Articles de revues sur le sujet « REAL-TIME TASKS »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : REAL-TIME TASKS.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « REAL-TIME TASKS ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Udvanshi, Pankaj. « Scheduling of Real Time Tasks ». IOSR Journal of Engineering 03, no 6 (juin 2013) : 44–58. http://dx.doi.org/10.9790/3021-03624458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pandey, Ankush. « A Real Time Approach to Compute Distance between Objects for Automated Tasks ». Journal of Advanced Research in Dynamical and Control Systems 12, SP8 (30 juillet 2020) : 968–83. http://dx.doi.org/10.5373/jardcs/v12sp8/20202602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Oh, Y., et S. H. Son. « Scheduling Real-Time Tasks for Dependability ». Journal of the Operational Research Society 48, no 6 (juin 1997) : 629. http://dx.doi.org/10.2307/3010227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shin, Kang G., Tein-Hsiang Lin et Yann-Hang Lee. « Optimal Checkpointing of Real-Time Tasks ». IEEE Transactions on Computers C-36, no 11 (novembre 1987) : 1328–41. http://dx.doi.org/10.1109/tc.1987.5009472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Behrouzian, Amir, Hadi Alizadeh Ara, Marc Geilen, Dip Goswami et Twan Basten. « Firmness Analysis of Real-time Tasks ». ACM Transactions on Embedded Computing Systems 19, no 4 (16 juillet 2020) : 1–24. http://dx.doi.org/10.1145/3398328.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Oh, Y., et S. H. Son. « Scheduling real-time tasks for dependability ». Journal of the Operational Research Society 48, no 6 (juin 1997) : 629–39. http://dx.doi.org/10.1057/palgrave.jors.2600413.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Oh, Y., et S. H. Son. « Scheduling real-time tasks for dependability ». Journal of the Operational Research Society 48, no 6 (1997) : 629–39. http://dx.doi.org/10.1038/sj.jors.2600413.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Moron, Celio Estevan, et Hussein Zedan. « On guaranteeing hard real-time tasks ». Microprocessing and Microprogramming 38, no 1-5 (septembre 1993) : 485–90. http://dx.doi.org/10.1016/0165-6074(93)90185-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schwan, K., et H. Zhou. « Dynamic scheduling of hard real-time tasks and real-time threads ». IEEE Transactions on Software Engineering 18, no 8 (1992) : 736–48. http://dx.doi.org/10.1109/32.153383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Зинченко, Сергей Валериевич, et Валерий Петрович Зинченко. « THE SCHEDULING TASKS IN REAL-TIME SYSTEMS ». Information systems, mechanics and control, no 17 (29 décembre 2017) : 113–23. http://dx.doi.org/10.20535/2219-3804172017123927.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Allen, R. K., A. Burns et A. J. Wellings. « Sporadic tasks in hard real-time systems ». ACM SIGAda Ada Letters XV, no 5 (septembre 1995) : 46–51. http://dx.doi.org/10.1145/221309.221313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Weiping Zhu. « Allocating Soft Real-Time Tasks on Cluster ». SIMULATION 77, no 5-6 (novembre 2001) : 219–29. http://dx.doi.org/10.1177/003754970107700507.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mok, A. K., et D. Chen. « A multiframe model for real-time tasks ». IEEE Transactions on Software Engineering 23, no 10 (1997) : 635–45. http://dx.doi.org/10.1109/32.637146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Chantem, T., Xiaobo Sharon Hu et M. D. Lemmon. « Generalized Elastic Scheduling for Real-Time Tasks ». IEEE Transactions on Computers 58, no 4 (avril 2009) : 480–95. http://dx.doi.org/10.1109/tc.2008.175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wedde, Horst F., Sabine Böhm et Wolfgang Freund. « Real-time Transactions Need Their Constituting Tasks ». IFAC Proceedings Volumes 34, no 22 (novembre 2001) : 277–82. http://dx.doi.org/10.1016/s1474-6670(17)32951-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Altenbernd, P., et C. Ditze. « Allocation of Periodic Hard Real-Time Tasks ». IFAC Proceedings Volumes 29, no 6 (novembre 1996) : 197–204. http://dx.doi.org/10.1016/s1474-6670(17)43764-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Pospischil, G., P. Puschner, A. Vrchoticky et R. Zainlinger. « Developing real-time tasks with predictable timing ». IEEE Software 9, no 5 (septembre 1992) : 35–44. http://dx.doi.org/10.1109/52.156895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

LEE, W. Y. « Optimal Scheduling for Real-Time Parallel Tasks ». IEICE Transactions on Information and Systems E89-D, no 6 (1 juin 2006) : 1962–66. http://dx.doi.org/10.1093/ietisy/e89-d.6.1962.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hong, K. S., et J. Y. T. Leung. « On-line scheduling of real-time tasks ». IEEE Transactions on Computers 41, no 10 (1992) : 1326–31. http://dx.doi.org/10.1109/12.166609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Gerber, R., W. Pugh et M. Saksena. « Parametric dispatching of hard real-time tasks ». IEEE Transactions on Computers 44, no 3 (mars 1995) : 471–79. http://dx.doi.org/10.1109/12.372041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Jackson, L. E., et G. N. Rouskas. « Deterministic preemptive scheduling of real-time tasks ». Computer 35, no 5 (mai 2002) : 72–79. http://dx.doi.org/10.1109/mc.2002.999778.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Reimann, Sven, Wei Wu et Steven Liu. « Real-Time Scheduling of PI Control Tasks ». IEEE Transactions on Control Systems Technology 24, no 3 (mai 2016) : 1118–25. http://dx.doi.org/10.1109/tcst.2015.2464304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Hwang, Chi‐Pan, et Cheng‐Seen Ho. « Hardware design of a real‐time Petri net model for real‐time tasks ». Journal of the Chinese Institute of Engineers 18, no 4 (juin 1995) : 481–92. http://dx.doi.org/10.1080/02533839.1995.9677713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Patel, Dinkan, et Anjuman Ranavadiya. « REVIEW OF TASK SCHEDULING METHODS FOR REAL TIME TASKS IN CLOUD ENVIRONMENT ». International Journal of Engineering Technologies and Management Research 5, no 1 (7 février 2020) : 85–89. http://dx.doi.org/10.29121/ijetmr.v5.i1.2018.50.

Texte intégral
Résumé :
Cloud Computing is a type of Internet model that enables convenient, on-demand resources that can be used rapidly and with minimum effort. Cloud Computing can be IaaS, PaaS or SaaS. Scheduling of these tasks is important so that resources can be utilized efficiently with minimum time which in turn gives better performance. Real time tasks require dynamic scheduling as tasks cannot be known in advance as in static scheduling approach. There are different task scheduling algorithms that can be utilized to increase the performance in real time and performing these on virtual machines can prove to be useful. Here a review of various task scheduling algorithms is done which can be used to perform the task and allocate resources so that performance can be increased.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wu, Jian Lang, Jing Kai Shi et Yi Bin Wang. « Analysis on Scheduling Algorithms of Real-Time Hybrid Tasks ». Applied Mechanics and Materials 644-650 (septembre 2014) : 2253–57. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.2253.

Texte intégral
Résumé :
In real-time systems, periodic tasks and aperiodic tasks exist simultaneously. In a uniprocessor system, mainly there are Deferrable Server algorithm (DS) [1], Slack Stealing algorithm (SSA) [2] and their extended version for software/hardware hybrid real-time task scheduling. DS algorithm sets a high priority periodic task server to provide services for aperiodic tasks, while SSA algorithm computes tasks unoccupied time offline, and then schedule aperiodic tasks during the unoccupied period. The two algorithms are both proposed for soft real-time tasks, reducing the response time of the real-time tasks, but cannot guarantee that these aperiodic real-time tasks received can meet deadlines. In this paper, through combination of DS algorithm and EDF (Earliest Deadline First) algorithm [6], a new algorithm called DS-EDF is introduced, which can scheduling hard real-time aperiodic tasks on the DS server. This algorithm is not only suitable for uniprocessor systems, but also has the ability to extend to multiprocessor systems.
Styles APA, Harvard, Vancouver, ISO, etc.
26

LEE, Wan Yeon, Kyungwoo LEE, Kyong Hoon KIM et Young Woong KO. « Processor-Minimum Scheduling of Real-Time Parallel Tasks ». IEICE Transactions on Information and Systems E92-D, no 4 (2009) : 723–26. http://dx.doi.org/10.1587/transinf.e92.d.723.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Gong, Min-Sik, Gun-Jae Jeong, Ye-Jin Song, Myoung-Jo Jung, Moon-Haeng Cho et Cheol-Hoon Lee. « Power-Aware Scheduling for Mixed Real-Time Tasks ». Journal of the Korea Contents Association 7, no 1 (28 janvier 2007) : 83–93. http://dx.doi.org/10.5392/jkca.2007.7.1.083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Hamidzadeb, B., et Y. Atif. « Dynamic scheduling of real-time tasks, by assignment ». IEEE Concurrency 6, no 4 (octobre 1998) : 14–25. http://dx.doi.org/10.1109/4434.736402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zhong, Xiliang, et Cheng-Zhong Xu. « System-wide energy minimization for real-time tasks ». ACM Transactions on Embedded Computing Systems 7, no 3 (avril 2008) : 1–24. http://dx.doi.org/10.1145/1347375.1347381.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lei, Zhenyang, Xiangdong Lei et Jun Long. « Real-Time Scheduling Parallel Tasks on Multicore Platforms ». Journal of Physics : Conference Series 1673 (novembre 2020) : 012002. http://dx.doi.org/10.1088/1742-6596/1673/1/012002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Cheng, Albert Mo Kim, et Chen Feng. « Predictive thermal management for hard real-time tasks ». ACM SIGBED Review 3, no 1 (janvier 2006) : 35–40. http://dx.doi.org/10.1145/1279711.1279719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Dertouzos, M. L., et A. K. Mok. « Multiprocessor online scheduling of hard-real-time tasks ». IEEE Transactions on Software Engineering 15, no 12 (1989) : 1497–506. http://dx.doi.org/10.1109/32.58762.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Aydin, H., R. Melhem, D. Mosse et P. Mejia-Alvarez. « Power-aware scheduling for periodic real-time tasks ». IEEE Transactions on Computers 53, no 5 (mai 2004) : 584–600. http://dx.doi.org/10.1109/tc.2004.1275298.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Levitin, Gregory, Liudong Xing et Hanoch Ben-Haim. « Optimizing software rejuvenation policy for real time tasks ». Reliability Engineering & ; System Safety 176 (août 2018) : 202–8. http://dx.doi.org/10.1016/j.ress.2018.04.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bhuiyan, Ashikahmed, Zhishan Guo, Abusayeed Saifullah, Nan Guan et Haoyi Xiong. « Energy-Efficient Real-Time Scheduling of DAG Tasks ». ACM Transactions on Embedded Computing Systems 17, no 5 (22 novembre 2018) : 1–25. http://dx.doi.org/10.1145/3241049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Park, Moonju, et Yookun Cho. « Feasibility analysis of hard real-time periodic tasks ». Journal of Systems and Software 73, no 1 (septembre 2004) : 89–100. http://dx.doi.org/10.1016/s0164-1212(03)00236-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Eker, Johan, Per Hagander et Karl-Erik Årzén. « A feedback scheduler for real-time controller tasks ». Control Engineering Practice 8, no 12 (décembre 2000) : 1369–78. http://dx.doi.org/10.1016/s0967-0661(00)00086-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wu, Yue, Li-san Tang et Hong-bin Yang. « Overload problem research on aperiodic real-time tasks ». Journal of Shanghai University (English Edition) 13, no 2 (avril 2009) : 136–41. http://dx.doi.org/10.1007/s11741-009-0209-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Drozdowski, Maciej. « Real-time scheduling of linear speedup parallel tasks ». Information Processing Letters 57, no 1 (janvier 1996) : 35–40. http://dx.doi.org/10.1016/0020-0190(95)00174-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Di Natale, M., et J. A. Stankovic. « Scheduling distributed real-time tasks with minimum jitter ». IEEE Transactions on Computers 49, no 4 (avril 2000) : 303–16. http://dx.doi.org/10.1109/12.844344.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ripoll, Ismael, Alfons Crespo et Aloysius K. Mok. « Improvement in feasibility testing for real-time tasks ». Real-Time Systems 11, no 1 (juillet 1996) : 19–39. http://dx.doi.org/10.1007/bf00365519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Schmid, Ulrich. « Static priority scheduling of aperiodic real-time tasks ». Random Structures and Algorithms 10, no 1-2 (janvier 1997) : 257–303. http://dx.doi.org/10.1002/(sici)1098-2418(199701/03)10:1/2<257 ::aid-rsa13>3.0.co;2-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Jing, Zheng Luo, David Ferry, Kunal Agrawal, Christopher Gill et Chenyang Lu. « Global EDF scheduling for parallel real-time tasks ». Real-Time Systems 51, no 4 (28 octobre 2014) : 395–439. http://dx.doi.org/10.1007/s11241-014-9213-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Singh, Abhishek, Pontus Ekberg et Sanjoy Baruah. « Uniprocessor scheduling of real-time synchronous dataflow tasks ». Real-Time Systems 55, no 1 (21 mai 2018) : 1–31. http://dx.doi.org/10.1007/s11241-018-9310-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gharbi, Atef, Hamza Gharsellaoui et Mohamed Khalgui. « Real-Time Reconfigurations of Embedded Control Systems ». International Journal of System Dynamics Applications 5, no 3 (juillet 2016) : 71–93. http://dx.doi.org/10.4018/ijsda.2016070104.

Texte intégral
Résumé :
This paper deals with the study of the reconfiguration of embedded control systems with safety following component-based approaches from the functional level to the operational level. The authors define the architecture of the Reconfiguration Agent which is modelled by nested state machines to apply local reconfigurations. They propose in this journal paper technical solutions to implement the whole agent-based architecture, by defining UML meta-models for both Control Components and also agents. To guarantee safety reconfigurations of tasks at run-time, they define service and reconfiguration processes for tasks and use the semaphore concept to ensure safety mutual exclusions. As a method to ensure the scheduling between periodic tasks with precedence and mutual exclusion constraints, the authors apply the priority ceiling protocol.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Missimer, Katherine, Manos Athanassoulis et Richard West. « Telomere : Real-Time NAND Flash Storage ». ACM Transactions on Embedded Computing Systems 21, no 1 (31 janvier 2022) : 1–24. http://dx.doi.org/10.1145/3479157.

Texte intégral
Résumé :
Modern solid-state disks achieve high data transfer rates due to their massive internal parallelism. However, out-of-place updates for flash memory incur garbage collection costs when valid data needs to be copied during space reclamation. The root cause of this extra cost is that solid-state disks are not always able to accurately determine data lifetime and group together data that expires before the space needs to be reclaimed. Real-time systems found in autonomous vehicles, industrial control systems, and assembly-line robots store data from hundreds of sensors and often have predictable data lifetimes. These systems require guaranteed high storage bandwidth for read and write operations by mission-critical real-time tasks. In this article, we depart from the traditional block device interface to guarantee the high throughput needed to process large volumes of data. Using data lifetime information from the application layer, our proposed real-time design, called Telomere , is able to intelligently lay out data in NAND flash memory and eliminate valid page copies during garbage collection. Telomere’s real-time admission control is able to guarantee tasks their required read and write operations within their periods. Under randomly generated tasksets containing 500 tasks, Telomere achieves 30% higher throughput with a 5% storage cost compared to pre-existing techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lei, Zhenyang, Xiangdong Lei et Jun Long. « Memory-Aware Scheduling Parallel Real-Time Tasks for Multicore Systems ». International Journal of Software Engineering and Knowledge Engineering 31, no 04 (avril 2021) : 613–34. http://dx.doi.org/10.1142/s0218194021400106.

Texte intégral
Résumé :
Shared resources on the multicore chip, such as main memory, are increasingly becoming a point of contention. Traditional real-time task scheduling policies focus on solely on the CPU, and do not take in account memory access and cache effects. In this paper, we propose parallel real-time tasks scheduling (PRTTS) policy on multicore platforms. Each set of tasks is represented as a directed acyclic graph (DAG). The priorities of tasks are assigned according to task periods Rate Monotonic (RM). Each task is composed of three phases. The first phase is read memory stage, the second phase is execution phase and the third phase is write memory phase. The tasks use locks and critical sections to protect data access. The global scheduler maintains the task pool in which tasks are ready to be executed which can run on any core. PRTTS scheduling policy consists of two levels: the first level scheduling schedules ready real-time tasks in the task pool to cores, and the second level scheduling schedules real-time tasks on cores. Tasks can preempt the core on running tasks of low priority. The priorities of tasks which want to access memory are dynamically increased above all tasks that do not access memory. When the data accessed by a task is in the cache, the priority of the task is raised to the highest priority, and the task is scheduled immediately to preempt the core on running the task not accessing memory. After accessing memory, the priority of these tasks is restored to the original priority and these tasks are pended, the preempted task continues to run on the core. This paper analyzes the schedulability of PRTTS scheduling policy. We derive an upper-bound on the worst-case response-time for parallel real-time tasks. A series of extensive simulation experiments have been performed to evaluate the performance of proposed PRTTS scheduling policy. The results of simulation experiment show that PRTTS scheduling policy offers better performance in terms of core utilization and schedulability rate of tasks.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Fu, Chun Yan, Hong Zhou, Mao Song Ge, Xiao Qu et Yong Li Wang. « A Quasi-Real-Time MapReduce Schedule Algorithm ». Advanced Materials Research 694-697 (mai 2013) : 2458–61. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.2458.

Texte intégral
Résumé :
In this paper, we extend and rewrite MapReduce dispatcher and its quasi-real-time schedule algorithm to support operation scheduling in time-limited. MapReduce dispatcher has an evaluation of completion time of tasks in dependence of rate of progress of tasks at hand, and allocated resource dynamically to every task when they are running. Experimental investigation shows that, the algorithm increase the resource utilization of the MapReduce system, and the goals of quasi-real-time MapReduce schedule has been achieved.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Da-Ren, Chen, Chen Young-Long et Chen You-Shyang. « Time and Energy Efficient DVS Scheduling for Real-Time Pinwheel Tasks ». Journal of Applied Research and Technology 12, no 6 (décembre 2014) : 1025–39. http://dx.doi.org/10.1016/s1665-6423(14)71663-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Koh, Jae-Hwan, et Byoung-Wook Choi. « On Benchmarking of Real-time Mechanisms in Various Periodic Tasks for Real-time Embedded Linux ». Journal of Korea Robotics Society 7, no 4 (30 novembre 2012) : 292–98. http://dx.doi.org/10.7746/jkros.2012.7.4.292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie