Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Reactive processes.

Articles de revues sur le sujet « Reactive processes »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Reactive processes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Stichlmair, Johann, et Thomas Frey. « Reactive Distillation Processes ». Chemical Engineering & ; Technology 22, no 2 (février 1999) : 95–103. http://dx.doi.org/10.1002/(sici)1521-4125(199902)22:2<95 ::aid-ceat95>3.0.co;2-#.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Georgievska, Sonja, et Suzana Andova. « Testing Reactive Probabilistic Processes ». Electronic Proceedings in Theoretical Computer Science 28 (26 juin 2010) : 99–113. http://dx.doi.org/10.4204/eptcs.28.7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Noeres, C., E. Y. Kenig et A. Górak. « Modelling of reactive separation processes : reactive absorption and reactive distillation ». Chemical Engineering and Processing : Process Intensification 42, no 3 (mars 2003) : 157–78. http://dx.doi.org/10.1016/s0255-2701(02)00086-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kaminski, Clemens. « Fluorescence Imaging of Reactive Processes ». Zeitschrift für Physikalische Chemie 219, no 6-2005 (juin 2005) : 747–74. http://dx.doi.org/10.1524/zpch.219.6.747.65706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jarrett, Matthew A., Ansley Tullos Gilpin, Jillian M. Pierucci et Ana T. Rondon. « Cognitive and reactive control processes ». International Journal of Behavioral Development 40, no 1 (10 mars 2015) : 53–57. http://dx.doi.org/10.1177/0165025415575625.

Texte intégral
Résumé :
Attention-deficit/hyperactivity disorder (ADHD) can be identified in the preschool years, but little is known about the correlates of ADHD symptoms in preschool children. Research to date suggests that factors such as temperament, personality, and neuropsychological functioning may be important in understanding the development of early ADHD symptomatology. The current study sought to extend this research by examining how cognitive and reactive control processes predict ADHD symptoms. Data were drawn from a larger study that measured the cognitive, social, and emotional functioning of preschool children. Eighty-seven children (aged 4–6 years) were evaluated using teacher report and laboratory task measures relevant to cognitive control (i.e., conscientiousness, working memory) and reactive control (i.e., neuroticism, delay of gratification) processes. In multiple regression analyses, cognitive control variables added unique variance in the prediction of both inattention and hyperactivity, but only reactive control variables added unique variance in the prediction of hyperactivity. The current findings align with past research suggesting that cognitive control processes (e.g., conscientiousness) are related to both inattention and hyperactivity/impulsivity, while reactive control processes (e.g., neuroticism) are more strongly related to hyperactivity/impulsivity in preschool children. Future longitudinal research utilizing various methods and measures is needed to understand how cognitive and reactive control processes contribute to ADHD symptom development.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ruiz, Gerardo, Misael Diaz et Lakshmi N. Sridhar. « Singularities in Reactive Separation Processes ». Industrial & ; Engineering Chemistry Research 47, no 8 (avril 2008) : 2808–16. http://dx.doi.org/10.1021/ie0716159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sproul, W. D., D. J. Christie et D. C. Carter. « Control of reactive sputtering processes ». Thin Solid Films 491, no 1-2 (novembre 2005) : 1–17. http://dx.doi.org/10.1016/j.tsf.2005.05.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ramesh, S. « Implementation of communicating reactive processes ». Parallel Computing 25, no 6 (juin 1999) : 703–27. http://dx.doi.org/10.1016/s0167-8191(99)00013-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Secco, Carolinne, Maria Eduarda Kounaris Fuziki, Angelo Marcelo Tusset et Giane Gonçalves Lenzi. « Reactive Processes for H2S Removal ». Energies 16, no 4 (10 février 2023) : 1759. http://dx.doi.org/10.3390/en16041759.

Texte intégral
Résumé :
Growing demand for renewables and sustainable energy production contributes to a growing interest in producing high quality biomethane from biogas. Despite having methane (CH4) as its main component, biogas may also present other noncombustible substances in its composition, i.e., carbon dioxide (CO2), nitrogen (N2) and hydrogen sulfide (H2S). Contaminant gases, such as CO2 and H2S, are impurities known for being the main causes for the decrease of biogas calorific value and corrosion, wear of pipes, and engines, among others. Thus, it is necessary to remove these compounds from the biogas before it can be used in applications such as electricity production, thermal purposes, and replacement of conventional fossil fuels in vehicles, as well as injection into natural gas distribution networks. In this context, the present work aimed to present a systematic review of the literature using the multicriteria Methodi Ordinatio methodology and to describe processes and materials for H2S removal. The discussion indicated new materials used, as well as the advantages and disadvantages observed and the limitations in industrial implementation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Berry, David A., et Ka M. Ng. « Synthesis of reactive crystallization processes ». AIChE Journal 43, no 7 (juillet 1997) : 1737–50. http://dx.doi.org/10.1002/aic.690430711.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Köhler, Theresia, Andrea Gutacker et Esteban Mejía. « Industrial synthesis of reactive silicones : reaction mechanisms and processes ». Organic Chemistry Frontiers 7, no 24 (2020) : 4108–20. http://dx.doi.org/10.1039/d0qo01075h.

Texte intégral
Résumé :
Silicones are used in many applications, from consumer products to medicinal and electronic devices. In this review we describe the most relevant reactions and industrial processes to furnish them, focusing specially on OH-terminated polysiloxanes.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Meuwly, Markus. « Quantitative Atomistic Simulations of Reactive and Non-Reactive Processes ». CHIMIA International Journal for Chemistry 68, no 9 (24 septembre 2014) : 592–95. http://dx.doi.org/10.2533/chimia.2014.592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

von Sonntag, C. « Advanced oxidation processes : mechanistic aspects ». Water Science and Technology 58, no 5 (1 septembre 2008) : 1015–21. http://dx.doi.org/10.2166/wst.2008.467.

Texte intégral
Résumé :
The reactive intermediate in Advanced Oxidation Processes (AOPs) is the •OH radical. It may be generated by various approaches such as the Fenton reaction (Fe2 + /H2O2), photo-Fenton reaction (Fe3 + /H2O2/hν), UV/H2O2, peroxone reaction (O3/H2O2), O3/UV, O3/activated carbon, O3/dissolved organic carbon (DOC) of water matrix, ionizing radiation, vacuum UV, and ultrasound. The underlying reactions and •OH formation efficiencies are discussed. The key reactions of •OH radicals also addressed in this review.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Compiani, Mario, Teresa Fonseca, Paolo Grigolini et Roberto Serra. « Theory of activated reaction processes : Non-linear coupling between reactive and non-reactive modes ». Chemical Physics Letters 114, no 5-6 (mars 1985) : 503–6. http://dx.doi.org/10.1016/0009-2614(85)85129-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Erban, Radek, et S. Jonathan Chapman. « Reactive boundary conditions for stochastic simulations of reaction–diffusion processes ». Physical Biology 4, no 1 (14 février 2007) : 16–28. http://dx.doi.org/10.1088/1478-3975/4/1/003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Deng, Hang, et Nicolas Spycher. « Modeling Reactive Transport Processes in Fractures ». Reviews in Mineralogy and Geochemistry 85, no 1 (1 septembre 2019) : 49–74. http://dx.doi.org/10.2138/rmg.2019.85.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Covas, J. A., et A. V. Machado. « Monitoring Reactive Processes along the Extruder ». International Polymer Processing 20, no 2 (mai 2005) : 121–27. http://dx.doi.org/10.3139/217.1871.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Agmon, Noam. « Viscosity expansions in reactive diffusion processes ». Journal of Chemical Physics 90, no 7 (avril 1989) : 3765–75. http://dx.doi.org/10.1063/1.456650.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Pavlov, O. S., N. N. Kulov et S. Yu Pavlov. « New design of reactive distillation processes ». Theoretical Foundations of Chemical Engineering 43, no 6 (décembre 2009) : 856–60. http://dx.doi.org/10.1134/s0040579509060025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ghaemi, Ahad, Shahrokh Shahhosseini et Mohammad Ghanadi Maragheh. « NONEQUILIBRIUM MODELING OF REACTIVE ABSORPTION PROCESSES ». Chemical Engineering Communications 196, no 9 (7 mai 2009) : 1076–89. http://dx.doi.org/10.1080/00986440902897319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Foudrinier, E., C. Venet et L. Silva. « 3D Computation of reactive moulding processes ». International Journal of Material Forming 1, S1 (avril 2008) : 735–38. http://dx.doi.org/10.1007/s12289-008-0280-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kenig, E. Y., L. Kucka et A. Górak. « Rigorous Modeling of Reactive Absorption Processes ». Chemical Engineering & ; Technology 26, no 6 (4 juin 2003) : 631–46. http://dx.doi.org/10.1002/ceat.200390096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Frederick, Mark D., Rohan M. Gejji, Joseph E. Shepherd et Carson D. Slabaugh. « Reactive processes following transverse wave interaction ». Proceedings of the Combustion Institute 40, no 1-4 (2024) : 105552. http://dx.doi.org/10.1016/j.proci.2024.105552.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

ALBANO, EZEQUIEL V. « DAMAGE HEALING IN SINGLE COMPONENT IRREVERSIBLE REACTION PROCESSES ». Modern Physics Letters B 09, no 09 (20 avril 1995) : 565–71. http://dx.doi.org/10.1142/s0217984995000516.

Texte intégral
Résumé :
The spreading of a globally distributed damage, created in the stationary regime, is studied in single component irreversible reaction processes on one-dimensional lattices. Each model exhibits an irreversible phase transition between a stationary reactive state and an inactive (absorbing) state. It is found that the processes are immune in the sense that even 100% of initial damage is healed within a finite healing period (T H ). Within the reactive regime, T H diverges when approaching criticality and the corresponding exponent is independent of the process, i.e. it seems to be universal for one-component systems.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Tasleem, Shuwana. « Intensification of an Irreversible Process using Reactive Distillation– Feasibility Studies by Residue Curve Mapping ». International Journal for Research in Applied Science and Engineering Technology 9, no 11 (30 novembre 2021) : 1704–10. http://dx.doi.org/10.22214/ijraset.2021.39104.

Texte intégral
Résumé :
Abstract: Reactive distillation processes are very promising in substituting Sconventional liquid phase reaction processes. However this technology is not suitable for all kind of processes or types of reaction. Therefore, assessing the feasibility of these process concepts forms an important area in current and future research and development activities. The present paper focuses on the feasibility studies based on the construction of residue curve maps for the toluene methylation system. The RCMs were constructed and analyzed; it is concluded that the process of synthesis of xylenes when carried out in the reactive distillation column enhances the selectivity of the desired para isomer. Keywords: Reactive Distillation, Residue Curve Maps, Feasibility Study, Toluene Methylation, Aspen Plus
Styles APA, Harvard, Vancouver, ISO, etc.
26

Teixeira, O. B. M., P. J. S. B. Caridade, V. C. Mota, J. M. Garcia de la Vega et A. J. C. Varandas. « Dynamics of the O + ClO Reaction : Reactive and Vibrational Relaxation Processes ». Journal of Physical Chemistry A 118, no 51 (11 décembre 2014) : 12120–29. http://dx.doi.org/10.1021/jp511498r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wang, Jianlong, et Shizong Wang. « Reactive species in advanced oxidation processes : Formation, identification and reaction mechanism ». Chemical Engineering Journal 401 (décembre 2020) : 126158. http://dx.doi.org/10.1016/j.cej.2020.126158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Park, Cheolwoong, et Stephen Busch. « The influence of pilot injection on high-temperature ignition processes and early flame structure in a high-speed direct injection diesel engine ». International Journal of Engine Research 19, no 6 (4 septembre 2017) : 668–81. http://dx.doi.org/10.1177/1468087417728630.

Texte intégral
Résumé :
Simultaneous high-speed natural luminosity and OH* chemiluminescence imaging is used to characterize high-temperature ignition processes in conventional diesel combustion with a pilot-main injection strategy in a single-cylinder, light-duty optical diesel engine. High-speed imaging provides temporally and spatially resolved information in terms of high-temperature ignition processes and flame structure during the combustion. Using these imaging measurements, the high-temperature inflammation and the diffusion flame development processes are analyzed. The chemiluminescence signal shows a hot, reactive mixture, which gradually decreases after the peak release of the pilot combustion and lasts long after the apparent heat release has ended. Therefore, when the reactive pilot mixture exists near the main injection jets, the high-temperature ignition of the main injection is apparently initiated through interactions with the reactive pilot mixture. High-temperature autoignition, another process by which ignition of the main injection occurs, is observed in main injection plumes where the chemiluminescence signal of the reactive pilot mixture becomes very weak or is absent at the start of main injection. As the reaction of the main injection continues, the non-premixed main injection jet structure is developed and the high-temperature reacting region expands throughout the jet.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Golparvar, Amir, Matthias Kästner et Martin Thullner. « P3D-BRNS v1.0.0 : a three-dimensional, multiphase, multicomponent, pore-scale reactive transport modelling package for simulating biogeochemical processes in subsurface environments ». Geoscientific Model Development 17, no 2 (1 février 2024) : 881–98. http://dx.doi.org/10.5194/gmd-17-881-2024.

Texte intégral
Résumé :
Abstract. The porous microenvironment of soil offers various environmental functions which are governed by physical and reactive processes. Understanding reactive transport processes in porous media is essential for many natural systems (soils, aquifers, aquatic sediments or subsurface reservoirs) or technological processes (water treatment or ceramic and fuel cell technologies). In particular, in the vadose zone of the terrestrial subsurface the spatially and temporally varying saturation of the aqueous and the gas phase leads to systems that involve complex flow and transport processes as well as reactive transformations of chemical compounds in the porous material. To describe these interacting processes and their dynamics at the pore scale requires a well-suited modelling framework accounting for the proper description of all relevant processes at a high spatial resolution. Here we present P3D-BRNS as a new open-source modelling toolbox harnessing the core libraries of OpenFOAM and coupled externally to the Biogeochemical Reaction Network Simulator (BRNS). The native OpenFOAM volume-of-fluid solver is extended to have an improved representation of the fluid–fluid interface. The solvers are further developed to couple the reaction module which can be tailored for a specific reactive transport simulation. P3D-RBNS is benchmarked against three different flow and reactive transport processes: (1) fluid–fluid configuration in a capillary corner, (2) mass transfer across the fluid–fluid interface and (3) microbial growth with a high degree of accuracy. Our model allows for simulation of the spatio-temporal distribution of all biochemical species in the porous structure (obtained from μ-CT images), for conditions that are commonly found in the laboratory and environmental systems. With our coupled computational model, we provide a reliable and efficient tool for simulating multiphase, reactive transport in porous media.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Klein, Markus, et Nilanjan Chakraborty. « Modelling of Reactive and Non-Reactive Multiphase Flows ». Fluids 6, no 9 (27 août 2021) : 304. http://dx.doi.org/10.3390/fluids6090304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Tian-Tian, Lian-Fang Feng, Xue-Ping Gu, Cai-Liang Zhang, Pan Wang et Guo-Hua Hu. « Intensification of Polymerization Processes by Reactive Extrusion ». Industrial & ; Engineering Chemistry Research 60, no 7 (15 février 2021) : 2791–806. http://dx.doi.org/10.1021/acs.iecr.0c05078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Garge, Swapnil C., Mark D. Wetzel et Babatunde A. Ogunnaike. « MODELING FOR CONTROL OF REACTIVE EXTRUSION PROCESSES ». IFAC Proceedings Volumes 39, no 2 (2006) : 1089–94. http://dx.doi.org/10.3182/20060402-4-br-2902.01089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Walter, Lee. « Photoresist Damage in Reactive Ion Etching Processes ». Journal of The Electrochemical Society 144, no 6 (1 juin 1997) : 2150–54. http://dx.doi.org/10.1149/1.1837755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kwiatkowska, M. Z., et G. J. Norman. « A Testing Equivalence for Reactive Probabilistic Processes ». Electronic Notes in Theoretical Computer Science 16, no 2 (1998) : 114–32. http://dx.doi.org/10.1016/s1571-0661(04)00121-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Armitage, PD, SA Murphy, SSF Wong, ZG Meszena et AF Johnson. « Modelling and simulation of reactive injection processes ». Computers & ; Chemical Engineering 23 (juin 1999) : S761—S764. http://dx.doi.org/10.1016/s0098-1354(99)80186-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Bonet-Ruiz, Alexandra Elena, Jordi Bonet, Valentin Pleşu et Grigore Bozga. « Environmental performance assessment for reactive distillation processes ». Resources, Conservation and Recycling 54, no 5 (mars 2010) : 315–25. http://dx.doi.org/10.1016/j.resconrec.2009.07.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Giessler, S., R. Y. Danilov, R. Y. Pisarenko, L. A. Serafimov, S. Hasebe et I. Hashimoto. « Systematic structure generation for reactive distillation processes ». Computers & ; Chemical Engineering 25, no 1 (janvier 2001) : 49–60. http://dx.doi.org/10.1016/s0098-1354(00)00632-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Jonsson, L. B., T. Nyberg et S. Berg. « Dynamic simulations of pulsed reactive sputtering processes ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 18, no 2 (mars 2000) : 503–8. http://dx.doi.org/10.1116/1.582216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Schneider, R., F. Sander et A. Górak. « Dynamic simulation of industrial reactive absorption processes ». Chemical Engineering and Processing : Process Intensification 42, no 12 (décembre 2003) : 955–64. http://dx.doi.org/10.1016/s0255-2701(02)00168-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bartzsch, H., et P. Frach. « Modeling the stability of reactive sputtering processes ». Surface and Coatings Technology 142-144 (juillet 2001) : 192–200. http://dx.doi.org/10.1016/s0257-8972(01)01087-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Crowley, James L. « Integration and control of reactive visual processes ». Robotics and Autonomous Systems 16, no 1 (novembre 1995) : 17–27. http://dx.doi.org/10.1016/0921-8890(95)00029-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Choong, K. L., et R. Smith. « Optimization of semi-batch reactive crystallization processes ». Chemical Engineering Science 59, no 7 (avril 2004) : 1529–40. http://dx.doi.org/10.1016/j.ces.2004.01.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Almeida-Rivera, C. P., P. L. J. Swinkels et J. Grievink. « Designing reactive distillation processes : present and future ». Computers & ; Chemical Engineering 28, no 10 (septembre 2004) : 1997–2020. http://dx.doi.org/10.1016/j.compchemeng.2004.03.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Healy, David. « Schizophrenia : Basic, release, reactive and defect processes ». Human Psychopharmacology : Clinical and Experimental 5, no 2 (juin 1990) : 105–21. http://dx.doi.org/10.1002/hup.470050203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sarkar, Debasis, Sohrab Rohani et Arthur Jutan. « Multiobjective optimization of semibatch reactive crystallization processes ». AIChE Journal 53, no 5 (2007) : 1164–77. http://dx.doi.org/10.1002/aic.11142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Xu, Xinru, Guochen Kuang, Xiao Jiang, Shuoming Wei, Haiyuan Wang et Zhen Zhang. « Design of Environmental-Friendly Carbon-Based Catalysts for Efficient Advanced Oxidation Processes ». Materials 17, no 11 (5 juin 2024) : 2750. http://dx.doi.org/10.3390/ma17112750.

Texte intégral
Résumé :
Advanced oxidation processes (AOPs) represent one of the most promising strategies to generate highly reactive species to deal with organic dye-contaminated water. However, developing green and cost-effective catalysts is still a long-term goal for the wide practical application of AOPs. Herein, we demonstrated doping cobalt in porous carbon to efficiently catalyze the oxidation of the typically persistent organic pollutant rhodamine B, via multiple reactive species through the activation of peroxymonosulfate (PMS). The catalysts were prepared by facile pyrolysis of nanocomposites with a core of cobalt-loaded silica and a shell of phenolic resin (Co-C/SiO2). It showed that the produced 1O2 could effectively attack the electron-rich functional groups in rhodamine B, promoting its molecular chain breakage and accelerating its oxidative degradation reaction with reactive oxygen-containing radicals. The optimized Co-C/SiO2 catalyst exhibits impressive catalytic performance, with a degradation rate of rhodamine B up to 96.7% in 14 min and a reaction rate constant (k) as high as 0.2271 min−1, which suggested promising potential for its practical application.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Orbuleţ, Oanamari Daniela, Cristina Modrogan et Cristina-Ileana Covaliu-Mierla. « Simulating Aquifer for Nitrate Ion Migration Processes in Soil ». Water 16, no 5 (6 mars 2024) : 783. http://dx.doi.org/10.3390/w16050783.

Texte intégral
Résumé :
The objective of this study was to explore the removal of nitrate ions from groundwater by employing dynamic permeable reactive barriers (PRBs) with A400-nZVI. This research aimed to determine the parameters of the barrier and evaluate its overall capacity to retain nitrate ions during percolation with a potassium nitrate solution. The process involves obtaining zerovalent iron (nZVI) nanoparticles, which were synthesized and incorporated onto an anionic resin support material (A400) through the reduction reaction of ferrous ions with sodium borohydride (NaBH4). This is achieved by preparing a ferrous sulfate solution, contacting it with the ion exchange resin at various solid–liquid mass ratios and gradually adding sodium borohydride under continuous stirring in an oxygen-free environment to create the A400-nZVI barrier. The results of the study, focusing on the development of permeable reactive barriers composed of nano zero-valent iron and ion exchangers, highlight the significant potential of water treatment processes when appropriately sized. The research specifically assesses the effectiveness of NO3− removal by using the A400-nZVI permeable reactive barrier, conducting laboratory tests that simulate a naturally stratified aquifer with high nitrate contamination.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Galaverna, Renan, Tom McBride, Julio C. Pastre et Duncan L. Browne. « Exploring the generation and use of acylketenes with continuous flow processes ». Reaction Chemistry & ; Engineering 4, no 9 (2019) : 1559–64. http://dx.doi.org/10.1039/c9re00072k.

Texte intégral
Résumé :
The generation and use of acyl ketenes under continuous flow reaction conditions is reported. Several reaction classes of these reactive intermediates have been studied. Under zero headspace conditions, a ketone exchange process is possible between volatile ketones. The process can be readily scaled to deliver gram quantities of product.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Weber, Anne, Aki S. Ruhl et Richard T. Amos. « Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling ». Journal of Contaminant Hydrology 151 (août 2013) : 68–82. http://dx.doi.org/10.1016/j.jconhyd.2013.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Düren, Rudolf, Ulf Lackschewitz, Slobodan Milošević et Herman Josef Waldapfel. « Differential scattering of Na(3P) from HF. Reactive and non-reactive processes ». J. Chem. Soc., Faraday Trans. 2 85, no 8 (1989) : 1017–25. http://dx.doi.org/10.1039/f29898501017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie