Littérature scientifique sur le sujet « RCS simulation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « RCS simulation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "RCS simulation"
Hao, Jiaxing, Xuetian Wang, Sen Yang et Hongmin Gao. « Intelligent Simulation Technology Based on RCS Imaging ». Applied Sciences 13, no 18 (8 septembre 2023) : 10119. http://dx.doi.org/10.3390/app131810119.
Texte intégralJia, Jing, Wen Sheng et Lu Zhang. « Research on Aircraft Target Detection Probability for OTHR ». Applied Mechanics and Materials 644-650 (septembre 2014) : 1261–65. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.1261.
Texte intégralPrashanth, B. U. V. « Design and Implementation of Radar Cross-Section Models on a Virtex-6 FPGA ». Journal of Engineering 2014 (2014) : 1–10. http://dx.doi.org/10.1155/2014/489765.
Texte intégralPersson, Bjorn, et M. Norsell. « Conservative RCS Models for Tactical Simulation ». IEEE Antennas and Propagation Magazine 57, no 1 (février 2015) : 217–23. http://dx.doi.org/10.1109/map.2015.2397151.
Texte intégralZhang, Jie, Gerileqimuge, Run Xie, Yanming Song et Quanzhao Sun. « RCS Computation and Analysis of a Diamond-shaped Thermal Jacket for Gun Barrels ». Journal of Physics : Conference Series 2478, no 2 (1 juin 2023) : 022001. http://dx.doi.org/10.1088/1742-6596/2478/2/022001.
Texte intégralHao, Jiaxing, Xuetian Wang, Sen Yang, Hongmin Gao, Cuicui Yu et Wentao Xing. « Intelligent Target Design Based on Complex Target Simulation ». Applied Sciences 12, no 16 (10 août 2022) : 8010. http://dx.doi.org/10.3390/app12168010.
Texte intégralZhao, Jun Juan, Jin Yuan Yin et Cheng Fan Li. « RCS Simulation of Dihedral Corner Reflector Based FEKO ». Applied Mechanics and Materials 321-324 (juin 2013) : 108–13. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.108.
Texte intégralSong, Seungeon, Han-Seop Shin, Dae-Oh Kim, Chul-Ung Kang et Seokjun Ko. « Modelling and Simulation of Glint and RCS of Complex Target ». IEMEK Journal of Embedded Systems and Applications 12, no 1 (28 février 2017) : 27–34. http://dx.doi.org/10.14372/iemek.2017.12.1.27.
Texte intégralJung, Jinwoo, Changseok Cho, Minsu Choi, Shinjae You, Jungje Ha, Hyunsoo Lee, Cheonyoung Kim, Ilyoung Oh et Yongshik Lee. « Compensation of Heat Effect in Dielectric Barrier Discharge (DBD) Plasma System for Radar Cross-Section (RCS) Reduction ». Sensors 23, no 16 (11 août 2023) : 7121. http://dx.doi.org/10.3390/s23167121.
Texte intégralMu, Rongjun, et Xin Zhang. « Control Allocation Design of Reaction Control System for Reusable Launch Vehicle ». Abstract and Applied Analysis 2014 (2014) : 1–13. http://dx.doi.org/10.1155/2014/541627.
Texte intégralThèses sur le sujet "RCS simulation"
Ton, Cuong. « Radar cross section (RCS) simulation for wind turbines ». Monterey, California : Naval Postgraduate School, 2013. http://hdl.handle.net/10945/34754.
Texte intégralWind-turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built near military and commercial radar and communication installations, they can cause degradation in the systems performance. The purpose of this research is to study the radar cross section (RCS) of a wind turbine and assess its effect on the performance of radar and communication systems. In this research, some basic scattering characteristics of wind turbines are discussed. Several computational methods of RCS prediction are examined, citing their advantages and disadvantages. Modeling and computational issues that affect the accuracy and convergence of the simulation results are discussed. RCS simulation results for two wind turbine configurations are presented: a horizontal axis, three-blade design and a vertical axis helical design. Several methods of mitigating wind turbine clutter are discussed. Issues of RCS reduction and control for wind turbines are also addressed.
Al-Asad, Zahir. « Implementation of NURBS Objects in a Ray TracingCode for RCS Simulation ». Thesis, Högskolan i Gävle, Ämnesavdelningen för elektronik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-7713.
Texte intégralHanslík, Radovan. « Odrazná plocha osobních automobilů ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400701.
Texte intégralLindgren, Jonas. « Evaluation of CST Studio Suite for simulation of radar cross-section ». Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-187751.
Texte intégralSalhani, Mohamad. « Modélisation et simulation des réseaux mobiles de 4ème [quatrième] génération ». Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7725/1/salhani.pdf.
Texte intégralHanslík, Radovan. « Odrazná plocha osobních automobilů ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412967.
Texte intégralKljajič, Marko. « Simulační studie robotické linky pro obsluhu obráběcího stroje a realizaci dokončovacích operací ». Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417547.
Texte intégralGrönberg, Christoffer. « Simulering och cykeltidsberäkning av automatiserad produktionslina med hjälp av Process Simulate ». Thesis, Högskolan Väst, Institutionen för ingenjörsvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-2806.
Texte intégralThis thesis has been carried out in collaboration with Löfqvist Engineering in Örebro. The task has been to perform a simulation of a large automation line, to be used in the manufacture of exhaust systems for trucks. Based on this simulation accurate cycle times for production are determined. These times can then be used by Löfqvist Engineering to verify the earlier estimated times. The work includes a literature review of Lean Production and how it works with automation. There is also some background information on Just In Time, different file formats and robot simulation in general for the reader to get a bit more background knowledge of the subject. The program that has been selected to perform the simulation is Tecnomatix Process Simulate and its built in Line Simulation module. The automation line consists of four handling robots, 13 operator stations and eight identical welding cells. Cycle times for the automation line have been determined and the result was 6 min 31s, for the automation line to complete one product. Cycle times were determined by calculating the average time to produce 10 pieces of products when the line was full of material. The report describes how the work for arriving at these cycle times have been performed and how simulation problems encountered during such operations have been resolved.
Bui, Nicolas. « Méthode FDTD conforme et d’ordre (2,4) pour le calcul de SER large bande de cibles complexes ». Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0118/document.
Texte intégralRigorous numerical methods are used to compute an accurate wideband radar cross section (RCS) evaluation of large complex targets. Among these, finite differences in time domain method is appropriated for the wideband characteristic and also to obtain a transient responses of the target. The Yee scheme, known historically as an FDTD scheme for Maxwell equations, is hindered by two crucial weak points: numerical dispersion which imposes a high mesh resolution; and staircase approximation of curve geometry which deteriorates results quality. High-order space differential operator for FDTD schemes have been investigated to limit numerical dispersion errors. In this thesis, the Conservative Modified FDTD(2,4) scheme has been developed and its performance has shown very accurate results with reasonable workload for RCS computation. Relating to curve geometry modeling problem, metallic edges modeling is still an unsolved problem for FDTD(2,4) schemes with enlarged stencil. Conformal techniques have been developed for the Yee scheme and has been studied for FDTD(2,4) to accurately model curve geometry. We propose a new approach based on oblique thin wire model to model metallic surfaces. RCS computations of several targets have shown that this method is promising
Arzur, Fabien. « Développement de simulateurs de cibles pour radars automobiles 77 GHz ». Thesis, Brest, 2017. http://www.theses.fr/2017BRES0082.
Texte intégralThe work presented in this thesis concerns the development of an automotive radar target simulator for 77 GHz radar sensors. In order to continue offering safer vehicles, manufacturers develop more and more performant ADAS systems. We are witnessing a democratization of automotive radar sensors for adaptive cruise control and collision warning. The generalization of such systems on standard cars will require an increased use of test devices both at the manufacturers and in technical control centers. To test and calibrate radars, it is necessary to use Radar Target Simulators (RTS). These devices enable to simulate situations encountered by the radar. Furthermore, these scenarios are becoming increasingly complex with the arrival of autonomous vehicles. A target is defined by three parameters: distance, velocity and radar cross-section (RCS). In order to meet drastic requirements, ZF TRW Autocruise develops its own RTS for production test benches and R&D. RTS must adapt to all radars within a 76 – 81 GHz frequency band, with different modulations and a frequency bandwidth higher than 800 MHz. The system must present the advantages of being a low-cost system, with small dimensions and flexible to be integrated in different applications. The major blocking point is the design of a reconfigurable delay line, able to simulate distances between 1 m and 250 m with a resolution of 0.2 m on a large frequency band and also allowing control of RCS. A compromise will have to be found in order to meet the different specifications. The study showed the impossibility to cover the entire range of distances with one single technology. A hybrid architecture is necessary. A hybrid, tunable, wideband delay line is at study
Livres sur le sujet "RCS simulation"
Hillberg, S. An assessment of TRACE V5 RC1 code against UPTF counter current flow tests. Washington, DC : U.S. Nuclear Regulatory Commission, 2010.
Trouver le texte intégralPadfield, Gareth D. Helicopter Flight Dynamics : The Theory and Application of Flying Qualities and Simulation Modelling. Wiley & Sons, Incorporated, John, 2008.
Trouver le texte intégralPadfield, Gareth D. Helicopter Flight Dynamics : The Theory and Application of Flying Qualities and Simulation Modeling (Aiaa Education Series). AIAA (American Institute of Aeronautics & Ast, 1996.
Trouver le texte intégralRubin, Donald, Xiaoqin Wang, Li Yin et Elizabeth Zell. Bayesian causal inference : Approaches to estimating the effect of treating hospital type on cancer survival in Sweden using principal stratification. Sous la direction de Anthony O'Hagan et Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.24.
Texte intégralRepole, Donato. Research of Parallel Computing Neuro-fuzzy Networks for Unmanned Vehicles. RTU Press, 2021. http://dx.doi.org/10.7250/9789934226922.
Texte intégralGao, Yanhong, et Deliang Chen. Modeling of Regional Climate over the Tibetan Plateau. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.591.
Texte intégralChapitres de livres sur le sujet "RCS simulation"
De Mattia, Salvatore. « SWORD RAS Project ». Dans Modelling and Simulation for Autonomous Systems, 345–56. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98260-7_22.
Texte intégralCheng, Xiaolin, Jerry M. Parks, Loukas Petridis, Benjamin Lindner, Roland Schulz, Hao-Bo Guo, Goundla Srinivas et Jeremy C. Smith. « Chapter 5. Molecular Simulation in the Energy Biosciences ». Dans RSC Biomolecular Sciences, 87–114. Cambridge : Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735049-00087.
Texte intégralBorkowski, Jeffrey, Lotfi Belblidia et Oliver Tsaoi. « S3R Advanced Training Simulator Core Model : Implementation and Validation ». Dans Springer Proceedings in Physics, 789–99. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_68.
Texte intégralFlikkema, Maarten, Martin van Hees, Timo Verwoest et Arno Bons. « HOLISPEC/RCE : Virtual Vessel Simulations ». Dans A Holistic Approach to Ship Design, 465–85. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02810-7_15.
Texte intégralSherif, Mohsen, Abdel Azim Ebraheem, Ampar Shetty, Ahmed Sefelnasr, Khaled Alghafli et Mohamed Al Asam. « Evaluation of the Effect of the Wadi Bih Dam on Groundwater Recharge, UAE ». Dans Natural Disaster Science and Mitigation Engineering : DPRI reports, 509–27. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_21.
Texte intégralNewman, Wyatt S. « Simulation in ROS ». Dans A Systematic Approach to Learning Robot Programming with ROS, 95–151. Boca Raton : CRC Press, [2017] : Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315152691-5.
Texte intégralSubramanian, Rajesh. « Robot Simulation and Visualization ». Dans Build Autonomous Mobile Robot from Scratch using ROS, 261–84. Berkeley, CA : Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9645-5_5.
Texte intégralCardenas, Alfredo E., et Ron Elber. « Chapter 6. Enhancing the Capacity of Molecular Dynamics Simulations with Trajectory Fragments ». Dans RSC Biomolecular Sciences, 117–37. Cambridge : Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735049-00117.
Texte intégralTaylor, William R., et Zoe Katsimitsoulia. « Chapter 10. Generalised Multi-level Coarse-grained Molecular Simulation and its Application to Myosin-V Movement ». Dans RSC Biomolecular Sciences, 249–71. Cambridge : Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735049-00249.
Texte intégralSubramanian, Rajesh. « Setting Up a Workstation for Simulation ». Dans Build Autonomous Mobile Robot from Scratch using ROS, 89–130. Berkeley, CA : Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9645-5_3.
Texte intégralActes de conférences sur le sujet "RCS simulation"
Liu, Xianben, Shuangshuang Meng, Wenyuan Hao, Mingbin Hu, Shaozhong Fu et Cheng Zhu. « The Design and Simulation of a Broadband Low RCS Radome ». Dans 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal & ; Power Integrity (EMC+SIPI), 211–15. IEEE, 2024. http://dx.doi.org/10.1109/emcsipi49824.2024.10705445.
Texte intégralZhang, Chuang, Junsheng Yu, Jinbo Ruan et Tianyang Chen. « Monostatic RCS Simulation of Simple Targets in a Terahertz Compact Range ». Dans 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699875.
Texte intégralLi, Pingyu, Shu Lin, Zhiheng Liu, Yuwei Zhang, Xingqi Zhang et Xinyue Zhang. « Simulation of RCS Reconfigurable Characteristics for Bistable Glass Fiber Material Printed Antenna ». Dans 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1591–92. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10687243.
Texte intégralLu, Hongyi. « Statistical Research on Bistatic RCS of Floating Platforms Based on Full-Wave Simulation ». Dans 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA), 1083–90. IEEE, 2024. http://dx.doi.org/10.1109/icipca61593.2024.10709124.
Texte intégralWang, Siyuan, Zi He, Dazhi Ding, Lin Liu et Ying Zhou. « Fast RCS Simulation of Target on the Sea Surface Based on the SBR and Advanced Two-scale Method ». Dans 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10617962.
Texte intégralKnolmar, Marcell. « INTEGRATED MODELING OF STAGNATING WATER AND URBAN DRAINAGE SYSTEMS ». Dans 24th SGEM International Multidisciplinary Scientific GeoConference 2024, 129–36. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/3.1/s12.16.
Texte intégralTan, Xiaolong, Ming Fang et Zhixiang Huang. « RCS Simulation and ISAR Imaging of Coated Targets ». Dans 2019 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2019. http://dx.doi.org/10.1109/compem.2019.8779169.
Texte intégralDunham, Darin T., Lisa M. Ehrman, W. Dale Blair et Susan A. Frost. « Simulation assessment of RCS-aided multiple target tracking ». Dans Optical Engineering + Applications, sous la direction de Oliver E. Drummond et Richard D. Teichgraeber. SPIE, 2007. http://dx.doi.org/10.1117/12.740892.
Texte intégralLi, Xiangying, et Xin Meng. « RCS simulation of spacecraft based on orbital dynamics ». Dans 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). IEEE, 2009. http://dx.doi.org/10.1109/mape.2009.5355607.
Texte intégralHan, Yangyang, Lu Sun et Cong Hu. « HFSS simulation of RCS based on MIMO system ». Dans Proceedings of the International Conference on Civil, Architecture and Environmental Engineering (ICCAE2016). CRC Press/Balkema P.O. Box 11320, 2301 EH Leiden, The Netherlands : CRC Press/Balkema, 2017. http://dx.doi.org/10.1201/9781315116242-75.
Texte intégralRapports d'organisations sur le sujet "RCS simulation"
Meot, F., V. Ptitsyn, V. Ranjbar et D. Rubin. Polarized e-bunch acceleration at Cornell RCS : Tentative tracking simulations. Office of Scientific and Technical Information (OSTI), octobre 2017. http://dx.doi.org/10.2172/1408712.
Texte intégralChapman et Keshavarz-Valian. L51988 Development of Turbocharger-Reciprocating Engine Simulation (T-RECS). Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), décembre 2002. http://dx.doi.org/10.55274/r0010947.
Texte intégralZhang, Zhonglong, Billy Johnson et Blair Greimann. HEC-RAS-RVSM (Riparian Vegetation Simulation Module). Engineer Research and Development Center (U.S.), juin 2019. http://dx.doi.org/10.21079/11681/32864.
Texte intégralWenren, Yonghu, Joon Lim, Luke Allen, Robert Haehnel et Ian Dettwiler. Helicopter rotor blade planform optimization using parametric design and multi-objective genetic algorithm. Engineer Research and Development Center (U.S.), décembre 2022. http://dx.doi.org/10.21079/11681/46261.
Texte intégralKo, Yu-Fu, et Jessica Gonzalez. Fiber-Based Seismic Damage and Collapse Assessment of Reinforced Concrete Single-Column Pier-Supported Bridges Using Damage Indices. Mineta Transportation Institute, août 2023. http://dx.doi.org/10.31979/mti.2023.2241.
Texte intégralBerger, AnnMarie. Ride Motion Simulator (RMS) Testing Using Human Occupants (Submitted to Human Use Committee). Fort Belvoir, VA : Defense Technical Information Center, décembre 1994. http://dx.doi.org/10.21236/ada292641.
Texte intégralBerger, AnnMarie. Ride Motion Simulator (RMS) Testing Using Human Occupants (Submitted to Human Use Committee). Fort Belvoir, VA : Defense Technical Information Center, décembre 1994. http://dx.doi.org/10.21236/ada292750.
Texte intégralO'Brien, James G., Emily L. Barrett, Xiaoyuan Fan, Ruisheng Diao, Renke Huang et Qiuhua Huang. Adaptive RAS/SPS System Settings for Improving Grid Reliability and Asset Utilization through Predictive Simulation and Controls. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1580707.
Texte intégralChristie, Benjamin, Osama Ennasr et Garry Glaspell. Autonomous navigation and mapping in a simulated environment. Engineer Research and Development Center (U.S.), septembre 2021. http://dx.doi.org/10.21079/11681/42006.
Texte intégralGibson, Stanford, et James Crain. Modeling sediment concentrations during a drawdown reservoir flush : simulating the Fall Creek operations with HEC-RAS. Engineer Research and Development Center (U.S.), août 2019. http://dx.doi.org/10.21079/11681/33884.
Texte intégral