Littérature scientifique sur le sujet « R-methylation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « R-methylation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "R-methylation"
Saadatmand, Forough, Muneer Abbas, Victor Apprey, Krishma Tailor et Bernard Kwabi-Addo. « Sex differences in saliva-based DNA methylation changes and environmental stressor in young African American adults ». PLOS ONE 17, no 9 (6 septembre 2022) : e0273717. http://dx.doi.org/10.1371/journal.pone.0273717.
Texte intégralAbula, Abudureyimu, Xiaona Li, Xing Quan, Tingting Yang, Yue Liu, Hangtian Guo, Tinghan Li et Xiaoyun Ji. « Molecular mechanism of RNase R substrate sensitivity for RNA ribose methylation ». Nucleic Acids Research 49, no 8 (31 mars 2021) : 4738–49. http://dx.doi.org/10.1093/nar/gkab202.
Texte intégralWalker, Elsbeth L. « Paramutation of the r1 Locus of Maize Is Associated With Increased Cytosine Methylation ». Genetics 148, no 4 (1 avril 1998) : 1973–81. http://dx.doi.org/10.1093/genetics/148.4.1973.
Texte intégralVertino, Paula M., et Paul A. Wade. « R Loops : Lassoing DNA Methylation at CpGi ». Molecular Cell 45, no 6 (mars 2012) : 708–9. http://dx.doi.org/10.1016/j.molcel.2012.03.014.
Texte intégralLi, Xiao-Hong, Mei-Yin Lu, Jia-Li Niu, Dong-Yan Zhu et Bin Liu. « cfDNA Methylation Profiles and T-Cell Differentiation in Women with Endometrial Polyps ». Cells 11, no 24 (9 décembre 2022) : 3989. http://dx.doi.org/10.3390/cells11243989.
Texte intégralSu, Shian, Quentin Gouil, Marnie E. Blewitt, Dianne Cook, Peter F. Hickey et Matthew E. Ritchie. « NanoMethViz : An R/Bioconductor package for visualizing long-read methylation data ». PLOS Computational Biology 17, no 10 (25 octobre 2021) : e1009524. http://dx.doi.org/10.1371/journal.pcbi.1009524.
Texte intégralJiang, Xinyin, Chauntelle Jack-Roberts, Kaydine Edwards, Ella Gilboa, Ikhtiyor Djuraev et Mudar Dalloul. « Association of Methylation-Related Nutrient Intake and Status with Offspring DNA Methylation in Pregnant Women with and Without Gestational Diabetes Mellitus ». Current Developments in Nutrition 4, Supplement_2 (29 mai 2020) : 1016. http://dx.doi.org/10.1093/cdn/nzaa054_088.
Texte intégralJintaridth, Pornrutsami, et Apiwat Mutirangura. « Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences ». Physiological Genomics 41, no 2 (avril 2010) : 194–200. http://dx.doi.org/10.1152/physiolgenomics.00146.2009.
Texte intégralHe, Y., R. Zhang, J. Chen, J. Tan, M. Wang et X. Wu. « The ability of arsenic metabolism affected the expression of lncRNA PANDAR, DNA damage, or DNA methylation in peripheral blood lymphocytes of laborers ». Human & ; Experimental Toxicology 39, no 5 (30 décembre 2019) : 605–13. http://dx.doi.org/10.1177/0960327119897101.
Texte intégralHe, Shiwei, Yuan Wu, Shuidi Yan, Jumei Liu, Li Zhao, Huabin Xie, Shengxiang Ge et Huiming Ye. « Methylation of CYP1A1 and VKORC1 promoter associated with stable dosage of warfarin in Chinese patients ». PeerJ 9 (22 juin 2021) : e11549. http://dx.doi.org/10.7717/peerj.11549.
Texte intégralThèses sur le sujet "R-methylation"
Huska, Matthew R. [Verfasser]. « Using Machine Learning to Predict and Better Understand DNA Methylation and Genomic Enhancers / Matthew R. Huska ». Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1153007991/34.
Texte intégralBower, Edward Kenneth Merrick. « The evolution of restriction-modification systems ». Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29528.
Texte intégralMANIACI, MARIANNA. « THE ROLE OF PROTEIN ARGININE METHYLATION IN RBP-RNA INTERACTION MODULATION AND ITS IMPLICATIONS IN CANCER STRESS RESPONSE INVESTIGATED BY MS-PROTEOMICS ». Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/946398.
Texte intégralMacLeod, A. Robert (Robert Alan) 1966. « DNA methylation and oncogenesis ». Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39956.
Texte intégralTavares, de Araujo Felipe. « DNA replication and methylation ». Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37847.
Texte intégralIn Escherichia coli, timing and frequency of initiation of DNA replication are controlled by the levels of the bacterial methyltransferase and by the methylation status of its origin of replication (Boye and Lobner-Olesen, 1990; Campbell and Kleckner, 1990). In mammalian cells, however, the importance of methyltransferase activity and of DNA methylation in replication is only now starting to emerge (Araujo et al., 1998; Delgado et al., 1998; DePamphilis, 2000; Knox et al., 2000).
The work described in this thesis focuses mainly on understanding the functional relationship between changes in DNA methylation and DNMT1 activity on mammalian DNA replication. In higher eukaryotes, DNA replication initiates from multiple specific sites throughout the genome (Zannis-Hadjopoulos and Price, 1999). The first part of the thesis describes the identification and characterization of novel in vivo initiation sites of DNA replication within the human dnmt1 locus (Araujo et al., 1999). Subsequently, a study of the temporal relationship between DNA replication and the inheritance of the DNA methylation pattern is presented. We also demonstrate that mammalian origins of replication, similarly to promoters, are differentially methylated (Araujo et al., 1998). We then tested the hypothesis that DNMT1 is a necessary component of the replication machinery. The results presented indicate that inhibition of DNMT1 results in inhibition of DNA replication (Knox et al., 2000). Finally, results are presented, demonstrating that the amino terminal region of DNMT1 is responsible for recognizing hemimethylated CGs, DNMT1's enzymatic target. Taken together, the results presented in this thesis demonstrate that DNMT1 is necessary for proper DNA replication and that DNA methylation may modulate origin function.
Chik, Pui Chi Flora. « Targeting the DNA methylation machinery in cancers ». Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114316.
Texte intégralLes cellules cancéreuses présentent un profil de méthylation caractérisé par l'hypométhylation d'un grand nombre de promoteurs et l'hyperméthylation de gènes suppresseurs de tumeur. La nature dynamique de l'épigénome en fait une cible de choix pour les interventions thérapeutiques. Cette thèse vise à comprendre l'utilisation de divers inhibiteurs visant des protéines liées à la méthylation de l'ADN et leurs activités anticancéreuses à une échelle génomique globale et au niveau de gènes particuliers. Les agents déméthylants 5-azacytidine et 5-aza-2'-deoxycytidine (5-azaCdR) sont des médicaments pour le traitement du syndrome myélodysplasiqueapprouvés par la FDA. Cependant, ces analogues de nucléosides qui piègent les DNA méthyltransférases (DNMTs) ne sont pas spécifiques. Des études ont montrées que la 5-azaCdR induisait l'expression de gènes pro-métastatiques et l'apparition de métastases. Ceci soulève de sérieuses interrogations quant à leur utilisation en clinique. À l'inverse, le ciblage spécifique des DNMTs ne conduit pas à une induction dramatique des gènes pro-métastatiques. Plus particulièrement, l'inhibition spécifique de DNMT1 résulte en une suppression de la croissance maximale des tumeurs, sans effet sur l'invasion cellulaire, lorsque l'on compare à l'inhibition des trois principales DNMTs. Notre étude supporte l'idée que DNMT1 à un rôle majeur dans le cancer et que le développement d'inhibiteurs de DNMT1 pourraient conduire à des médicaments anti-cancéreux efficaces.Il a néanmoins été montré que la 5-azaCdR était un suppresseur potentiel de la croissance cancéreuse. Nous avons testé l'hypothèse qu'un traitement combiné permettrait de minimiser ses effets secondaires sur l'invasion cellulaire tout en maintenant ses effets suppresseurs de croissance. Il a été montré que la protéine methyl-CpG binding protein 2 (MBD2) participait à la déméthylationde gènes pro-métastatiques. Son inhibition simultanée à un traitement 5-azaCdR abolit de façon synergétique la croissance cancéreuse, tout en inhibant l'invasion induite par la 5-azaCdR. Des analyses du méthylome et du transcriptome ont été réalisées par micropuces à partir de cellules traitées avec un siRNA dirigé contre l'ARNm de MBD2 et la 5-azaCdR afin d'avoir une meilleure compréhension de l'impact de la combinaison des traitements. Les analyses bioinformatiques ont indiqué que le traitement combiné réprimait des réseaux de gènes impliqués dans la mobilité cellulaire tandis que les réseaux de gènes activés étaient impliqués dans la mort cellulaire. Ces données indiquent que le traitement à la 5-azaCdR combiné avec l'inhibition de MBD2 résulte en de plus puissants effets anti-cancéreux que l'un ou l'autre des traitements individuels.Nous avons également testé la combinaison de la S-adenosylmethionine (SAM), un médicament actuellement disponible sur le marché et inhibant l'activité de MBD2, avec la 5-azaCdR sur les lignées cellulaires utilisées précédemment. La SAM, de façon similaire à l'inhibition de MBD2 par un siRNA, permet la méthylation des promoteurs de gènes pro-métastatiques et réprime l'invasion induite par la 5-azaCdR. Nous avons ensuite examiné la relation entre la SAM, la diminution de l'expression de MBD2 et l'hyperméthylation observée à la fois aux sites CpG et non-CpG au niveau du promoteur de MBD2 après traitement avec la SAM. De façon intéressante, l'inhibition de MBD2 par des petits ARN interférant résulte également en une hyperméthylation de son propre promoteur. Cette observation suggère que le traitement avec SAM pourrait directement réduire l'expression de MBD2, qui serait réduite encore plus via une boucle de rétrocontrôle. L'ensemble des données de cette thèse supporte l'idée que le ciblage de l'épigénome pourrait être une thérapie anti-cancéreuse hautement efficace et que la combinaison de médicaments qui ciblent la méthylation de l'ADN pourrait augmenter l'efficacité des traitements individuels.
Boisvert, François-Michel. « A role for arginine methylation in DNA repair / ». Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85887.
Texte intégralThe DNA repair MRE11/RAD50/NBS1 (MRN) complex was purified using one of the aDMA specific antibody. Since a role of protein arginine methylation in DNA damage checkpoint control and DNA repair had not been previously reported we chose to investigate the consequence of MRE11 methylation in DNA damage. Our results show that the MRE11 checkpoint protein is arginine methylated as determined by mass spectrometry and methylarginine-specific antibodies. The glycine-arginine rich (GAR) domain of MRE11 was specifically methylated by protein arginine methyltransferase 1 (PRMT1). Mutation of the arginines within MRE11 GAR domain severely impaired the exonuclease activity of MRE11. Cells treated with methyltransferase inhibitors displayed a DNA damage-resistant DNA synthesis phenotype and prevented the re-localization of the MRN complex to sites of DNA damage. Downregulation of PRMT1 with small interfering RNAs (siRNA) also yielded a damage-resistant DNA synthesis phenotype that was rescued with the methylated MRE11 complex. Taken together, the work presented in this thesis allowed the identification of many new potentially arginine methylated proteins and demonstrated a novel role for arginine methylation in the regulation of DNA repair enzymes and of the intra-S phase DNA damage checkpoint.
Lucifero, Diana. « Developmental regulation of genomic imprinting by DNA methylation ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85573.
Texte intégralCampbell, Paul Michael. « DNA methylation machinery as molecular targets for cancer therapeutics ». Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82836.
Texte intégralBoulanger, Marie-Chloé. « Arginine methylation, the characterization of a post-translational modification ». Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85889.
Texte intégralThe purpose of this work was to further characterize arginine methylation by identifying new members of the arginine methyltransferase enzyme family in Drosophila melanogaster and to study the effects of protein arginine methylation on novel substrates. I identified and characterized nine homologues of arginine methyltransferases in Drosophila that were named DART1 to DART9, for drosophila arginine methyltransferases 1-9. All nine enzymes are expressed at various developmental stages. I discovered that a substrate of mammalian enzyme protein arginine methyltransferase 1 (PRMT1) can also be methylated by PRMT5. I also identified HIV-1 Tat protein as the first substrate of the novel enzyme PRMT6.
Livres sur le sujet "R-methylation"
Zhang, Hongmei. Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192.
Texte intégralZhang, Hongmei. Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Taylor & Francis Group, 2020.
Trouver le texte intégralZhang, Hongmei. Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Taylor & Francis Group, 2020.
Trouver le texte intégralZhang, Hongmei. Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Taylor & Francis Group, 2020.
Trouver le texte intégralZhang, Hongmei. Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Taylor & Francis Group, 2020.
Trouver le texte intégralZhang, Hongmei. Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Taylor & Francis Group, 2020.
Trouver le texte intégralAnalyzing High-Dimensional Gene Expression and DNA Methylation Data with R. Taylor & Francis Group, 2020.
Trouver le texte intégralChapitres de livres sur le sujet "R-methylation"
Catoni, Marco, et Nicolae Radu Zabet. « Analysis of Plant DNA Methylation Profiles Using R ». Dans Methods in Molecular Biology, 219–38. New York, NY : Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1134-0_21.
Texte intégralZhang, Hongmei. « Introduction ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 1–4. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-1.
Texte intégralZhang, Hongmei. « Genome-scale gene expression data ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 5–16. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-2.
Texte intégralZhang, Hongmei. « Genome-scale epigenetic data ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 17–38. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-3.
Texte intégralZhang, Hongmei. « Screening genome-scale genetic and epigenetic data ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 39–55. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-4.
Texte intégralZhang, Hongmei. « Cluster Analysis in Data mining ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 57–99. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-5.
Texte intégralZhang, Hongmei. « Methods to select genetic and epigenetic factors based on linear associations ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 101–23. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-6.
Texte intégralZhang, Hongmei. « Non- and semi-parametric methods to select genetic and epigenetic factors ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 125–43. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-7.
Texte intégralZhang, Hongmei. « Network construction and analyses ». Dans Analyzing High-Dimensional Gene Expression and DNA Methylation Data with R, 145–64. Boca Raton, FL : CRC Press, 2020. | Series : Chapman & Hall/CRC mathematical and computational biology series : Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429155192-8.
Texte intégralCurry, Edward. « Analyzing DNA Methylation Microarray Data in R ». Dans Introduction to Bioinformatics with R, 189–202. Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781351015318-9.
Texte intégral