Thèses sur le sujet « Rat Barrel Cortex Dynamics »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Rat Barrel Cortex Dynamics.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 31 meilleures thèses pour votre recherche sur le sujet « Rat Barrel Cortex Dynamics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Beeren, L. K. « Probing network dynamics in barrel cortex ». Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1348307/.

Texte intégral
Résumé :
Recent studies have demonstrated that a rat can be trained to behaviourally report the electrical stimulation of a single cortical neuron (Houweling and Brecht, 2008). Other studies have reported detection of the optogenetic stimulation of ~300 neurons (Huber et al., 2008). However, although the animal can detect the stimulation, it is unclear what effect this small perturbation is having on the network and to what degree this will alter the animal’s ability to perform a task. This thesis investigates the effect on both the local network and on behaviour of several magnitudes of neuronal perturbation, from a single spike to the excitation of several thousand neurons. Finding the limitations under which a network can function provides powerful insights into how neurons interact to form meaningful networks. I performed simultaneous intra- and multi-unit extracellular recordings from the rat barrel cortex. I introduced a single spike into the patched neuron, and monitored the evolution of network activity via the extracellular probe. I found that the introduction of a single spike in a neuron produces a detectable increase in firing rate in the local network. To extend the investigation, channelrhodopsin-2 (ChR2), a light-sensitive membrane protein, was electroporated under visual control into a small number (1 - 10) of layer 2/3 pyramidal cells in the somatosensory cortex of the adult mouse. After exciting the ChR2-positive neurons, the resulting network activity was measured both by cell-attached and whole-cell patch-clamp recordings from nearby neurons and by monitoring up to 50 nearby cells in different cortical layers using the multi-site silicon probe. I found that excitation of a small number of neurons caused an increase in the spike rate of the local network, which lasted up to 300 ms. On the next level, large-scale perturbations were introduced into the brain by the optogenetic excitation of several thousand neurons in the cortexof transgenic mice expressing ChR2 under the Thy1 promoter. A short (2-20 ms) pulse of blue light produced a strong initial response, measured in both the LFP and spiking activity across supragranular layers of the barrel cortex. This initial response was often followed by ~5 bursts of spikes which resulted in an oscillation in the LFP. This oscillation was found to be of similar frequency and time-scale to an oscillation recorded in the barrel cortex resulting from the deflection of a single whisker. After pharmacologically blocking activity in the thalamus, confirmed by loss of the whisker response, the light-induced oscillations disappeared, indicating that the thalamus is necessary for their propagation. Optogenetic stimulation was also able to generate oscillations in the awake animal. I investigated the effect of such a large perturbation on mice undergoing a simple whisker-deflection discrimination task. It was found that the performance of the mice initially dropped to chance level if a strong perturbation was delivered 100 ms before the sensory stimulation. If the strong perturbation was sustained for every trial, the performance of the mice did not improve. If the perturbing stimulation was removed and then introduced gradually, the animal was able to adapt to the stimulation and learn to perform the task despite the perturbation. In summary, small perturbations have a measurable effect on the local network, implying the use of a rate code for at least some brain states in the barrel cortex. A large perturbation produces a strong cortical response, which often leads to a strong oscillation. The same stimulus interferes with the behaviour of a mouse undergoing a simple task, and yet the mouse can learn to perform accurately despite the noise. Together, these findings suggest a coding regime with high degrees of redundancy and robustness. Although the cortical activity patterns are easily perturbed - even a single spike causes a temporary increase in firing rate - this disturbance does not have debilitating effects on the behaviour or the experience of the animal.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lehohla, Molupe. « A study of glutamate receptor function in the rat barrel cortex ». Master's thesis, University of Cape Town, 2001. http://hdl.handle.net/11427/3261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Salazar, Eduardo 1962. « GABAᴀ Receptors in Rat Whisker Barrel Cortex : Effects of Sensory Deprivation ». Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc279232/.

Texte intégral
Résumé :
The GABAergic system in adult sensory cortex is affected by sensory deprivation, but little is known about how this predominant inhibitory system is affected during ontogeny. The present study investigates developmental effects of whisker trimming on GABAa receptors in rat barrel cortex. Rats trimmed for 6 wk beginning at birth and adulthood showed similar decreases in [3H]muscimol binding in deprived relative to non-deprived barrels, suggesting absence of a critical period.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Doron, Guy. « Psychophysical characterization of single neuron stimulation effects in rat barrel cortex ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16757.

Texte intégral
Résumé :
Die Aktionspotential (AP) -Aktivität einzelner kortikaler Neuronen kann messbare sensorische Effekte hervorrufen. Es ist jedoch nicht bekannt, wie AP-Sequenzen Parameter und spezifische neuronale Subtypen die hervorgerufenen Sinnesempfindungen beeinflussen. Hier haben wir einen ‘Reverse-Physiology‘ Ansatz angewendet, um die Beziehung zwischen der Aktivität einzelner Neuronen und der Empfindung zu untersuchen. Zunächst wird der Prozess der Nanostimulation, eine von der juxtazellulären Markierungstechnik abgeleiteten Einzelzell-Stimulationsmethode, detailliert beschrieben. Nanostimulation ist einfach anzuwenden und kann auf eine Vielzahl von identifizierbaren Neuronen in narkotisierten und wachen Tieren angewandt werden. Wir beschreiben die Aufnahmetechnik und die elektrische Konfiguration für Nanostimulation. Während eine exakte zeitliche Bestimmung der AP nicht erreicht wurde, konnten Frequenz und Anzahl der AP parametrisch kontrolliert werden. Wir zeigen, dass Nanostimulation auch angewendet werden kann, um sensorische Reaktionen in identifizierbaren Neuronen selektiv zu inhibieren. Als nächstes haben wir untersucht wie sich die Frequenz und Anzahl der AP sowie die Regelmäßigkeit der Pulsfolge auf die Detektion von Einzelzell-Stimulationen im somatosensorischen Kortex von Ratten auswirken. Für mutmaßlichen erregende regular-spiking Neuronen erhöhte sich die Nachweisbarkeit mit abnehmender Frequenz und Anzahl der AP. Die Stimulation einzelner, mutmaßlichen inhibitorischer und schnell feuernder Neuronen führte zu wesentlich stärkeren sensorischen Effekten, die unabhängig von Frequenz und Anzahl der AP waren. Außerdem fanden wir heraus, dass Unregelmäßigkeiten der Pulsfolge die sensorischen Effekte von putativ erregenden Neuronen stark erhöhten. Diese Unregelmäßigkeiten wurden in durchschnittlich 8% der Durchgänge festgestellt. Unsere Daten deuten darauf hin, dass das es auf Verhaltnisebene eine große Sensivität für kortikale AP und deren zeitlichen Abfolge gibt.
The action potential (AP) activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and specific neuronal subtypes affect the evoked sensations. Here we applied a reverse physiology approach to investigate the relationship between single neuron activity and sensation. First, we provide a detailed description of the procedures involved in nanostimulation, a single-cell stimulation method derived from the juxtacellular labeling technique. Nanostimulation is easy to apply and can be directed to a wide variety of identifiable neurons in anesthetized and awake animals. We describe the recording approach and the parameters of the electric configuration underlying nanostimulation. While exact AP timing has not been achieved, AP frequency and AP number can be parametrically controlled. We demonstrate that nanostimulation can also be used to selectively inhibit sensory responses in identifiable neurons. Next, we examined the effects of AP frequency, AP number and spike train regularity on the detectability of single-cell stimulation in rat somatosensory cortex. For putative excitatory, regular spiking neurons detectability increased with decreasing AP frequencies and decreasing AP numbers. Stimulation of single putative inhibitory, fast spiking neurons led to much larger sensory effects that were not dependent on AP frequency and AP number. In addition, we found that spike train irregularity greatly increased the sensory effects of putative excitatory neurons, with irregular spike trains being detected in on average 8% of trials. Our data suggest that the behaving animal is extremely sensitive to cortical APs and their temporal patterning.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tanaka, Yasuhiro. « Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex ». Kyoto University, 2012. http://hdl.handle.net/2433/157432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bobrov, Evgeny. « Rat social touch ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/17036.

Texte intégral
Résumé :
Ratten verwenden Schnurrhaare (Vibrissen) zur Berührungswahrnehmung, und die Leitungsbahn von den Vibrissen zum primären somatosensorischen Areal (Barrel Cortex, BC) ist gut untersucht. Ratten zeigen auch vielfältiges Sozialverhalten, u.a. Berührung von Artgenossen mit ihren Vibrissen. Es ist jedoch unbekannt, wie diese sozialen Berührungssignale im Gehirn repräsentiert sind. Deshalb hatte die vorliegende Studie zum Ziel, die neuronale Repräsentation von sozialen Berührungen im BC zu untersuchen und mit anderer somatosensorischer Stimulation zu vergleichen. Mit extrazellulären Einzelzellableitungen in sich frei bewegenden Ratten habe ich gezeigt, dass die Aktivität eines Großteils von Neuronen im BC durch soziale Berührungen moduliert wird. Antworten waren meist erregend und Feuerraten während sozialer Interaktionen unterschieden sich zwischen kortikalen Schichten. Ratten bevorzugten Interaktionen mit Artgenossen gegenüber unbelebten Stimuli. Auch die Berührungsstrategien unterschieden sich, dabei wurden Objekte mit regelmäßigeren Bewegungen abgetastet, und die Vibrissen weiter vorgestreckt. Neuronale Antworten unterschieden sich ebenso, mit leicht aber konsistent schwächeren Antworten auf Objekte. Interessanterweise habe ich geschlechtsspezifische Unterschiede in neuronalen Antworten beobachtet. Der ausgeprägteste war die stärkere Modulation regulär-feuernder (RF) Zellen in Männchen während sozialer Berührungen. Dieser Unterschied konnte nicht mit sozialem Berührungsverhalten erklärt werden, was eventuell auf eine neurale Grundlage dieser Differenz hindeutet. Zudem feuerten RF-Zellen von Weibchen deutlich seltener, wenn das Weibchen im Östrus war. Zusammenfassend ist dies die erste Studie, die soziale Signale in einem primären sensorischen Areal bei sich frei bewegenden Tieren auf zellulärer Ebene untersuchte. Sie legt nahe, dass die Repräsentationen sensorischer Hirnrinde weniger stimulusabhängig und stärker top-down-moduliert sein könnten, als zuvor angenommen.
Rats use their stiff facial hairs (whiskers) for somatosensation, and the pathway from the whiskers to the primary somatosensory cortex (barrel cortex, BC) is well known. Rats also show diverse social behaviors, including touch of conspecifics with their whiskers. The representation of these social touch signals in the brain is however unknown. Thus, the present study aimed at characterizing the neuronal representation of social touch signals in BC and comparing them with non-social somatosensory stimulation. Using extracellular single-cell recordings in freely-moving rats, I could show that the activity of a large fraction of BC neurons is modulated by social touch. Responses were typically excitatory and the pattern of firing rates during interactions differed between cortical layers. Rats preferred interactions with alive conspecifics over inanimate stimuli. Whisking strategies also differed in that inanimate stimuli were whisked at with more regular movements from more protracted set angles. Neuronal responses were also different, such that objects elicited slightly but consistently weaker responses than alive rats. Interestingly, I observed sex-specific differences in neuronal responses. Prominently, there was stronger modulation by social touch in regular-spikers (RS) recorded from males. This could not be explained by behavioral measures, possibly indicating a neural origin of this difference. Further, RS from females fired much more weakly when females were in estrus. In summary, this is the first study that investigated social signals in a primary sensory area of freely-moving animals at the cellular level. It suggests that representations in sensory cortices might be less stimulus-driven and more top-down modulated than previously thought.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Davies, Lucy Anne. « Encoding strategies and mechanisms underpinning adaptation to stimulus statistics in the rat barrel cortex ». Thesis, University of Plymouth, 2011. http://hdl.handle.net/10026.1/559.

Texte intégral
Résumé :
It is well established that, following adaptation, cells adjust their sensitivity to reflect the global stimulus conditions. Two recent studies in guinea pig inferior colliculus (IC, Dean, Harper & McAlpine 2005) and rat barrel cortex (Garcia-Lazaro, Ho, Nair & Schnupp 2007) found that neural stimulus-response functions were displaced laterally in a manner that was dependent on the mean adapting stimulus. However, the direction of gain change, following adaptation to variance, was in contradiction to Information Theory, which predicts a decrease in gain with increased stimulus variance. On further analysis of the experimental data, presented within this thesis, it was revealed that the adaptive gain changes to global stimulus variance were, in fact, in the direction predicted by Information Theory. However, following adaptation to global mean amplitude, neural threshold was displaced to centre the SRF on inputs that were located on the edge of the stimulus distribution. It was found that adaptation scaled neural output such that the relationship between firing rate and local, as opposed to global, differences in stimulus amplitude was maintained; with the majority of cells responding to large differences in stimulus amplitude, on the 40ms scale. A small majority of cells responded to step-size differences, in amplitude, of either direction and were classed as novelty preferring. Adaptation to global mean was replicated in model neuron with spike-rate adaptation and tonic inhibition, which increased with stimulus mean. Adaptation to stimulus variance was replicated in three models 1: By increasing, in proportion to stimulus variance, background, excitatory and inhibitory firing rates in a balanced manner (Chance, Abbott & Reyes 2002), 2: A model of asymmetric synaptic depression (Chelaru & Dragoi 2008) and 3: a model combining non-linear input with synaptic depression. The results presented, within this thesis, demonstrate that neurons change their coding strategies depending upon the global levels of mean and variance within the sensory input. Under low noise conditions, neurons act as deviation detectors, i.e. are primed to respond to large changes in the stimulus on the tens of millisecond; however, under conditions of increased noise switch their encoding strategy in order to compute the full range of the stimulus distribution through adjusting neural gain.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Estebanez, Luc. « Caractérisation des traitements sensoriels dans le cortex à tonneaux du rat anesthésié ». Phd thesis, Ecole Normale Supérieure de Paris - ENS Paris, 2011. http://tel.archives-ouvertes.fr/tel-00696553.

Texte intégral
Résumé :
Chez les rongeurs, le traitement par le cortex à tonneaux de l'information sensorielle en provenance des vibrisses est mal compris. En effet, malgré l'aide fournie par l'organisation de ce cortex en une reproduction stricte de la topographie de l'appareil sensoriel, il a été difficile jusqu'à présent d'identifier de façon indiscutable le système de filtrage linéaire et non-linéaire qu'utilisent les neurones du cortex à tonneaux durant leur traitement des scènes tactiles auxquelles ils sont exposés. Pour mieux identifier ces traitements corticaux, nous avons développé un système de stimulation vibrissale permettant d'appliquer des déflections sur un grand nombre de vibrisses indépendamment, dans toutes les directions possibles et ce à travers une vaste gamme fréquentielle. En utilisant ce dispositif de stimulation multivibrissale durant des enregistrements extracellulaires de l'activité électrique des neurones du cortex à tonneaux de rats anesthésiés, nous avons pu identifier plus précisément le filtrage linéaire des stimulations vibrissales, qui s'avère similaire pour tous les neurones que nous avons pu enregistrer. Par ailleurs, en explorant les aspects non-linéaires du traitement effectué par ces neurones, nous avons noté qu'ils se séparent en deux familles distinctes : d'un côté des neurones "locaux" qui se sont avérés sensibles à des contrastes locaux dans les déflections multivibrissales. De l'autre, des neurones "globaux" capables au contraire de détecter des situations où les déflections sont similaires pour de nombreuses vibrisses. Enfin, en effectuant d'autres enregistrements dans la couche II/III du cortex à tonneaux, cette fois à l'aide d'un microscope deux-photons, nous avons pu noter que les neurones appartenant aux familles locales et globales étaient séparés en groupes spatialement distincts et que la position spatiale des neurones était plus généralement étroitement liée à l'ensemble de leurs propriétés de filtrage des déflections vibrissales.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Haack, Gina [Verfasser]. « Synaptic structure, physiology and morphology of layer 4 excitatory neurons in rat barrel cortex / Gina Haack ». Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018202870/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bender, Kevin James. « Mechanisms of deprivation-induced map plasticity at layer 4 to layer 2/3 synapses in rat barrel cortex / ». Diss., Connected to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3187822.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of California, San Diego, 2005.
Title from first page of PDF file (viewed January 11, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kesterson, Kay Lee. « Effects of Elevated Serotonin Levels on Patterns of GAP-43 Expression During Barrel Development in Rat Somatosensory Cortex ». University of Toledo Health Science Campus / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=mco1130268171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Doron, Guy [Verfasser], Michael [Akademischer Betreuer] Brecht, Benjamin [Akademischer Betreuer] Lindner et Matthew [Akademischer Betreuer] Larkum. « Psychophysical characterization of single neuron stimulation effects in rat barrel cortex / Guy Doron. Gutachter : Michael Brecht ; Benjamin Lindner ; Matthew Larkum ». Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://d-nb.info/1036680320/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Molina, Leonardo A. « Alteration of neural dynamics in the rat medial prefrontal cortex by an NMDA antagonist ». Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Neuroscience, c2012, 2012. http://hdl.handle.net/10133/3264.

Texte intégral
Résumé :
NMDA receptor antagonists such as Ketamine and PCP are potent psychoactive drugs used recreationally. This class of drug induces a number of phenomena in humans similar to those associated with schizophrenia including reduced selective attention, altered working memory, thought disorders and hallucinations. These psychotomimetic drugs have thus been used as a longstanding model to study this disease in animals. Importantly, such animal models allow for recording of brain activity using invasive techniques that are inappropriate in humans. Previous electrophysiological studies have shown that MK-801, a potent non-competitive NMDA receptor antagonist, increases gamma-frequency oscillations and produces a state of disinhibition in the prefrontal cortex of rats wherein the activity of putative excitatory pyramidal neurons increases while the activity of putative inhibitory interneurons decreases. These features are relevant to schizophrenia because molecular evidence suggests dysfunction of inhibitory cortical interneurons, while electroencephalographic recordings show altered gamma-frequency oscillations in this disease. It has been hypothesized that the disinhibited cortical state produces “noisy” information processing, but this has not been directly observed in the interaction of neuronal firing in either humans or animal models. We therefore tested this hypothesis by examining the synchronization of neural activity in the NMDA receptor antagonist model of schizophrenia. We used high-density electrophysiological recordings in the medial prefrontal cortex of freely moving rats before and after systemic injection of MK-801. Analysis of these recordings revealed that drug administration: (i) increases gamma power in field potentials in a manner dissociated from increased locomotion; (ii) does not change the gamma power in multi-unit activity; (iii) decreases spike synchronization among putative pyramidal neurons in the gamma range (30ms), and despite of this it (iv) does not change the synchronization between gamma-range field potentials or between sum-of-spikes and field potentials. These effects in synchronization may be revealing of potent cognitive effects associated with NMDA receptor antagonism, and may reflect impaired communication processing hypothesized to occur in schizophrenia.
xi, 42 leaves : ill. ; 29 cm
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yang, Danqing [Verfasser], Dirk [Akademischer Betreuer] Feldmeyer et Björn Michael [Akademischer Betreuer] Kampa. « Characterization of synaptic connections and cholinergic modulation of layer 6A microcircuitry in rat barrel cortex / Danqing Yang ; Dirk Feldmeyer, Björn Michael Kampa ». Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1187346438/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Qi, Guanxiao [Verfasser]. « Intra- and interlaminar excitatory synaptic connections of layer 4 spiny neurons and layer 6A pyramidal cells in rat barrel cortex / Guanxiao Qi ». Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1014298148/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sivarajan, Vishalini [Verfasser], Dirk [Akademischer Betreuer] Feldmeyer et Björn M. [Akademischer Betreuer] Kampa. « Morphological and functional characterisation of non-fast spiking interneurons in layer 4 microcircuitry of rat barrel cortex / Vishalini Sivarajan ; Dirk Feldmeyer, Björn M. Kampa ». Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1158667817/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Cecchetto, Claudia. « Neuronal Population Encoding of Sensory Information in the Rat Barrel Cortex : Local Field Potential Recording and Characterization by an Innovative High-Resolution Brain-Chip Interface ». Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424482.

Texte intégral
Résumé :
Neuronal networks are at the base of information processing in the brain. They are series of interconnected neurons whose activation defines a recognizable linear pathway. The main goal of studying neural ensembles is to characterize the relationship between the stimulus and the individual or general neuronal responses and the relation amongst the electrical activities of neurons within the network, also understanding how topology and connectivity relates to their function. Many techniques have been developed to study these complex systems: single-cell approaches aim to investigate single neurons and their connections with a limited number of other nerve cells; on the opposite side, low-resolution large-scale approaches, such as functional MRI (Magnetic Resonance Imaging) or electroencephalography (EEG), record signal changes in the brain that are generated by large populations of cells. More recently, multisite recording techniques have been developed to overcome the limitations of previous approaches, allowing to record simultaneously from huge neuronal ensembles with high spatial resolution and in different brain regions, i.e. by using implantable semiconductor chips. Local Field Potentials (LFPs), the part of electrophysiological signals that has frequencies below 500 Hz, capture key integrative synaptic processes that cannot be measured by analyzing the spiking activity of few neurons alone. Several studies have used LFPs to investigate cortical network mechanisms involved in sensory processing, motor planning and higher cognitive processes, like memory and perception. LFPs are also promising signals for steering neuroprosthetic devices and for monitoring neural activity even in human beings, since they are more easily and stably recorded in chronic settings than neuronal spikes. In this work, LFP profiles recorded in the rat barrel cortex through high-resolution CMOS-based needle chips are presented and compared to those obtained by means of conventional Ag/AgCl electrodes inserted into glass micropipettes, which are widely used tools in electrophysiology. The rat barrel cortex is a well-known example of topographic mapping where each of the whiskers on the snout of the animal is mapped onto a specific cortical area, called a barrel. The barrel cortex contains the somatosensory representation of the whiskers and forms an early stage of cortical processing for tactile information, along with the trigeminal ganglion and the thalamus. It is an area of great importance for understanding how the cerebral cortex works, since the cortical columns that form the basic building blocks of the neocortex can be actually seen within the barrel. Moreover, the barrel cortex has served as a test-bed system for several new methodologies, partly because of its unique and instantly identifiable form, and partly because the species that have barrels, i.e. rodents, are the most commonly used laboratory mammal. The barrel cortex, the whiskers that activate it and the intervening neural pathways have been increasingly the subject of focus by a growing number of research groups for quite some time. Nowadays, studies (such this one) are directed not only at understanding the barrel cortex itself but also at investigating issues in related fields using the barrel cortex as a base model. In this study, LFP responses were evoked in the target barrel by repeatedly deflecting the corresponding whisker in a controlled fashion, by means of a specifically designed closed-loop piezoelectric bending system triggered by a custom LabView acquisition software. Evoked LFPs generated in the barrel cortex by many consecutive whiskers' stimulations show large variability in shapes and timings. Moreover, anesthetics can deeply affect the profile of evoked responses. This work presents preliminary results on the variability and the effect of commonly used anesthetics on these signals, by comparing the distributions of evoked responses recorded from rats anesthetized with tiletamine-xylazine, which mainly blocks the excitatory NMDA receptors, and urethane, which conversely affects both the excitatory and inhibitory system, in a complex and balanced way yet preserving the synaptic plasticity. Representative signal shape characteristics (e.g., latencies and amplitude of events) extracted from evoked responses acquired from different cortical layers are analyzed and discussed. Statistical distributions of these parameters are estimated for all the different depths, in order to assess the variability of LFPs generated by individual mechanical stimulations of single whiskers along the entire cortical column. Preliminary results showed a great variability in cortical responses, which varied both in latency and amplitude across layers. We found significant difference in the latency of the first principal peak of the responses: under tiletamine-xylazine anesthetic, the responses or events of the evoked LFPs occurred later than the ones recorded while urethane was administered. Furthermore, the distributions of this parameter in all cortical layers were narrower in case of urethane. This behavior should be attributed to the different effects of these two anesthetics on specific synaptic receptors and thus on the encoding and processing of the sensory input information along the cortical pathway. The role of the ongoing basal activity on the modulation of the evoked response was also investigated. To this aim, spontaneous activity was recorded in different cortical layers of the rat barrel cortex under the two types of anesthesia and analyzed in the statistical context of neuronal avalanches. A neuronal avalanche is a cascade of bursts of activity in neural networks, whose size distribution can be approximated by a power law. The event size distribution of neuronal avalanches in cortical networks has been reported to follow a power law of the type P(s)= s^-a, with exponent a close to 1.5, which represent a reflection of long-range spatial correlations in spontaneous neuronal activity. Since negative LFP peaks (nLFPs) originates from the sum of synchronized Action Potentials (AP) from neurons within the vicinity of the recording electrode, we wondered if it were possible to model single nLFPs recorded in the basal activity traces by means of only one electrode as the result of local neuronal avalanches, and thus we analyzed the size (i.e. the amplitude in uV) distribution of these peaks so as to identify a suitable power-law distribution that could describe also these single-electrode records. Finally, the results of the first ever measurements of evoked LFPs within an entire column of the barrel cortex obtained by means of the latest generation of CMOS-based implantable needles, having 256 recording sites arranged into two different array topologies (i.e. 16 x 16 or 4 x 64, pitches in the x- and y-direction of 15 um and 33 um respectively), are presented and discussed. A propagation dynamics of the LFP can be already recognized in these first cortical profiles. In the next future, the use of these semiconductor devices will help, among other things, to understand how degenerating syndromes like Parkinson or Alzheimer evolve, by coupling detected behaviors and symptoms of the disease to neuronal features. Implantable chips could then be used as 'electroceuticals', a newly coined term that describes one of the most promising branch of bioelectronic medicine: they could help in reverting the course of neurodegenerative diseases, by constituting the basis of neural prostheses that physically supports or even functionally trains impaired neuronal ensembles. High-resolution extraction and identification of neural signals will also help to develop complex brain-machine interfaces, which can allow intelligent prostheses to be finely controlled by their wearers and to provide sophisticated feedbacks to those who have lost part of their body or brain functions.
Le reti neuronali sono alla base della codifica dell'informazione cerebrale. L'obiettivo principale dello studio delle popolazioni neuronali è quello di caratterizzare la relazione tra uno stimolo e la risposta individuale o globale dei neuroni e di studiare il rapporto tra le varie attività elettriche dei neuroni appartenenti ad una particolare rete, comprendendo anche come la topologia e la connettività della rete neuronale influiscano sulla loro funzionalità. Fino ad oggi, molte tecniche sono state sviluppate per studiare questi sistemi complessi: studi a singola cellula mirano a studiare singoli neuroni e le loro connessioni con un numero limitato di altre cellule; sul lato opposto, approcci su larga scala e a bassa risoluzione, come la risonanza magnetica funzionale o l'elettroencefalogramma, registrano segnali elettrofisiologici generati nel cervello da vaste popolazioni di cellule. Più recentemente, sono state sviluppate tecniche di registrazione multisito che mirano ad abbattere le limitazioni dei precedenti approcci, rendendo possibile la misurazione ad alta risoluzione di segnali generati da grandi ensamble neuronali e da diverse regioni del cervello simultaneamente, ad esempio mediante l'uso di chip impiantabili a semiconduttore. I potenziali di campo locali (LFP) catturano processi sinaptici chiave che non possono essere estratti dall'attività di spiking di qualche neurone isolato. Numerosi studi hanno utilizzato gli LFP per studiare i meccanismi corticali coinvolti nei processi sensoriali, motori e cognitivi, come la memoria e la percezione. Gli LFP rappresentano anche dei segnali interessanti nell'ambito delle applicazioni neuroprotesiche e per monitorare l'attività cerebrale negli esseri umani, dal momento che possono essere registrati più stabilmente e facilmente in impianti cronici rispetto agli spike neuronali. In questo studio, sono riportati dei profili LFP registrati dalla barrel cortex di ratto tramite chip ad ago ad alta risoluzione basati su tecnologia CMOS e confrontati con quelli ottenuti tramite elettrodi convenzionali in Ag/AgCl inseriti in micropipette di vetro, strumenti comunemente usati in elettrofisiologia. La barrel cortex di ratto è un esempio ben noto di mapping topografico, nel quale ogni baffo sul muso dell'animale è mappato in una specifica area corticale, chiamata barrel. La barrel cortex contiene la rappresentazione sensoriale dei baffi dell'animale e rappresenta uno dei primi stadi di elaborazione dell'informazione tattile, insieme al ganglio del trigemino e al talamo. Essa è un'area di primaria importanza per lo studio del funzionamento della corteccia cerebrale, visto che le colonne corticali che formano i blocchi di base della neocorteccia possono essere visualizzati facilmente all'interno della barrel cortex. La barrel cortex inoltre è utilizzata come sistema di test in numerose metodologie innovative, grazie alla sua struttura unica ed istantaneamente identificabile, e grazie anche al fatto che le specie dotate di barrel, i roditori, sono gli animali da laboratorio più comuni. La barrel cortex e le sue interconnessioni neuronali sono stati oggetto delle ricerche più disparate in questi ultimi decenni. Attualmente, alcuni studi (come questo) non mirano solamente a comprendere meglio la barrel cortex, ma anche ad analizzare problematiche in campi scientifici collegati, utilizzando la barrel cortex come modello base. In questo lavoro, sono stati evocati segnali LFP nella barrel cortex tramite deflessioni ripetute dei baffi dell'animale, realizzate in modo controllato tramite un sistema di deflessione piezoelettrica a closed-loop innescato da un sistema di acquisizione LabView. Le risposte evocate generate nella barrel dalla stimolazione ripetuta dei baffi presentano elevata variabilità nella forma e nelle latenze temporali. Inoltre, il tipo di anestesia utilizzata può influenzare profondamente il profilo della risposta evocata. Questo studio riporta i risultati preliminari sulla variabilità della risposta neuronale e sull'effetto di due anestetici di uso comune su questi segnali, confrontando le distribuzioni delle risposte evocate in ratti anestetizzati con tiletamina-xylazina (il quale agisce prevalentemente sui recettori eccitatori di tipo NMDA) e uretano (che agisce in modo più bilanciato e complesso su entrambi i sistemi eccitatori ed inibitori, preservando la plasticità sinaptica). Sono state analizzate e discusse alcune caratteristiche rappresentative del segnale evocato (ad esempio, le latenze temporali e l'ampiezza degli eventi), registrato a varie profondità corticali. Per tutte le prondità corticali acquisite, sono state stimate le distribuzioni statistiche di tali parametri, in modo da valutare la variabilità degli LFP evocati dalle stimolazioni meccaniche individuali delle vibrisse del ratto lungo l'intera colonna corticale. I primi risultati presentano una grande variabilità nelle risposte corticali, sia in latenza che in ampiezza. Inoltre, è stata riscontrata una differenza significativa nella latenza del primo picco principale delle risposte evocate: gli LFP evocati in animali anestetizzati con tiletamina-xylazina presentavano una latenza più lunga di quelli registrati in ratti anestetizzati con uretano. Inoltre, le distribuzioni dei parametri analizzati erano più strette e piccate in uretano, in corrispondenza di tutte le profondità corticali. Questo comportamento è sicuramente da attribuire al differente meccanismo d'azione dei due anestetici su specifici recettori sinaptici, e quindi nell'elaborazione e nella trasmissione dell'informazione sensoriale lungo tutto il percorso corticale. E' stato inoltre discusso il ruolo della attività basale nella modulazione della risposta evocata. A questo proposito, è stata registrata l'attività spontanea in corrispondenza dei vari layer corticali ed analizzata nel contesto statistico delle 'valanghe neuronali'. Una valanga neuronale è una cascata di attività elettrica in una rete neuronale, la cui distribuzione statistica dei parametri principali (dimensione e vita media) può essere approssimata da una legge di potenza. La distribuzione delle dimensioni di una valanga in una rete neuronale segue una legge di potenza del tipo P(s)=s^-a, con a=1.5. Tale esponente è un riflesso delle correlazioni spaziali a lungo raggio nell'attività neuronale spontanea. Dal momento che i picchi negativi (nLFPs) nelle tracce elettrofisiologiche originano dalla somma di potenziali d'azione sincronizzati generati da neuroni posti nelle vicinanze dell'elettrodo di registrazione, ci siamo chiesti se fosse possibile modellizare i singoli nLFP registrati nell'attività basale tramite un singolo elettrodo come il risultato di valanghe neuronali locali. Pertanto, abbiamo analizzato la distribuzione della dimensione (cioè l'ampiezza in uV) di tali picchi, in modo da identificare una distribuzione power-law appropriata, che potesse descrivere anche le registrazioni a singolo elettrodo. Infine, sono presentate e discusse le prime registrazioni in assoluto degli LFP evocati lungo un'intera colonna corticale ottenute tramite l'ultima generazione di chip impiantabili a tecnologia CMOS. Questi ultimi presentano una matrice di 256 siti di registrazione, organizzata secondo due possibili topologie, 16 x 16 o 4 x 64, e avente una distanza tra gli elettrodi pari a 15 um o 33 um rispettivamente. Una precisa dinamica di propagazione dei potenziali evocati può già essere riconosciuta in questi primissimi profili corticali. Nel prossimo futuro, l'uso di questi dispositivi a semiconduttore potrà aiutare a comprendere il decorso di sindromi neurodegerative come il Parkinson o l'Alzheimer, associando sintomi e comportamenti tipo della malattia a specifiche caratteristiche neuronali. I chip impiantabili potranno anche essere utilizzati come 'electroceuticals', ossia potranno aiutare a rallentare (o addirittura a capovolgere) il decorso delle malattie neurogenerative, costituendo le basi di protesi neuronali in grado di sostenere fisicamente o allenare funzionalmente le popolazioni neuronali danneggiate. L'identificazione e il rilevamento di segnali neuronali ad alta risoluzione aiuterà anche a sviluppare complesse interfacce cervello-macchina, che consentiranno il controllo di protesi intelligenti e che forniranno sofisticati meccanismi di feedback a chi ha perso l'uso di alcune parti del proprio corpo o determinate funzioni cerebrali.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Marx, Manuel [Verfasser]. « Intralaminar and translaminar microcircuits involving excitatory and inhibitory neurons in layer 6B of the somatosensory rat barrel cortex : a morphological, physiological and immunofluorescence study / Manuel Marx ». Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1051528771/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Williams, Mark. « Dynamique de l’excitabilité corticale dans l’épilepsie-absence et intégration sensorielle Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model Building Up Absence Seizures in the Somatosensory Cortex : From Network to Cellular Epileptogenic Processes ». Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS608.

Texte intégral
Résumé :
Une crise d’épilepsie résulte de la survenue soudaine d’une activité neuronale anormalement intense, rythmique et synchrone dans une région plus ou moins étendue du système nerveux central. Les conséquences cliniques sont extrêmement variées, selon les zones cérébrales affectées et la durée des crises, allant de brèves secousses musculaires très focalisées à une perte de conscience complète, éventuellement associée à des convulsions. Dans le cas de l’épilepsie-absence, une épilepsie généralisée d’origine génétique survenant fréquemment chez les enfants, les crises s’expriment essentiellement par une suspension des processus conscients dans toutes leurs dimensions, y compris une interruption des perceptions conscientes. Ces symptômes sont corrélés à des décharges de pointes-ondes (DPO) dans les électroencéphalogrammes (EEG) bilatéraux. Les mécanismes physiopathologiques des altérations de conscience au cours des crises d’épilepsie-absence restent l’objet de débats intenses, opposant des altérations fonctionnelles à grande échelle à un filtrage des informations exogènes par les oscillations épileptiques. Au cours de mes recherches, j’ai exploré l’hypothèse alternative, mais non exclusive, d’un dysfonctionnement dynamique dans les processus d’intégration sensorielle au sein des circuits thalamo-corticaux primaires. Des explorations électrophysiologiques fines n’étant pas réalisables chez les enfants épileptiques, j’ai utilisé un modèle génétique présentant une forte homologie avec la pathologie humaine : le Genetic Absence Epilepsy Rat from Strasbourg (GAERS). En combinant in vivo des enregistrements électrocorticographiques (ECoG) et intracellulaires dans le cortex somatosensoriel primaire (S1), précédemment identifié comme le site de déclenchement des crises, j’ai d’abord analysé les propriétés intégratives et d’excitabilité des neurones pyramidaux du cortex S1, durant et en dehors des crises, et je les ai comparées à celles des neurones homologues chez des rats non épileptiques. J’ai montré que ces neurones présentent lors des périodes inter-ictales une excitabilité accrue, s‘exprimant par une augmentation de la décharge des neurones en réponse à des stimulations excitatrices d’intensité croissante ainsi qu’une tendance exacerbée à se re-polariser suite à une hyperpolarisation de grande amplitude, suggérant un accroissement du courant cationique h. Au cours des crises, les mêmes neurones montraient des changements différentiels dans leur excitabilité membranaire selon la composante pointe ou onde dans l‘ECoG correspondant. La pointe était associée à une augmentation de décharge évoquée par un courant dépolarisant et à une diminution de résistance membranaire. Symétriquement, l’onde était corrélée avec une augmentation de résistance membranaire et une diminution d’excitabilité. Ces changements dynamiques des propriétés intégratives neuronales suggèrent une instabilité des réponses corticales lors du cycle pointe-onde pouvant « brouiller » les signaux sensoriels lors des crises. J’ai testé cette hypothèse en analysant les réponses des neurones corticaux, et des neurones thalamo-corticaux correspondants, à des stimulations appliquées sur les vibrisses controlatérales. Bien que les réponses synaptiques induites dans les neurones du cortex S1 par les stimulations sensorielles n’étaient pas globalement altérées lors des crises, elles étaient plus amples et plus efficaces pour déclencher des potentiels d’action pendant l’onde comparé à la composante pointe. Cet accroissement relatif de la réponse neuronale lors de l’onde ECoG résulte probablement de l’accroissement de résistance membranaire précédemment décrit, d’une augmentation de la force électromotrice des courants synaptiques glutamatergiques et de la forte probabilité de décharge des neurones thalamiques correspondants lors de cette composante
An epileptic seizure results from the sudden occurrence of abnormally intense, rhythmic and synchronous neuronal activity, in a more or less broad region of the central nervous system. The clinical consequences are extremely varied, depending on the affected brain areas and the duration of the seizures, ranging from brief localized muscular twitches to a complete loss of consciousness, potentially associated with convulsions. Absence epilepsy is a generalised epilepsy of genetic origin, mostly affecting children of school age. During absence attacks, children experience a suspension of conscious processes in all their dimensions, including an interruption of conscious perceptions. These symptoms are correlated with bilateral spike-wave discharges (SWD) in the electroencephalograms (EEGs). The pathophysiological mechanisms underlying the alteration of consciousness during absences remain the subject of an intense debate, opposing functional dysfunctions on large scale neural networks to a filtering of sensory information by epileptic oscillations. During my PhD research, I explored the alternative, but not exclusive, hypothesis of a dynamic dysfunction in sensory integration processes within primary thalamo-cortical circuits. Given that multi-scale electrophysiological investigations cannot be conducted in epileptic children, I used a genetic model prsenting a strong homology with the human pathology: the Genetic Absence Epilepsy Rat from Strasbourg (GAERS).By combining in vivo electrocorticographic (ECoG) and intracellular recordings in the primary somatosensory cortex (S1), previously identified as the site of seizure initiation, I first analysed the integrative properties and excitability of S1 pyramidal neurons, during and in between seizures, and compared them to those measured in homologous neurons from non-epileptic rats. I showed that these neurons exhibit a higher excitability during inter-ictal periods, expressed as an increased firing response to excitatory stimuli of increasing intensity, as well as an exacerbated tendency to depolarize following a hyperpolarization of large amplitude, suggesting an augmented cationic current h. During seizures, the same neurons showed specific changes in their membrane excitability, according to the spike or wave component in the corresponding ECoG. The spike component was associated with increased current-evoked firing and a decreased membrane resistance. Conversely, the wave was correlated with an increase in membrane resistance and a decrease in excitability. These dynamic changes in neuronal integrative properties suggest an instability of cortical responses during the spike-wave epileptic cycle that could "scramble" sensory signals during seizures. I tested this hypothesis by analysing the sensory responses of cortical neurons, and corresponding thalamo-cortical neurons, to stimulations applied to contralateral whiskers. Although synaptic responses induced in S1 neurons by sensory stimuli were not globally impaired during seizures, they were larger and more likely to trigger action potentials during wave compared to the spike component. This relative increase in neuronal responsiveness during the ECoG wave probably results from the previously described increase in membrane resistance, an augmented driving force of glutamatergic synaptic currents and a higher probability of action potentials discharge in the corresponding thalamic neurons during this component. My doctoral research indicates that sensory inputs processing persists in the thalamo-cortical circuits during SWDs, but that the alternation of the spike and wave components introduces a strong instability of the neuronal responses during seizures. This new pathophysiological mechanism could contribute to the inability to generate a conscious, stable and effective, perception during generalised epileptic seizures
Styles APA, Harvard, Vancouver, ISO, etc.
20

Machado, Lemos Rodrigues Manuel Jürgen [Verfasser], Klaus [Gutachter] Funke et Zoltán F. [Gutachter] Kisvárday. « Modulation of event-related potentials by deviance detection during mismatch negativity-like oddball paradigm in rat barrel cortex / Manuel Jürgen Machado Lemos Rodrigues ; Gutachter : Klaus Funke, Zoltán F. Kisvárday ; Medizinische Fakultät ». Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1150509538/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bessieres, Benjamin. « Implication fonctionnelle des récepteurs NMDA corticaux au cours des processus de consolidation systémique et d’oubli de la mémoire associative chez le rat ». Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0039/document.

Texte intégral
Résumé :
Initialement encodés dans l’hippocampe, les nouveaux souvenirs déclaratifs deviennent progressivement dépendants d’un réseau distribué de neurones corticaux au cours de leur maturation dans le temps. Cependant, les mécanismes cellulaires et moléculaires sous-­‐tendant la consolidation et le stockage à long terme de ces nouveaux souvenirs au sein des réseaux corticaux restent à élucider. Les récepteurs N-­‐méthyl-­‐D-­‐aspartate (RNMDA) jouent un rôle essentiel dans l’induction et la régulation des changements synaptiques sous-­‐tendant les processus mnésiques de type associatifs. Sur la base de leurs propriétés biophysiques respectives, nous avons formulé l’hypothèse que la redistribution synaptique des deux formes principales de sous-­‐unités GluN2 exprimées dans le néocortex adulte (GluN2A and GluN2B), pourrait constituer un mécanisme de régulation de la plasticité synaptique supportant l’intégration et la stabilisation progressive des souvenirs au niveau cortical au cours du processus de consolidation mnésique. En combinant, chez le rat adulte, une approche comportementale, biochimique, pharmacologique et des stratégies innovantes consistant à manipuler le trafic de sous-­‐unités des RNMDA à la surface synaptique, nos résultats mettent en évidence un changement cortical dans la composition synaptique en sous unités GluN2, lequel régule la stabilisation progressive de la mémoire à long terme au sein des réseaux corticaux. Nous avons d'abord établi que les RNMDA contenant la sous-­‐unité GluN2B, via leur interaction spécifique avec une protéine clé de la signalisation synaptique, la CaMKII, sont préférentiellement recrutés lors de la phase d’encodage pour permettre l’allocation des nouveaux souvenirs olfactifs associatifs dans un réseau de neurones corticaux spécifique. Au cours du processus de consolidation, nous avons révélé que la redistribution des RNMDA corticaux contenant les sous-­‐unités GluN2B vers l’extérieur ou l’intérieur de l’espace synaptique suite à l’apprentissage, contrôle respectivement la stabilisation de la mémoire à long terme et son oubli au cours du temps. Enfin, renforcer l’acquisition initiale conduit à une augmentation plus rapide du ratio post-­‐synaptique GluN2A/GluN2B et accélère la cinétique du dialogue hippocampo-­‐cortical, ce qui se traduit par une stabilisation accélérée des souvenirs au sein des réseaux corticaux. Pris dans leur ensemble, nos travaux montrent que le trafic des GluN2B-­‐RNMDA corticaux représente un mécanisme cellulaire majeur conditionnant le devenir des traces mnésiques (i.e. stabilisation versus oubli) et apporte un éclairage nouveau sur la façon dont le cerveau organise les souvenirs récents et anciens
Initially encoded in the hippocampus, new declarative memories are thought to become progressively dependent on a broadly distributed cortical network as they mature and consolidate over time. Although we have a good understanding of the mechanisms underlying the formation of new memories in the hippocampus, little is known about the cellular and molecular mechanisms by which recently acquired information is transformed into remote memories at the cortical level. The N-­‐methyl-­‐D-­‐aspartate receptor (NMDAR) is widely known to be a key player in many aspects of long-­‐term experience-­‐dependent synaptic changes underlying associative memory processes. Based on their distinct biophysical properties, we postulated that the activity-­‐dependent surface dynamics of the two predominant GluN2 subunits (GluN2A and GluN2B) of NMDARs present in the adult neocortex could provide a metaplastic control of synaptic plasticity supporting the progressive embedding and stabilization of long-­‐lasting associative memories within cortical networks during memory consolidation. By combining, in adult rats, behavioral, biochemical, pharmacological and innovative strategies consisting in manipulating trafficking of NMDAR subunits at the cell membrane, our results identify a cortical switch in the synaptic GluN2-­‐containing NMDAR composition which drives the progressive embedding and stabilization of long-­‐lasting memories within cortical networks. We first established that cortical GluN2B-­‐containing NMDARs and their specific interactions with the synaptic signaling CaMKII protein are preferentially recruited upon encoding of associative olfactory memories to enable neuronal allocation, the process via which a new memory trace is thought to be allocated to a given neuronal network. As these memories are progressively processed and embedded into cortical networks, we observed a learning-­‐induced surface redistribution of cortical GluN2B-­‐containing NMDARs outwards or inwards synapses which respectively drives the progressive stabilization and subsequent forgetting of remote memories over time. Finally, increasing the strength, upon encoding, of the initial memory leads to a faster increase of the cortical GluN2A/GluN2B synaptic ratio and accelerates the kinetics of hippocampal-­‐cortical interactions, which translated into a faster stabilization of memories within cortical networks. Taken together, our results provide evidence that GluN2B-­‐NMDAR surface trafficking controls the fate of remote memories (i.e. stabilization versus forgetting), shedding light on a novel mechanism used by the brain to organize recent and remote memories
Styles APA, Harvard, Vancouver, ISO, etc.
22

Thompson, Garth John. « Neural basis and behavioral effects of dynamic resting state functional magnetic resonance imaging as defined by sliding window correlation and quasi-periodic patterns ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49083.

Texte intégral
Résumé :
While task-based functional magnetic resonance imaging (fMRI) has helped us understand the functional role of many regions in the human brain, many diseases and complex behaviors defy explanation. Alternatively, if no task is performed, the fMRI signal between distant, anatomically connected, brain regions is similar over time. These correlations in “resting state” fMRI have been strongly linked to behavior and disease. Previous work primarily calculated correlation in entire fMRI runs of six minutes or more, making understanding the neural underpinnings of these fluctuations difficult. Recently, coordinated dynamic activity on shorter time scales has been observed in resting state fMRI: correlation calculated in comparatively short sliding windows and quasi-periodic (periodic but not constantly active) spatiotemporal patterns. However, little relevance to behavior or underlying neural activity has been demonstrated. This dissertation addresses this problem, first by using 12.3 second windows to demonstrate a behavior-fMRI relationship previously only observed in entire fMRI runs. Second, simultaneous recording of fMRI and electrical signals from the brains of anesthetized rats is used to demonstrate that both types of dynamic activity have strong correlates in electrophysiology. Very slow neural signals correspond to the quasi-periodic patterns, supporting the idea that low-frequency activity organizes large scale information transfer in the brain. This work both validates the use of dynamic analysis of resting state fMRI, and provides a starting point for the investigation of the systemic basis of many neuropsychiatric diseases.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Nevian, Thomas [Verfasser]. « Calcium dynamics in dendrites and spines of spiny neurons in the somatosensory 'barrel' cortex of the rat / presented by Thomas Nevian ». 2003. http://d-nb.info/966590384/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Dalefield, Martin. « Temporal Dynamics of Cortical Adaptation ». Master's thesis, 2015. http://hdl.handle.net/1885/112033.

Texte intégral
Résumé :
Adaptation of cortical neurons in response to prior stimulus history and the timecourse of recovery from adaptation were investigated at the level of action potentials using the juxtacellular single-cell loose-patch recording paradigm in the barrel cortex of juvenile rats. An experimental protocol that paired adaptor and test deflections of the principal whisker for a given neuron was applied in two phases of the study. Experiment 1 involved two adaptor conditions, differentiated by the duration of the adaptor stimulus, presented with a limited range of four adaptor-test temporal separations. Experiment 2 involved a single adaptor condition followed by an expanded range of adaptor-test temporal separations. Experiment 1 demonstrated that the time-course for recovery from adaptation was dependent on the duration of the adaptor stimulus. Experiment 2 demonstrated that recovery of action potential responses in the cortical population follows a sigmoidal pattern, in contrast to the exponential decay of adaptation at the post-synaptic potential level. Data from both experiments provided evidence for adaptation increasing trial-to-trial variability of neuronal responses to stimuli as well as reducing discriminability between the presence or absence of a test stimulus of similar characteristics to the adaptor stimulus. Morphological recovery was achieved for a sample of neurons, and case studies of the relationship between neurons’ morphology and functional behaviour provide insights for further investigations into adaptation and functional diversity within the cortex.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ji, Chin-Yi, et 紀欽益. « Surround Modulation in Different Cortical Layers of Rat Barrel Field Cortex ». Thesis, 2019. http://ndltd.ncl.edu.tw/handle/n37ua9.

Texte intégral
Résumé :
碩士
國立臺灣大學
心理學研究所
107
The discrete architecture modules of the rat barrel cortex are an important animal model in studying cortical coding of sensory information and its circuitry. Neurons within the same barrel tend to respond mainly to the deflection of a single whisker (called ‘principal whisker’, PW). However, their responses also modulated when surrounding whiskers (SWs) are deflected alone with the PW. When studying the surround modulation effect, most previous studies deflect only the PW and a single SW, a scheme differs significantly from the synchronous movement of multi-whiskers when rats are exploring the environment. In this study, we aimed on the effect of surround modulation by deflecting multi-whiskers simultaneously with different stimulus patterns: a single whisker (single condition), multi-whiskers (n = 5, chosen randomly) moving in the same direction (correlated condition), multi-whiskers (n = 5, chosen randomly) moving in different directions (uncorrelated condition). We tried to address three questions. First, how firing rate and directional tuning were affected by surround modulation in different stimulus patterns (the contextual effect). Second, were the effect of surround modulation different across different cortical layers. Third, in what degree the response in barrel cortex could be characterized by the linear-nonlinear model. Half of the recorded neurons showed significant surround modulation effect. Comparing to the single-whisker condition, neurons in the multi-whisker conditions tended to have lower firing rates and higher directional selectivity indices. Neurons with significant surround suppression were three times as many as those with significant surround facilitation, indicating that surround suppression was dominant in barrel field cortex. The contextual effect in multi-whisker conditions was found only in the supragranular layer – the reduction in firing rate was larger in the correlated condition than in the uncorrelated condition, maybe due to abandon lateral connections among neurons with similar properties. In contrast, the contextual effect was not evident in other two layers. Moreover, cortical responses in barrel field under multi-whisker conditions were less characterized by the LN model than those under single whisker condition. Overall, these results indicated that surround suppression was dominant especially for neurons in the supragranular layer of the barrel field cortex, which might serve an important role in integrating inputs from the granular layer. In contrast, neurons in the granular layer were less affected by surround stimulation and might serve as critical feature detectors (Brecht, 2007).
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhang, Wanying. « In vivo Dissection of Long Range Inputs to the Rat Barrel Cortex ». Thesis, 2014. https://doi.org/10.7916/D8BV7F7X.

Texte intégral
Résumé :
Layer 1 (L1) of the cerebral cortex is a largely acellular layer that consists mainly of long-range projection axons and apical dendrites of deeper pyramidal neurons. In the rodent barrel cortex, L1 contains axons from both higher motor and sensory areas of the brain. Despite the abundance of synapses in L1 their actual contribution to sensory processing remains unknown. We investigated the impact of activating long-range axons on barrel cortex L2/3 pyramidal neurons in vivo using a combination of optogenetics and eletrophysiological techniques. The reason we target our investigation on L2/3 is because of its well-known sparse sensory responses. We hypothesize that long-range top-down inputs via L1 can provide the additional inputs necessary to unleash L2/3 and strongly influence sensory processing in S1. We focused on three main sources of BC-projecting synapses: the posterior medial nucleus of the thalamus (POm, the secondary somatosensory nucleus), the primary motor cortex (M1), and the secondary somatosensory cortex (S2). Here we report that while activation of POm axons elicits strong EPSPs in most recorded L2/3 cells, activation of M1 or S2 axons elicited small or no detectable responses. Only POm activation boosted sensory responses in L2/3 pyramidal neurons. We also found that during wakefulness and under sedation, POM activation not only elicited a strong fast-onset EPSP in L2/3 neurons, but also a delayed persistent response. Pharmacological inactivation of POM abolished this persistent response but not the initial synaptic volley to L2/3. We conclude that the persistent response requires intrathalamic or thalamocortical circuits and cannot be mediated by specialized synaptic terminals or intracortical circuitry. Overall, our study suggests that the higher order thalamic nucleus provides more powerful network effect on L2/3 sensory processing than higher order cortical feedback inputs. POm activation not only directly boosts L2/3 sensory responses, but is also capable of influencing S1 signal processing for prolonged periods of time after stimulus onset and can potentially be important for other cognitive aspects of sensory computation.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chen, Chi-Sheng, et 陳繼勝. « Functional reorganization between barrel row and barrel arc in rat first somatosensory cortex : A 14C-2-deoxyglucose study ». Thesis, 1997. http://ndltd.ncl.edu.tw/handle/38454619251825737756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kuo, Kuo-Hsing, et 郭國星. « Direction of functional reorganization in the rat barrel cortex : A 14C-2-Deoxyglucose Study ». Thesis, 1994. http://ndltd.ncl.edu.tw/handle/89244261308305663855.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Yang, Jenq-Wei [Verfasser]. « Neural network activity in the neonatal rat barrel cortex in vivo / vorgelegt von Jenq-Wei Yang ». 2011. http://d-nb.info/1012656098/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Dyhrfjeld-Johnsen, Jonas [Verfasser]. « Investigations of microcircuitry in the rat barrel cortex using an experimentally constrained layer V pyramidal neuron model / vorgelegt von Jonas Dyhrfjeld-Johnsen ». 2004. http://d-nb.info/970132964/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Agahari, Fransiscus Adrian. « Serotonergic Modulation of Glutamate Release in Layer II of Rat Somatosensory Cortex : Mechanisms and Network Specificity ». Phd thesis, 2017. http://hdl.handle.net/1885/133300.

Texte intégral
Résumé :
As axons from the raphe nuclei densely innervate the somatosensory cortex, the modulation of transmitter release by serotonin (5-HT) was investigated in pyramidal cells in layer II of rat barrel cortex. The idea was that 5-HT, via presynaptic 5-HT2 receptors (5-HT2R) coupled to Gq proteins, activates Ca2+ release from stores to increase spontaneous transmitter release. Addition of 10 µM 5-HT, in the presence of TTX and gabazine, caused a waxing and waning of the instantaneous mEPSC frequency. Specifically, 5-HT increased the frequency by 28 ± 7% within 5 minutes (phase 1). Later, within 5 – 12 minutes, it dropped to below control (-15 ± 3%; phase 2). Thereafter, it resurged back to 27 ± 7% (phase 3). Concomitantly, the mEPSC amplitude remained unaffected. These changes in spontaneous release were mediated by 5-HT2CR and 5-HT2AR, with the former providing a larger contribution. The downstream signalling was verified by blocking PLCβ, IP3R, and Ca2+ release from stores. The findings were consistent with the activation of a classical Gq cascade. Inhibiting PKC by Gö 6983 rendered the increase sustained, suggesting that a phosphorylation caused the reduction in frequency after reaching an initial peak. These findings were restricted to a subset of cells (47%), which were subsequently termed responders. No change occurred in non-responders. The two groups differed by the size of the reduction in input resistance (Rin) and the change in holding current. For responders, the former was large, but the latter small. In contrast, for non-responders, the former was small, but the latter large. In connected pairs of pyramidal cells in this layer, 5-HT depressed the EPSC amplitude by 49 ± 3% without significantly altering the paired-pulse ratio. This depression occurred downstream of 5-HT2R activation. It was caused by Gβγ, because it was blocked by Gβγ-binding peptides (mSIRK/ct-SNAP-25). As Gβγ most likely inhibited voltage-dependent Ca2+ channels, limited influx caused the EPSC depression. Because 5-HT depressed EPSCs in most pairs, specificity in the connectivity between responders and non-responders must exist. In fact, responders were typically post-, whereas non-responders presynaptic. Consistent with this idea, the mEPSC frequency only increased in post-, but not presynaptic cells. Furthermore, postsynaptic cells showed a large drop in Rin associated with a small outward current. Conversely, presynaptic cells showed a small drop in Rin together with a considerable hyperpolarization. My results revealed that, in contrast to the classical tenet of Katz’ hypothesis of transmitter release, spontaneous transmitter release increased, whereas evoked release depressed downstream of 5-HT2R activation. The two mechanisms dissociated at the Gq protein level. Spontaneous release was increased by Ca2+ release from stores, whilst evoked release was depressed most likely via inhibition of VDCC by Gβγ. Because of their restriction to responders, these mechanisms would differentially affect the neocortical microcircuitry.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie