey, S., T. Mukhopadhyay, S. Naskar, TK Dey, HD Chalak et S. Adhikari. « Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates ». Journal of Sandwich Structures & ; Materials 21, no 1 (1 juin 2017) : 366–97. http://dx.doi.org/10.1177/1099636217694229.

Texte intégral
Résumé :
This paper presents a generic multivariate adaptive regression splines-based approach for dynamics and stability analysis of sandwich plates with random system parameters. The propagation of uncertainty in such structures has significant computational challenges due to inherent structural complexity and high dimensional space of input parameters. The theoretical formulation is developed based on a refined C0 stochastic finite element model and higher-order zigzag theory in conjunction with multivariate adaptive regression splines. A cubical function is considered for the in-plane parameters as a combination of a linear zigzag function with different slopes at each layer over the entire thickness while a quadratic function is assumed for the out-of-plane parameters of the core and constant in the face sheets. Both individual and combined stochastic effect of skew angle, layer-wise thickness, and material properties (both core and laminate) of sandwich plates are considered in this study. The present approach introduces the multivariate adaptive regression splines-based surrogates for sandwich plates to achieve computational efficiency compared to direct Monte Carlo simulation. Statistical analyses are carried out to illustrate the results of the first three stochastic natural frequencies and buckling load.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Sorrenti, M., M. Di Sciuva, J. Majak et F. Auriemma. « Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method ». Mechanics of Composite Materials 57, no 1 (mars 2021) : 1–18. http://dx.doi.org/10.1007/s11029-021-09929-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kutlu, Akif, Mehmet Dorduncu et Timon Rabczuk. « A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates ». Composite Structures 267 (juillet 2021) : 113886. http://dx.doi.org/10.1016/j.compstruct.2021.113886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dorduncu, Mehmet, Akif Kutlu et Erdogan Madenci. « Triangular C0 continuous finite elements based on refined zigzag theory {2,2} for free and forced vibration analyses of laminated plates ». Composite Structures 281 (février 2022) : 115058. http://dx.doi.org/10.1016/j.compstruct.2021.115058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chen, Chung-De, et Wei-Lian Dai. « The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory ». Theoretical and Applied Fracture Mechanics 107 (juin 2020) : 102504. http://dx.doi.org/10.1016/j.tafmec.2020.102504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie