Articles de revues sur le sujet « Reductive reactions »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Reductive reactions.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Reductive reactions ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Koóš, Peter, Martin Markovič, Pavol Lopatka et Tibor Gracza. « Recent Applications of Continuous Flow in Homogeneous Palladium Catalysis ». Synthesis 52, no 23 (3 août 2020) : 3511–29. http://dx.doi.org/10.1055/s-0040-1707212.

Texte intégral
Résumé :
Considerable advances have been made using continuous flow chemistry as an enabling tool in organic synthesis. Consequently, the number of articles reporting continuous flow methods has increased significantly in recent years. This review covers the progress achieved in homogeneous palladium catalysis using continuous flow conditions over the last five years, including C–C/C–N cross-coupling reactions, carbonylations and reductive/oxidative transformations.1 Introduction2 C–C Cross-Coupling Reactions3 C–N Coupling Reactions4 Carbonylation Reactions5 Miscellaneous Reactions6 Key to Schematic Symbols7 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nicholas, Kenneth M., et Chandrasekhar Bandari. « Deoxygenative Transition-Metal-Promoted Reductive Coupling and Cross-Coupling of Alcohols and Epoxides ». Synthesis 53, no 02 (7 octobre 2020) : 267–78. http://dx.doi.org/10.1055/s-0040-1707269.

Texte intégral
Résumé :
AbstractThe prospective utilization of abundant, CO2-neutral, renewable feedstocks is driving the discovery and development of new reactions that refunctionalize oxygen-rich substrates such as alcohols and polyols through C–O bond activation. In this review, we highlight the development of transition-metal-promoted reactions of renewable alcohols and epoxides that result in carbon–carbon bond-formation. These include reductive self-coupling reactions and cross-coupling reactions of alcohols with alkenes and arene derivatives. Early approaches to reductive couplings employed stoichiometric amounts of low-valent transition-metal reagents to form the corresponding hydrocarbon dimers. More recently, the use of redox-active transition-metal catalysts together with a reductant has enhanced the practical applications and scope of the reductive coupling of alcohols. Inclusion of other reaction partners with alcohols such as unsaturated hydrocarbons and main-group organometallics has further expanded the diversity of carbon skeletons accessible and the potential for applications in chemical synthesis. Catalytic reductive coupling and cross-coupling reactions of epoxides are also highlighted. Mechanistic insights into the means of C–O activation and C–C bond formation, where available, are also highlighted.1 Introduction2 Stoichiometric Reductive Coupling of Alcohols3 Catalytic Reductive Coupling of Alcohols3.1 Heterogeneous Catalysis3.2 Homogeneous Catalysis4 Reductive Cross-Coupling of Alcohols4.1 Reductive Alkylation4.2 Reductive Addition to Olefins5 Epoxide Reductive Coupling Reactions6 Conclusions and Future Directions
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dutta, Lona, Atanu Mondal et S. S. V. Ramasastry. « Metal‐Free Reductive Aldol Reactions ». Asian Journal of Organic Chemistry 10, no 4 (10 mars 2021) : 680–91. http://dx.doi.org/10.1002/ajoc.202000693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pal, Sudipta, You-Yun Zhou et Christopher Uyeda. « Catalytic Reductive Vinylidene Transfer Reactions ». Journal of the American Chemical Society 139, no 34 (17 août 2017) : 11686–89. http://dx.doi.org/10.1021/jacs.7b05901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lin, Ivan J. B., Hayder A. Zahalka et Howard Alper. « Rhodium catalyzed reductive esterification reactions ». Tetrahedron Letters 29, no 15 (janvier 1988) : 1759–62. http://dx.doi.org/10.1016/s0040-4039(00)82035-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Anderson, James C., Alexander J. Blake, Paul J. Koovits et Gregory J. Stepney. « Diastereoselective Reductive Nitro-Mannich Reactions ». Journal of Organic Chemistry 77, no 10 (2 mai 2012) : 4711–24. http://dx.doi.org/10.1021/jo300535h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Werth, Jacob, Kristen Berger et Christopher Uyeda. « Cobalt Catalyzed Reductive Spirocyclopropanation Reactions ». Advanced Synthesis & ; Catalysis 362, no 2 (22 novembre 2019) : 348–52. http://dx.doi.org/10.1002/adsc.201901293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wang, Zhipeng A., Yan-Yu Liang et Ji-Shen Zheng. « Reductive Amination/Alkylation Reactions : The Recent Developments, Progresses, and Applications in Protein Chemical Biology Studies ». Current Organic Synthesis 15, no 6 (29 août 2018) : 755–61. http://dx.doi.org/10.2174/1570179415666180522093905.

Texte intégral
Résumé :
The chemical modifications of proteins or protein complexes have been a challenging but fruitful task in the post-genomic era. Bioorthogonal reactions play an important role for the purpose of selective functionalization, localization, and labeling of proteins with natural or non-natural structures. Among these reactions, reductive amination stands out as one of the typical bioorthogonal reactions with high efficiency, good biocompatibility, and versatile applications. However, not many specific reviews exist to discuss the mechanism, kinetics, and their applications in a detailed manner. In this manuscript, we aim to summarize some current developments and mechanistic studies of reductive amination reaction and its applications. We hope reductive amination reaction can contribute to a wider scope of protein chemistry research en route in the chemical biology frontier as one of the well-known bioorthogonal reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Paterson, Lorna A., Sandra E. Hill, John R. Mitchell et John M. V. Blanshard. « Sulphite and oxidative—reductive depolymerization reactions ». Food Chemistry 60, no 2 (octobre 1997) : 143–47. http://dx.doi.org/10.1016/s0308-8146(95)00253-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Donohoe, Timothy J., Karl W. Ace, Paul M. Guyo, Madeleine Helliwell et Jeffrey McKenna. « Reductive aldol reactions on aromatic heterocycles ». Tetrahedron Letters 41, no 7 (février 2000) : 989–93. http://dx.doi.org/10.1016/s0040-4039(99)02224-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Hawkins, Bill C., Paul A. Keller et Stephen G. Pyne. « Reductive ring opening reactions of diphenyldihydrofullerenylpyrroles ». Tetrahedron Letters 48, no 42 (octobre 2007) : 7533–36. http://dx.doi.org/10.1016/j.tetlet.2007.08.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Panfilov, A. V., Yu D. Markovich, I. P. Ivashev, A. A. Zhirov, A. F. Eleev, V. K. Kurochkin, A. T. Kirsanov et G. V. Nazarov. « Sodium borohydride in reductive amination reactions ». Pharmaceutical Chemistry Journal 34, no 2 (février 2000) : 76–78. http://dx.doi.org/10.1007/bf02524364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bochkarev, M. N., et L. V. Pankratov. « Principles of oxidative-reductive transmetallation reactions ». Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 36, no 8 (août 1987) : 1717–22. http://dx.doi.org/10.1007/bf00960141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Cadoux, Cécile, et Ross D. Milton. « Recent Enzymatic Electrochemistry for Reductive Reactions ». ChemElectroChem 7, no 9 (2 avril 2020) : 1974–86. http://dx.doi.org/10.1002/celc.202000282.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wu, Hongli, Shuo-Qing Zhang et Xin Hong. « Mechanisms of nickel-catalyzed reductive cross-coupling reactions ». Chemical Synthesis 3, no 4 (2023) : 39. http://dx.doi.org/10.20517/cs.2023.20.

Texte intégral
Résumé :
Nickel-catalyzed reductive cross-coupling (RCC) reactions using two carbon electrophiles as coupling partners provide one of the most reliable and straightforward protocols for facile construction of valuable C-C bonds in the realm of organic chemistry. In recent years, significant progress has been made in the methodological developments and mechanistic studies of these reactions. This review summarizes four widely accepted mechanisms for RCC reactions that have been proposed by experiments or density functional theory calculations. The major difference between these four types of mechanisms lies in the oxidation state of the active catalyst, the change in the valence of nickel during the catalytic cycle, the involvement of carbon radicals, and the form in which the radicals are present. Herein, we focus on covering representative advancements in experimental and theoretical mechanistic studies, aiming to offer vital mechanistic insights into key intermediates, reaction rates, the activation modes of electrophiles, rate- or selectivity-determining steps, and the origin of the cross-selectivity.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhou, You-Yun, et Christopher Uyeda. « Catalytic reductive [4 + 1]-cycloadditions of vinylidenes and dienes ». Science 363, no 6429 (21 février 2019) : 857–62. http://dx.doi.org/10.1126/science.aau0364.

Texte intégral
Résumé :
Cycloaddition reactions provide direct and convergent routes to cycloalkanes, making them valuable targets for the development of synthetic methods. Whereas six-membered rings are readily accessible from Diels-Alder reactions, cycloadditions that generate five-membered rings are comparatively limited in scope. Here, we report that dinickel complexes catalyze [4 + 1]-cycloaddition reactions of 1,3-dienes. The C1partner is a vinylidene equivalent generated from the reductive activation of a 1,1-dichloroalkene in the presence of stoichiometric zinc. Intermolecular and intramolecular variants of the reaction are described, and high levels of asymmetric induction are achieved in the intramolecular cycloadditions using aC2-symmetric chiral ligand that stabilizes a metal-metal bond.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Yuling, et Qinghua Ren. « DFT Study of the Mechanisms of Transition-Metal-Catalyzed Reductive Coupling Reactions ». Current Organic Chemistry 24, no 12 (22 septembre 2020) : 1367–83. http://dx.doi.org/10.2174/1385272824999200608135840.

Texte intégral
Résumé :
The mechanism studies of transition-metal-catalyzed reductive coupling reactions investigated using Density Functional Theory calculations in the recent ten years have been reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the methodology used in these computational mechanism studies. The mechanisms of the transition- metal-catalyzed reductive coupling reactions normally include three main steps: oxidative addition; transmetalation; and reductive elimination or four main steps: the first oxidative addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting step is most likely the final reductive elimination step in the whole mechanism. Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values. We hope that this review will stimulate more and more experimental and computational combinations and the computational chemistry will significantly contribute to the development of future organic synthesis reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Valdés, Carlos, Miguel Paraja et Manuel Plaza. « Transition-Metal-Free Reactions Between Boronic Acids and N-Sulfonylhydrazones or Diazo Compounds : Reductive Coupling Processes and Beyond ». Synlett 28, no 18 (22 août 2017) : 2373–89. http://dx.doi.org/10.1055/s-0036-1590868.

Texte intégral
Résumé :
The metal-free reaction between diazo compounds and boronic acids has been established in recent years as a powerful C(sp3)–C bond-forming reaction. This account covers the recent advances in this area. First, the various synthetic applications of reactions with N-sulfonylhydrazones as a convenient source of diazo compounds is discussed. These transformations can be regarded as reductive couplings of carbonyl compounds. Also covered is the incorporation of other mild sources of diazo compounds in these reactions: diazotization of amines and oxidation of hydrazones. Finally, the development of sequential and cascade processes is presented.1 Introduction2 Early Work: Reactions Between Alkylboranes and Diazo Compounds or N-Sulfonylhydrazones2.1 Reactions Between Alkylboranes and Diazo Compounds2.2 Reactions Between Alkylboranes and N-Sulfonylhydrazones3 Reactions of N-Sulfonylhydrazones and Diazo Compounds with Aryl and Alkylboronic Acids3.1 Reactions of Arylboroxines with Diazo Compounds3.2 Reductive Couplings of N-Sulfonylhydrazones with Aryl- and Alkylboronic Acids3.3 Three-Component Reactions Between α-Halotosylhydrazones, Boronic Acids and Indoles4 Reactions of N-Tosylhydrazones with Alkenylboronic Acids5 Synthesis of Allenes by Reactions with Alkynyl N-Nosylhydrazones6 Reactions with Diazo Compounds Generated by Diazotization of Primary Amines7 Reactions with Diazo Compounds Generated by Oxidation of ­Hydrazones8 Reactions with Trimethylsilyldiazomethane9 Cascade Cyclization Reactions with γ- and δ-Cyano-N-tosylhydrazones10 Summary and Outlook
Styles APA, Harvard, Vancouver, ISO, etc.
19

Shu, Xing-Zhong, Xiaobo Pang et Xuejing Peng. « Reductive Cross-Coupling of Vinyl Electrophiles ». Synthesis 52, no 24 (11 août 2020) : 3751–63. http://dx.doi.org/10.1055/s-0040-1707342.

Texte intégral
Résumé :
The synthesis of alkenes (olefins) is a central subject in the synthetic community. The transition-metal-catalyzed reductive cross-coupling of vinyl electrophiles has emerged as a promising tool to produce alkenes with improved flexibility, structural complexity, and functionality tolerance. In this review, we summarized the progress in this field with respect to cross-electrophile couplings and reductive Heck reactions using vinyl electrophiles.1 Introduction2 Cross-Electrophile Coupling of Vinyl Electrophiles3 Reductive Heck Reaction of Vinyl Electrophiles4 Summary and Outlook
Styles APA, Harvard, Vancouver, ISO, etc.
20

Rietveld, Patrick, L. David Arscott, Alan Berry, Nigel S. Scrutton, Mahendra P. Deonarain, Richard N. Perham et Charles H. Williams. « Reductive and Oxidative Half-Reactions of Glutathione Reductase from Escherichia coli ». Biochemistry 33, no 46 (novembre 1994) : 13888–95. http://dx.doi.org/10.1021/bi00250a043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Mitsudome, Takato. « Air-Stable and Highly Active Transition Metal Phosphide Catalysts for Reductive Molecular Transformations ». Catalysts 14, no 3 (12 mars 2024) : 193. http://dx.doi.org/10.3390/catal14030193.

Texte intégral
Résumé :
This review introduces transition metal phosphide nanoparticle catalysts as highly efficient and reusable heterogeneous catalysts for various reductive molecular transformations. These transformations include the hydrogenation of nitriles to primary amines, reductive amination of carbonyl compounds, and biomass conversion, specifically, the aqueous hydrogenation reaction of mono- and disaccharides to sugar alcohols. Unlike traditional air-unstable non-precious metal catalysts, these are stable in air, eliminating the need for strict anaerobic conditions or pre-reduction. Moreover, when combined with supports, metal phosphides exhibit significantly enhanced activity, demonstrating high activity, selectivity, and durability in these hydrogenation reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sarhan, Abd El-Wareth A. O. « [4 + 3]Cycloaddition Reactions : Synthesis of 9,10-Dimethoxy-9,10-propanoanthracen-12-ones ». Journal of Chemical Research 23, no 1 (janvier 1999) : 24–25. http://dx.doi.org/10.1177/174751989902300118.

Texte intégral
Résumé :
Cycloaddition of 9,10-dimethoxyanthracene (1) to tetrabromoacetone (2a) under a variety of conditions afforded isomers 3a,b; reductive debromination of 3a,b afforded 4, while reduction with NaBH4 gave alcohol 6 which on reductive debromination gave olefin 7; reaction of 1 with 2b gave isomers 8a,b.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Mikesell, Peter, Michael Schwaebe, Marcello DiMare, R. Daniel Little, Giuseppe Silvestri, André Tallec, Tatsuya Shono et H. Toftlund. « Electrochemical Reductive Coupling Reactions of Aliphatic Nitroalkenes. » Acta Chemica Scandinavica 53 (1999) : 792–99. http://dx.doi.org/10.3891/acta.chem.scand.53-0792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Tortajada, Andreu, Marino Börjesson et Ruben Martin. « Nickel-Catalyzed Reductive Carboxylation and Amidation Reactions ». Accounts of Chemical Research 54, no 20 (29 septembre 2021) : 3941–52. http://dx.doi.org/10.1021/acs.accounts.1c00480.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Nozawa-Kumada, Kanako, Shungo Ito, Koto Noguchi, Masanori Shigeno et Yoshinori Kondo. « Super electron donor-mediated reductive desulfurization reactions ». Chemical Communications 55, no 86 (2019) : 12968–71. http://dx.doi.org/10.1039/c9cc06775b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Poremba, Kelsey E., Sara E. Dibrell et Sarah E. Reisman. « Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions ». ACS Catalysis 10, no 15 (24 juin 2020) : 8237–46. http://dx.doi.org/10.1021/acscatal.0c01842.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhao, Gui-Ling, et Armando Córdova. « Direct organocatalytic asymmetric reductive Mannich-type reactions ». Tetrahedron Letters 47, no 42 (octobre 2006) : 7417–21. http://dx.doi.org/10.1016/j.tetlet.2006.08.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Klatte, Stephanie, Elisabeth Lorenz et Volker F. Wendisch. « Whole cell biotransformation for reductive amination reactions ». Bioengineered 5, no 1 (5 décembre 2013) : 56–62. http://dx.doi.org/10.4161/bioe.27151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Polidoro, Daniele, Daily Rodriguez-Padron, Alvise Perosa, Rafael Luque et Maurizio Selva. « Chitin-Derived Nanocatalysts for Reductive Amination Reactions ». Materials 16, no 2 (6 janvier 2023) : 575. http://dx.doi.org/10.3390/ma16020575.

Texte intégral
Résumé :
Chitin, the second most abundant biopolymer in the planet after cellulose, represents a renewable carbon and nitrogen source. A thrilling opportunity for the valorization of chitin is focused on the preparation of biomass-derived N-doped carbonaceous materials. In this contribution, chitin-derived N-doped carbons were successfully prepared and functionalized with palladium metal nanoparticles. The physicochemical properties of these nanocomposites were investigated following a multi-technique strategy and their catalytic activity in reductive amination reactions was explored. In particular, a biomass-derived platform molecule, namely furfural, was upgraded to valuable bi-cyclic compounds under continuous flow conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Anderson, James C., Alexander J. Blake, Paul J. Koovits et Gregory J. Stepney. « ChemInform Abstract : Diastereoselective Reductive Nitro-Mannich Reactions. » ChemInform 43, no 37 (16 août 2012) : no. http://dx.doi.org/10.1002/chin.201237038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Knappke, Christiane E. I., Sabine Grupe, Dominik Gärtner, Martin Corpet, Corinne Gosmini et Axel Jacobi von Wangelin. « Reductive Cross-Coupling Reactions between Two Electrophiles ». Chemistry - A European Journal 20, no 23 (13 mai 2014) : 6828–42. http://dx.doi.org/10.1002/chem.201402302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Baxter, R. M. « Reductive Dehalogenation of Environmental Contaminants : A Critical Review ». Water Quality Research Journal 24, no 2 (1 mai 1989) : 299–322. http://dx.doi.org/10.2166/wqrj.1989.018.

Texte intégral
Résumé :
Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Chitnis, Saurabh S., Alasdair P. M. Robertson, Neil Burford, Jan J. Weigand et Roland Fischer. « Synthesis and reactivity of cyclo-tetra(stibinophosphonium) tetracations : redox and coordination chemistry of phosphine–antimony complexes ». Chemical Science 6, no 4 (2015) : 2559–74. http://dx.doi.org/10.1039/c4sc03939d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Rayabarapu, Dinesh Kumar, et Chien-Hong Cheng. « Novel cyclization and reductive coupling of bicyclic olefins with alkyl propiolates catalyzed by nickel complexes ». Pure and Applied Chemistry 74, no 1 (1 janvier 2002) : 69–75. http://dx.doi.org/10.1351/pac200274010069.

Texte intégral
Résumé :
In this article, new metal-mediated cyclization and reductive coupling reactions of bicyclic olefins with alkynes are described. Oxabicyclic alkenes undergo cyclization with alkyl propiolates at 80 C catalyzed by nickel complexes to give benzocoumarin derivatives in high yields. The reaction of bicyclic alkenes (oxa- and azacyclic alkenes) with alkyl propiolates at room temperature in the presence of the same nickel complex gave 1,2-dihydro-napthelene derivatives in good-to-excellent yields. This reductive coupling reaction proceeds under very mild conditions in complete regio- and stereoselective fashion. A mechanism to account for the coumarin formation and the reductive coupling is proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Boll, Matthias, et Georg Fuchs. « Unusual reactions involved in anaerobic metabolism of phenolic compounds ». Biological Chemistry 386, no 10 (1 octobre 2005) : 989–97. http://dx.doi.org/10.1515/bc.2005.115.

Texte intégral
Résumé :
AbstractAerobic bacteria use molecular oxygen as a common co-substrate for key enzymes of aromatic metabolism. In contrast, in anaerobes all oxygen-dependent reactions are replaced by a set of alternative enzymatic processes. The anaerobic degradation of phenol to a non-aromatic product involves enzymatic processes that are uniquely found in the aromatic metabolism of anaerobic bacteria: (i) ATP-dependent phenol carboxylation to 4-hydroxybenzoate via a phenylphosphate intermediate (biological Kolbe-Schmitt carboxylation); (ii) reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA; and (iii) ATP-dependent reductive dearomatization of the key intermediate benzoyl-CoA in a ‘Birch-like’ reduction mechanism. This review summarizes the results of recent mechanistic studies of the enzymes involved in these three key reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Vorbeck, Claudia, Hiltrud Lenke, Peter Fischer, Jim C. Spain et Hans-Joachim Knackmuss. « Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene ». Applied and Environmental Microbiology 64, no 1 (1 janvier 1998) : 246–52. http://dx.doi.org/10.1128/aem.64.1.246-252.1998.

Texte intégral
Résumé :
ABSTRACT Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizingRhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Bacon, Mark, et W. John Ingledew. « The reductive reactions ofThiobacillus ferrooxidanson sulphur and selenium ». FEMS Microbiology Letters 58, no 2-3 (avril 1989) : 189–94. http://dx.doi.org/10.1111/j.1574-6968.1989.tb03042.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Chiu, Pauline, et Wing Chung. « Reductive Intramolecular Henry Reactions Induced by Stryker’s Reagent ». Synlett 2005, no 01 (29 novembre 2004) : 55–58. http://dx.doi.org/10.1055/s-2004-836044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Molander, Gary A., et Caryn Kenny. « Intramolecular reductive coupling reactions promoted by samarium diiodide ». Journal of the American Chemical Society 111, no 21 (octobre 1989) : 8236–46. http://dx.doi.org/10.1021/ja00203a027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Studer, Armido, et Stephan Amrein. « Tin Hydride Substitutes in Reductive Radical Chain Reactions ». Synthesis 2002, no 07 (2002) : 835–49. http://dx.doi.org/10.1055/s-2002-28507.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Donohoe, Timothy J., Karl W. Ace, Paul M. Guyo, Madeleine Helliwell et Jeffrey McKenna. « ChemInform Abstract : Reductive Aldol Reactions on Aromatic Heterocycles. » ChemInform 31, no 18 (8 juin 2010) : no. http://dx.doi.org/10.1002/chin.200018084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Fürstner, Alois. « Synthesis and Reductive Elimination Reactions of Aryl Thioglycosides ». Liebigs Annalen der Chemie 1993, no 11 (12 novembre 1993) : 1211–17. http://dx.doi.org/10.1002/jlac.1993199301196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Streuff, Jan. « Reductive Umpolung Reactions with Low-Valent Titanium Catalysts ». Chemical Record 14, no 6 (19 septembre 2014) : 1100–1113. http://dx.doi.org/10.1002/tcr.201402058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Czaplik, Waldemar M., Matthias Mayer et Axel Jacobi von Wangelin. « Iron-Catalyzed Reductive Aryl-Alkenyl Cross-Coupling Reactions ». ChemCatChem 3, no 1 (23 septembre 2010) : 135–38. http://dx.doi.org/10.1002/cctc.201000276.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Back, Thomas G. « ChemInform Abstract : Free-Radical Reactions and Reductive Deselenations ». ChemInform 31, no 32 (3 juin 2010) : no. http://dx.doi.org/10.1002/chin.200032234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Reichard, Holly A., Martin McLaughlin, Ming Z. Chen et Glenn C. Micalizio. « Regioselective Reductive Cross-Coupling Reactions of Unsymmetrical Alkynes ». European Journal of Organic Chemistry 2010, no 3 (janvier 2010) : 391–409. http://dx.doi.org/10.1002/ejoc.200901094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Boll, Matthias, Oliver Einsle, Ulrich Ermler, Peter M. H. Kroneck et G. Matthias Ullmann. « Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase ». Journal of Molecular Microbiology and Biotechnology 26, no 1-3 (2016) : 119–37. http://dx.doi.org/10.1159/000440805.

Texte intégral
Résumé :
In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis<i>-</i>pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg<sup>2+</sup> (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lin, Chia-Hsin, Bor-Cherng Hong et Gene-Hsiang Lee. « Asymmetric synthesis of functionalized pyrrolizidines by an organocatalytic and pot-economy strategy ». RSC Advances 6, no 10 (2016) : 8243–47. http://dx.doi.org/10.1039/c5ra25103f.

Texte intégral
Résumé :
An enantioselective synthesis of indolizidines was achieved with a one-step purification by sequential asymmetric Michael–oxidative esterification–Michael–reduction–reductive Mannich–amidation reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kisała, Joanna, Bogdan Stefan Vasile, Anton Ficai, Denisa Ficai, Renata Wojnarowska-Nowak et Tomasz Szreder. « Reductive Photodegradation of 4,4′-Isopropylidenebis(2,6-dibromophenol) on Fe3O4 Surface ». Materials 16, no 12 (14 juin 2023) : 4380. http://dx.doi.org/10.3390/ma16124380.

Texte intégral
Résumé :
Background: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. Methods: In this paper, the degradation of 4,4′-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. Results: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. Conclusions: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Salem, Mohammed A., Moustafa A. Gouda et Ghada G. El-Bana. « Chemistry of 2-(Piperazin-1-yl) Quinoline-3-Carbaldehydes ». Mini-Reviews in Organic Chemistry 19, no 4 (juin 2022) : 480–95. http://dx.doi.org/10.2174/1570193x18666211001124510.

Texte intégral
Résumé :
Abstract: This review described the preparation of 2- chloroquinoline-3-carbaldehyde derivatives 18 through Vilsmeier-Haack formylation of N-arylacetamides and the use of them as a key intermediate for the preparation of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. The synthesis of the 2- (piperazin-1-yl) quinolines derivatives was explained through the following chemical reactions: acylation, sulfonylation, Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot multicomponent reactions (MCRs), reductive amination, Grignard reaction and Kabachnik-Field’s reaction.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie