Littérature scientifique sur le sujet « Raman resonance »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Raman resonance ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Raman resonance"

1

Kitagawa, Teizo. « Resonance Raman spectroscopy ». Journal of Porphyrins and Phthalocyanines 06, no 04 (avril 2002) : 301–2. http://dx.doi.org/10.1142/s1088424602000361.

Texte intégral
Résumé :
The main topics in resonance Raman spectroscopy presented at ICPP-2 in Kyoto are briefly discussed. These include: (i) coherent spectroscopy and low frequency vibrations of ligand-photodissociated heme proteins, (ii) vibrational relaxation revealed by time-resolved anti-Stokes Raman spectroscopy, (iii) electron transfer in porphyrin arrays, (iv) vibrational assignments of tetraazaporphyrins and (v) resonance Raman spectra of an NO storing protein, nitrophorin.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yannoni, C. S., R. D. Kendrick et P. K. Wang. « Raman magnetic resonance ». Physical Review Letters 58, no 4 (26 janvier 1987) : 345–48. http://dx.doi.org/10.1103/physrevlett.58.345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Robert, Bruno. « Resonance Raman spectroscopy ». Photosynthesis Research 101, no 2-3 (1 juillet 2009) : 147–55. http://dx.doi.org/10.1007/s11120-009-9440-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Raser, Lydia N., Stephen V. Kolaczkowski et Therese M. Cotton. « RESONANCE RAMAN AND SURFACE-ENHANCED RESONANCE RAMAN SPECTROSCOPY OF HYPERICIN ». Photochemistry and Photobiology 56, no 2 (août 1992) : 157–62. http://dx.doi.org/10.1111/j.1751-1097.1992.tb02142.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Frey, Gitti L., Reshef Tenne, Manyalibo J. Matthews, M. S. Dresselhaus et G. Dresselhaus. « Raman and resonance Raman investigation ofMoS2nanoparticles ». Physical Review B 60, no 4 (15 juillet 1999) : 2883–92. http://dx.doi.org/10.1103/physrevb.60.2883.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carey, Paul R. « Resonance Raman labels and Raman labels ». Journal of Raman Spectroscopy 29, no 10-11 (octobre 1998) : 861–68. http://dx.doi.org/10.1002/(sici)1097-4555(199810/11)29:10/11<861 ::aid-jrs323>3.0.co;2-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

LI, YUANZUO, XIUMING ZHAO, YONGQING LI, PENG SONG, YONG DING, LILI JI, XIAOGUANG LU et MAODU CHEN. « INTERMOLECULAR CHARGE TRANSFER ENHANCED RESONANCE RAMAN SCATTERING OF CHARGE TRANSFER COMPLEX ». Journal of Theoretical and Computational Chemistry 11, no 02 (avril 2012) : 273–82. http://dx.doi.org/10.1142/s0219633612500186.

Texte intégral
Résumé :
Intermolecular charge transfer (ICT) enhanced resonance Raman scattering of charge transfer complex is investigated experimentally and theoretically. The evidence for intermolecular charge transfer on resonance electronic transition is visualized with charge difference density. The resonant Raman spectra reveal that the intensity of Raman peaks are strongly enhanced on the order of 104, by comparing with the normal Raman scattering spectrum. ICT complexes can be used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules. These strong charge-transfer Raman peaks would enable discrimination of important target molecules from interferants that is normal Raman scattering for the isolated target molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
8

An, Xuhong, Weiwei Zhao, Yuanfang Yu, Wenhui Wang, Ting Zheng, Yueying Cui, Xueyong Yuan, Junpeng Lu et Zhenhua Ni. « Resonance Raman scattering on graded-composition WxMo1–xS2 alloy with tunable excitons ». Applied Physics Letters 120, no 17 (25 avril 2022) : 172104. http://dx.doi.org/10.1063/5.0086278.

Texte intégral
Résumé :
Exciton–phonon interactions strongly affect photocarrier dynamics in two-dimensional materials. Here we report on resonant Raman experiments based on a graded composition W xMo1– xS2 alloy with tunable exciton energy without changing the energy of excitation laser. The intensities of the four most pronounced Raman features in the alloy are dramatically enhanced due to the resonance derived from the energy of B exciton shifting to the vicinity of the energy of excitation laser with an increase in W composition x. Specifically, through the resonance peak shift, absorption spectra and PL emission spectra under different excitation power, we conclude the resonance Raman is related to the exciton emission process. Our study extends the resonant Raman study of two-dimensional materials, which is expected to obtain deeper understanding of the excitonic effects in two-dimensional semiconductor materials.
Styles APA, Harvard, Vancouver, ISO, etc.
9

An, Xuhong, Weiwei Zhao, Yuanfang Yu, Wenhui Wang, Ting Zheng, Yueying Cui, Xueyong Yuan, Junpeng Lu et Zhenhua Ni. « Resonance Raman scattering on graded-composition WxMo1–xS2 alloy with tunable excitons ». Applied Physics Letters 120, no 17 (25 avril 2022) : 172104. http://dx.doi.org/10.1063/5.0086278.

Texte intégral
Résumé :
Exciton–phonon interactions strongly affect photocarrier dynamics in two-dimensional materials. Here we report on resonant Raman experiments based on a graded composition W xMo1– xS2 alloy with tunable exciton energy without changing the energy of excitation laser. The intensities of the four most pronounced Raman features in the alloy are dramatically enhanced due to the resonance derived from the energy of B exciton shifting to the vicinity of the energy of excitation laser with an increase in W composition x. Specifically, through the resonance peak shift, absorption spectra and PL emission spectra under different excitation power, we conclude the resonance Raman is related to the exciton emission process. Our study extends the resonant Raman study of two-dimensional materials, which is expected to obtain deeper understanding of the excitonic effects in two-dimensional semiconductor materials.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Liu, Yanli, Xifeng Yang, Dunjun Chen, Hai Lu, Rong Zhang et Youdou Zheng. « Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering ». Advances in Condensed Matter Physics 2015 (2015) : 1–6. http://dx.doi.org/10.1155/2015/918428.

Texte intégral
Résumé :
The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV) near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO) phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with the theoretical calculation result, taking lattice mismatch and thermal mismatch into account together. This good agreement indicates that the UV near-resonant Raman scattering can be a direct and effective method to characterize the stress state in thin AlGaN barrier layer of AlGaN/GaN HEMT heterostructures.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Raman resonance"

1

Liu, Xiaohua. « Resonance raman studies of hemoproteins ». Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Weigel, Alexander. « Femtosecond stimulated resonance Raman spectroscopy ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16302.

Texte intégral
Résumé :
Femtosekundenaufgelöste Ramanspektroskopie ist ein leistungsfähiges Werkzeug, um die Schwingungsentwicklung eines angeregten Chromophors in Echtzeit zu studieren. In dieser Arbeit wurde ein durchstimmbares Ramanspektrometer mit 10 cm-1 spektraler und 50--100 fs zeitlicher Auflösung entwickelt und für eine Anwendung auf flavinbasierte Photorezeptoren optimiert. Es wird der Einfluß der Resonanzbedingungen auf das transientes Ramanspektrum charakterisiert. Die Dynamik des angeregten Zustandes wird zuerst für den Modellphotoschalter Stilben untersucht, ausgehend sowohl vom cis-, als auch vom trans-Isomer. Intensitätsabnahme, spektrale Verschiebung und Bandenverschmälerung liefern Einblicke in die Schwingungsrelaxation des angeregten Chromophors. Wellenpaketbewegung und anharmonische Kopplung werden als Oszillationen beobachtet. Für das "Mutter"-Cyanin 1,1''-Diethyl-2,2''-pyridocyaniniodid wird die Isomerisierung bis in den Grundzustand verfolgt. Ramanspektren des Franck-Condon-Zustandes, des intermediär gebildeten heissen Grundzustandes und der Isomerisierungsprodukte werden erhalten. Als Grundlage für Experimente an Flavoproteinen werden die Eigenschaften des angeregten Flavinchromophors in Lösung untersucht. Transiente Absorptions- und Fluoreszenzexperimente weisen auf den Einfluss dynamischer polarer Solvatation hin. Es werden Ramanspektren des angeregten Zustandes von Flavin aufgenommen und die Schwingungsbanden zugeordnet. Populationsverminderung durch den Ramanimpuls wird als potentielles Artefakt in zeitaufgelösten Messungen identifiziert; der Effekt wird aber auch genutzt, um Wellenpaketbewegung im angeregten Zustand zu markieren. Die Photorezeptormutanten BlrB-L66F und Slr1694-Y8F werden mit transienter Absorption studiert. Dabei wird die Bildung des Signalzustandes und Flavinreduktion durch ein Tryptophan beobachtet. Die Anwendung des entwickelten Ramanspektrometers auf biologische Proben wird in einem ersten Experiment an Glucose Oxidase demonstriert.
Femtosecond stimulated Raman spectroscopy is a powerful tool that allows to study the structural relaxation of an excited chromophore directly in time. In this work a tunable Raman spectrometer with 10 cm-1 spectral and 50-100 fs temporal resolution was developed, and the technique was advanced towards applications to flavin-based proteins. With this device the influence of resonance conditions on the transient Raman spectrum is characterized. Excited-state dynamics is first investigated for the model photoswitch stilbene, starting from both the cis and the trans isomers. Decay, spectral shift, and narrowing of individual bands provide insight into the vibrational relaxation of the excited chromophore. Wavepacket motion and anharmonic coupling is seen as oscillations. Isomerization is followed to the ground state for the "parent" cyanine 1,1''-diethyl-2,2''-pyrido cyanine iodide. From a global analysis, Raman spectra for the Franck-Condon region, the intermediately populated hot ground state, and the isomerization products are obtained. As a basis for experiments on flavoproteins, the excited-state properties of the pure flavin chromophore are studied in solution. Transient absorption and fluorescence experiments suggest an influence of dynamic polar solvation on the electronic properties of the excited state. Raman spectra from the flavin excited state are recorded and the vibrational bands assigned. Population depletion by the Raman pulse is identified as a potential artefact, but the effect is also used to mark wavepacket motion in the excited state. The photoreceptor mutants BlrB-L66F and Slr1694-Y8F are studied by transient absorption; signaling state formation and flavin reduction by a semiconserved tryptophan are seen, respectively. The application of femtosecond Raman spectroscopy to biological samples is demonstrated in a first experiment on glucose oxidase.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hernandez-Santana, Aaron. « Surface-enhanced resonance Raman coded beads ». Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Smith, Susan James. « A resonance Raman and surface enhanced resonance Raman study of cytochrome P450s and their substrate/inhibitor interactions ». Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Feng, Sibo. « Resonance raman studies of some dye molecules ». Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/27432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Behnke, Shelby Lee. « Resonance Raman Investigations of [NiFe] Hydrogenase Models ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1479728987893667.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sullivan, Ann Marie G. « Resonance Raman spectra of chloroperoxidase reaction intermediates ». VCU Scholars Compass, 1992. https://scholarscompass.vcu.edu/etd/5610.

Texte intégral
Résumé :
Chloroperoxidase is an enzyme that exhibits spectroscopic and structural properties similar to cytochrome P-450. Chloroperoxidase is studied using resonance Raman spectroscopy to characterize the reaction intermediates of the physiological mechanism, known as compounds I and II. Compound I is formed by a two electron oxidation of the resting enzyme and contains an Fe(IV) porphyrin ℼ cation radical. A one electron reduction of compound I produces the compound II intermediate which contains an oxy-ferryl [Fe(IV)=O] iron heme. Chloroperoxidase is a heme enzyme of substantial interest because of its structural similarity to cytochrome P-450 and because of its diverse reactivity. Chloroperoxidase can function as a peroxidase, catalase, haloperoxidase and to some extent as a monooxygenase. Chloroperoxidase is excreted by the mold, Caldariomyces fumago and contains the iron protoporphyrin IX prosthetic group. From previous spectroscopic data, it has been determined that native chloroperoxidase is a penta-coordinate heme with a cysteine thiolate axial ligand. The reaction intermediates of chloroperoxidase, compounds I and II, are among the least stable of the known peroxidase intermediates. However, they can be stabilized somewhat by avoiding the use of hydrogen peroxide as the oxidant. Because of catalase activity of this enzyme, hydrogen peroxide can act as both oxidant and substrate causing the rapid turnover of the enzyme. For the generation of the chloroperoxidase intermediates, the enzyme is mixed with an equal volume of oxidant in a Ballou four jet mixer fed by two 100 ml syringes which produces a continuous jet of newly formed intermediate. Compound I was formed by mixing the enzyme with a 15 fold excess of peracetic acid and compound II was formed by premixing the enzyme with a 100 fold excess of a substrate, ascorbic acid, then mixing with a 30 fold excess of peracetic acid. The observed resonance Raman frequencies of the chloroperoxidase intermediates are similar to those observed for horseradish peroxidase, however there are a number of reproducible differences in frequencies due to differences in ground state symmetry or axial ligation. The in-plane skeletal modes in the resonance Raman spectrum of compound II can be assigned as follows: v10 at 1645 cm^-¹, v₃₇ at 1606 cm^-¹, v₂ at 1582 cm^-¹, v₃₈ or v¹₁₁ at 1554 cm^-¹, v₃ at 1511 cm^-¹, v₂₈ at 1476 cm^-¹, vinyl =CH₂ wags at 1345 and 1434 cm^-¹, v₂₀ or v₂₉ at 1396 cm^-¹, and v₄ at 1374 cm^-¹. These assignments are close to those previously reported for horseradish peroxidase compound II. Band assignments for compound I are v₁₀ at 1647 cm^-¹, v37 at 1619 cm^-¹, v₂ at 1589 cm^-¹ and v₄ at 1358 cm^-¹. The band at 1647 cm^-¹ is depolarized, whereas, the bands at 1619 and 1589 cm^-¹ are polarized. The oxy ferryl [Fe(IV)=O] frequency has been observed at approximately 790 cm-¹ in horseradish peroxidase. In chloroperoxidase, two bands at 790 and 753 cm^-¹ are present in both compounds I and II resonance Raman spectra. Upon ¹⁸O-substitution these bands shift approximately 30 cm^-¹ as predicted by simple force constant calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tanaka, Tomoyoshi. « Resonance raman and surface enhanced raman studies of hemeproteins and model compounds ». Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/27678.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Short, Billy Joe. « Ultraviolet resonance Raman enhancements in the detection of explosives ». Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Jun/09Jun%5FShort.pdf.

Texte intégral
Résumé :
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, June 2009.
Thesis Advisor(s): Smith, Craig F. "June 2009." Description based on title screen as viewed on 14 July 2009. Author(s) subject terms: Raman spectroscopy, standoff detection, high explosives, explosive detection, inelastic scattering, resonance Raman. Includes bibliographical references (p. 77-80). Also available in print.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rwere, Freeborn. « Resonance Raman studies of isotopically labeled heme proteins ». [Milwaukee, Wis.] : e-Publications@Marquette, 2009. http://epublications.marquette.edu/dissertations_mu/22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Raman resonance"

1

1935-, Spiro Thomas G., dir. Resonance Raman spectra of Heme and metalloproteins. New York : Wiley, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1935-, Spiro Thomas G., dir. Resonance Raman spectra of polyenes and aromatics. New York : Wiley, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Derner, Harald. Untersuchungen über den Resonanz-Ramaneffekt an Anthracen, Naphthalin und p-nitro-p-dimethylamino-azobenzol. Freiburg [im Breisgau] : Hochschulverlag, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bugay, David E. Pharmaceutical excipients : Characterization by IR, Raman, and NMR spectroscopy. New York : M. Dekker, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bigioni, Terry Paul. CdS band gap measurement of bulk and nanowires using resonance Raman spectroscopy. Ottawa : National Library of Canada, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

United States. National Aeronautics and Space Administration., dir. Semi-annual progress report ... entitled Resonance fluorescence in atmospheric gases, for the period September 16, 1985 - March 15, 1986. [College Park, MD] : Institute for Physical Science and Technology, University of Maryland, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vo-Dinh, Tuan, et Joseph R. Lakowicz. Plasmonics in biology and medicine VIII : 23-24 January 2011, San Francisco, California, United States. Bellingham, Wash : SPIE, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vo-Dinh, Tuan, et Joseph R. Lakowicz. Plasmonics in biology and medicine VII : 25 and 27-28 January 2010, San Francisco, California, United States. Sous la direction de SPIE (Society). Bellingham, Wash : SPIE, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vo-Dinh, Tuan, et Joseph R. Lakowicz. Plasmonics in biology and medicine IX : 22-24 January 2012, San Francisco, California, United States. Sous la direction de SPIE (Society). Bellingham, Washington : SPIE, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tuan, Vo-Dinh, Lakowicz Joseph R et Society of Photo-optical Instrumentation Engineers., dir. Plasmonics in biology and medicine IV : 23 January 2007, San Jose, California, USA. Bellingham, Wash : SPIE, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Raman resonance"

1

Clark, Robin J. H. « Raman, Resonance Raman and Electronic Raman Spectroscopy ». Dans Vibronic Processes in Inorganic Chemistry, 301–25. Dordrecht : Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1029-4_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Jiang, et Teizo Kitagawa. « Resonance Raman Spectroscopy ». Dans Methods in Molecular Biology, 377–400. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0452-5_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fabelinskii, V. I., L. Holz, V. V. Smirnov et K. A. Vereschagin. « Time-Resolved Double Raman-Raman Resonance ». Dans Springer Proceedings in Physics, 31–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85060-8_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhou, Chengli, Emanual Margoliash et Therese M. Cotton. « Resonance Raman and Surface-Enhanced Resonance Raman Spectroscopy of Cytochrome C Mutants ». Dans Spectroscopy of Biological Molecules, 253–56. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0371-8_114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Esherick, P., et A. Owyoung. « Ionization-Raman Double-Resonance Spectroscopy ». Dans Springer Series in Optical Sciences, 192–95. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39664-2_56.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wilbrandt, Robert, Niels-Henrik Jensen, C. Houée-Levin et R. V. Bensasson. « Time-Resolved Resonance Raman Spectroscopy ». Dans Primary Photo-Processes in Biology and Medicine, 93–109. Boston, MA : Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1224-6_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kuzmany, H., E. M. Genies et A. Syed. « Resonance Raman Scattering from Polyaniline ». Dans Springer Series in Solid-State Sciences, 223–26. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82569-9_40.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Stevenson, Ross, Karen Faulds et Duncan Graham. « Quantitative DNA Analysis Using Surface-Enhanced Resonance Raman Scattering ». Dans Surface Enhanced Raman Spectroscopy, 241–62. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Majoube, M., Ph Millié, P. Lagant et G. Vergoten. « Resonance Raman Enhancement for Guanine Residue ». Dans Fifth International Conference on the Spectroscopy of Biological Molecules, 91–92. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1934-4_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Loehr, Thomas M. « Recent Advances in Resonance Raman Spectroscopy ». Dans ACS Symposium Series, 136–53. Washington, DC : American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0692.ch007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Raman resonance"

1

Merten, Christian, Honggang Li, Xuefang Lu, A. Hartwig, Laurence A. Nafie, P. M. Champion et L. D. Ziegler. « Observation Of Resonance Electronic And Non-Resonance Enhanced Vibrational Natural Raman Optical Activity ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482845.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wert, Jonathan, Sanford A. Asher, P. M. Champion et L. D. Ziegler. « UV Resonance Raman Spectroscopy Of Ethylguanidine ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482881.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pimenta, Marcos, P. M. Champion et L. D. Ziegler. « Resonance Raman Spectroscopy in Carbon Nanostructures ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hobro, Alison J., Bernhard Zachhuber, Bernhard Lendl, P. M. Champion et L. D. Ziegler. « Towards Stand-Off Resonance Raman Spectroscopy ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Asher, Sanford A. « Ultraviolet resonance Raman studies of monocyclic and polycyclic aromatic hydrocarbons ». Dans International Laser Science Conference. Washington, D.C. : Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.tue1.

Texte intégral
Résumé :
UV resonance Raman studies of benzene have demonstrated that the Raman intensities are dominated by vacuum UV transitions. Because of the weak oscillator strengths and the significant homogeneous linewidths in the condensed phase, little Raman enhancement iscontributed by the ~240-260-nm B2 u transition. In the gas phase, however, the smaller homogeneous linewidth results in resonance enhancement. We show experimentally the distinction between resonance Raman scattering and single vibrational level fluorescence. Raman studies of substituted benzene derivatives illustrate that the resonance enhanced vibrational modes are those which distort the nuclear framework and electron density and the bond lengths in a fashion characteristic of the transition moment to the resonant excited state. Raman excitation profile studies of polycyclic aromatic hydrocarbons such as pyrene clearly show the underlying Franck Condon substructure of the diffuse absorption bands. The strong resonance enhancements permit studies of polycyclic aromatic hydro-carbons at ppb concentrations. The analytical utility of UV Raman spectroscopy is illustrated by studies of polycyclic aromatic hydrocarbons in coal liquid samples and in biological matrices.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tuschel, David D., Aleksandr V. Mikhonin, Brian E. Lemoff, Sanford A. Asher, P. M. Champion et L. D. Ziegler. « Deep Ultraviolet Resonance Raman Spectroscopy of Explosives ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mak, Piotr J., James R. Kincaid, Ilia G. Denisov, Stephen G. Sligar, Haoming Zhang, Paul F. Hollenberg, P. M. Champion et L. D. Ziegler. « Resonance Raman Studies On Mammalian Cytochromes P450 ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482873.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Getty, James D., Xianming Liu et Peter B. Kelly. « Resonance Raman study of the allyl radical excited states ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thi4.

Texte intégral
Résumé :
The characterization of the ground and excited electronic states of the allyl radical is important to the understanding of free radical chemistry. Resonance Raman spectroscopy can provide detailed information on the allyl radical excited state dynamics through the intensities of the ground state normal modes. Previous resonance Raman studies have examined the promotion of the valence a 2 electron to the valence b1 orbital, the 2A2 → 2B1 transition. The intensities of the Raman spectra at 224 nm indicate initial excited state dynamics consistent with a disrotary photoisomerization of the allyl radical to form the cyclopropyl radical. Resonance Raman spectroscopy has been utilized to examine the nature of the weakly allowed transitions between 235 nm and 250 nm. Rydberg states have been predicted to lie in this energy range. Analysis of the Raman spectra revealed enhancement in the fundamental, overtones, and combinations of the non-totally symmetric modes v9 and v12. Intensity in the fundamentals of these non-totally symmetric modes is evidence for B-term Raman scattering and hence vibronic coupling. The sharp resonances in the enhancement of the Raman spectra simplify the assignment of the overtone and combination tones ground state vibrational frequencies. Schemes for the observed vibronic coupling and ground state anharmonic couplings will be presented.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nafie, Laurence A., P. M. Champion et L. D. Ziegler. « Resonance Raman Optical Activity : Past, Present and Future ». Dans XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hildebrandt, Peter. « Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy ». Dans Moscow - DL tentative, sous la direction de Sergei A. Akhmanov et Marina Y. Poroshina. SPIE, 1991. http://dx.doi.org/10.1117/12.57305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Raman resonance"

1

Zheng, Junwei. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants. Office of Scientific and Technical Information (OSTI), novembre 1999. http://dx.doi.org/10.2172/754842.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Williams, G. M. Resonance electronic Raman scattering in rare earth crystals. Office of Scientific and Technical Information (OSTI), novembre 1988. http://dx.doi.org/10.2172/6343820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Barletta, R. E., et J. T. Veligdan. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride. Office of Scientific and Technical Information (OSTI), septembre 1994. http://dx.doi.org/10.2172/10185780.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chen, C. L., D. L. Heglund, M. D. Ray, D. Harder, R. Dobert, K. P. Leung, M. Wu et A. Sedlacek. Application of resonance Raman LIDAR for chemical species identification. Office of Scientific and Technical Information (OSTI), juillet 1997. http://dx.doi.org/10.2172/495732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sedlacek, A. J., C. L. Chen et D. R. Dougherty. Proliferation detection using a remote resonance Raman chemical sensor. Office of Scientific and Technical Information (OSTI), août 1993. http://dx.doi.org/10.2172/10179119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Derry, Robert. Characterization of Zinc-containing Metalloproteins by Resonance Raman Spectroscopy. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.2164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Barrett, T. W. Inverse Faraday Effect in Hemoglobin Detected by Raman Spectroscopy : An Example of Magnetic Resonance Raman Activity. Fort Belvoir, VA : Defense Technical Information Center, juin 1985. http://dx.doi.org/10.21236/ada159806.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bocarsly, A. B. [Resonance Raman spectroscopy of metalloporphyrins and photoreaction centers]. Final report. Office of Scientific and Technical Information (OSTI), décembre 1992. http://dx.doi.org/10.2172/10141437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kincaid, J. Resonance Raman and photophysical studies of polypyridine complexes of ruthenium (II). Office of Scientific and Technical Information (OSTI), janvier 1990. http://dx.doi.org/10.2172/6816606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hug, William F., T. Moustakas, R. Treece, J. Smith, A. Bhattacharyya, R. Reid, J. Pankove, C. Brown et W. Nelson. Deep Ultraviolet Laser Diode for UV-Resonance Enhanced Raman Identification of Biological Agents. Fort Belvoir, VA : Defense Technical Information Center, mars 2007. http://dx.doi.org/10.21236/ada468910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie