Articles de revues sur le sujet « Quark fragmentation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Quark fragmentation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Quark fragmentation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Berezhnoy, A. V., et A. K. Likhoded. « Heavy-quark fragmentation ». Physics of Atomic Nuclei 73, no 6 (juin 2010) : 1069–83. http://dx.doi.org/10.1134/s1063778810060219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ma, J. P. « Quark fragmentation into3PJquarkonium ». Physical Review D 53, no 3 (1 février 1996) : 1185–90. http://dx.doi.org/10.1103/physrevd.53.1185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cacciari, Matteo, et Einan Gardi. « Heavy-quark fragmentation ». Nuclear Physics B 664, no 1-2 (août 2003) : 299–340. http://dx.doi.org/10.1016/s0550-3213(03)00435-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Corcella, G., et A. D. Mitov. « Bottom-quark fragmentation in top-quark decay ». Nuclear Physics B 623, no 1-2 (février 2002) : 247–70. http://dx.doi.org/10.1016/s0550-3213(01)00639-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nobary, M. A. Gomshi. « Heavy-quark fragmentation functions ». Journal of Physics G : Nuclear and Particle Physics 20, no 1 (1 janvier 1994) : 65–72. http://dx.doi.org/10.1088/0954-3899/20/1/008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Saveetha, H., D. Indumathi et Subhadip Mitra. « Vector meson fragmentation using a model with broken SU(3) at the next-to-leading order ». International Journal of Modern Physics A 29, no 07 (13 mars 2014) : 1450049. http://dx.doi.org/10.1142/s0217751x14500493.

Texte intégral
Résumé :
A detailed study of fragmentation of vector mesons at the next-to-leading order (NLO) in QCD is given for e+e- scattering. A model with broken SU(3) symmetry using three input fragmentation functions α(x, Q2), β(x, Q2) and γ(x, Q2) and a strangeness suppression parameter λ describes all the light quark fragmentation functions for the entire vector meson octet. At a starting low energy scale of [Formula: see text] for three light quarks (u, d, s) along with initial parametrization, the fragmentation functions are evolved through DGLAP evolution equations at NLO and the cross-section is calculated. The heavy quarks contribution are added in appropriate thresholds during evolution. The results obtained are fitted at the momentum scale of [Formula: see text] for LEP and SLD data. Good-quality fits are obtained for ρ, K*, ω and ϕ mesons, implying the consistency and efficiency of this model. Strangeness suppression in this model is understood both in terms of ratios of quark fragmentation functions alone as well as in terms of observables; the latter yield a suppression through the K*/ρ multiplicity ratio of about 0.23 while the x dependence of this suppression is also parametrized through the cross-section ratios.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kesten, P., C. Akerlof, G. Bonvicini, J. Chapman, D. Errede, N. Harnew, D. I. Meyer et al. « Comparison of light quark and charm quark fragmentation ». Physics Letters B 161, no 4-6 (octobre 1985) : 412–16. http://dx.doi.org/10.1016/0370-2693(85)90789-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Falk, Adam F., Michael Luke, Martin J. Savage et Mark B. Wise. « Heavy quark fragmentation to baryons containing two heavy quarks ». Physical Review D 49, no 1 (1 janvier 1994) : 555–58. http://dx.doi.org/10.1103/physrevd.49.555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Ben-Wei, Xin-Nian Wang et Andreas Schäfer. « Quark-quark Double Scattering and Modified Quark Fragmentation Functions in Nuclei ». Nuclear Physics A 783, no 1-4 (février 2007) : 551–54. http://dx.doi.org/10.1016/j.nuclphysa.2006.11.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Maciuła, Rafał. « Production asymmetry of open charm mesons within unfavoured ragmentation scenario ». EPJ Web of Conferences 199 (2019) : 04007. http://dx.doi.org/10.1051/epjconf/201919904007.

Texte intégral
Résumé :
We consider unfavoured light quark/antiquark to D meson fragmentation. We discuss nonperturbative effects for small transverse momenta. The asymmetry for D+ and D- production measured by the LHCb collaboration provides natural constraints on the parton (quark/antiquark) fragmentation functions. We find that already a fraction of $q/\overline q \to D$ fragmentation probability is sufficient to account for the measured asymmetry. Large D-meson production asymmetries are found for large xF which is related to dominance of light quark/antiquark $q/\overline q \to D$ fragmentation over the standard c → D fragmentation. As a consequence, prompt atmospheric neutrino flux at high neutrino energies can be much larger than for the conventional c → D fragmentation. The latter can constitute a sizeable background for the cosmic neutrinos claimed to be observed recently by the IceCube Observatory.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Scholten, O., et G. D. Bosveld. « Scaling and four-quark fragmentation ». Physics Letters B 265, no 1-2 (août 1991) : 35–40. http://dx.doi.org/10.1016/0370-2693(91)90009-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Edén, P. « Investigations of quark fragmentation universality ». European Physical Journal C 9, no 4 (1999) : 579. http://dx.doi.org/10.1007/s100520050559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Edén, P. « Investigations of quark fragmentation universality ». European Physical Journal C 9, no 4 (juillet 1999) : 579–88. http://dx.doi.org/10.1007/s100529900026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Seuster, Rolf. « Spectroscopy and charm quark fragmentation ». European Physical Journal C 33, S1 (18 février 2004) : s554—s556. http://dx.doi.org/10.1140/epjcd/s2004-03-1682-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Maxwell, C. J. « Investigating quark and gluon fragmentation ». Physics Letters B 168, no 1-2 (février 1986) : 131–34. http://dx.doi.org/10.1016/0370-2693(86)91474-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wang, Sa, Wei Dai, Enke Wang, Xin-Nian Wang et Ben-Wei Zhang. « Heavy-Flavour Jets in High-Energy Nuclear Collisions ». Symmetry 15, no 3 (15 mars 2023) : 727. http://dx.doi.org/10.3390/sym15030727.

Texte intégral
Résumé :
Reconstructed jets initiated from heavy quarks provide a powerful tool to probe the properties of the quark–gluon plasma (QGP) and to explore the mass hierarchy of jet quenching. In this article, we review the recent theoretical progresses on heavy-flavour jets in high-energy nuclear collisions at the RHIC and LHC. We focus on the yields and substructures of charm and bottom quark jets with jet-quenching effects, such as the nuclear modification factors, transverse momentum imbalance, angular correlation, radial profiles, fragmentation functions, the “dead-cone” effect, etc.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Corcella, Gennaro. « Selected Results in Heavy-Quark Fragmentation ». Universe 8, no 9 (18 septembre 2022) : 490. http://dx.doi.org/10.3390/universe8090490.

Texte intégral
Résumé :
I review a few selected topics concerning heavy-quark fragmentation, taking particular care about bottom- and charm-quark production in e+e− annihilation and the inclusion of non-perturbative corrections. In particular, I discuss the recent developments of calculations carried out in the framework of perturbative fragmentation functions and the perspective to extend them to other processes and higher accuracy. Special attention is paid to the use of an effective strong coupling constant to model hadronization effects.
Styles APA, Harvard, Vancouver, ISO, etc.
18

SALEEV, V. A. « Ωccc PRODUCTION VIA FRAGMENTATION AT LHC ». Modern Physics Letters A 14, no 37 (7 décembre 1999) : 2615–19. http://dx.doi.org/10.1142/s0217732399002741.

Texte intégral
Résumé :
In the framework of the leading order of perturbative QCD and the nonrelativistic quark–diquark model of baryons we have obtained fragmentation function for c-quark to split into Ωccc baryon. It is shown that at LHC one can expect 1.8 × 103 events with Ωccc at p⊥>5 GeV/c and |y|<1 per year.
Styles APA, Harvard, Vancouver, ISO, etc.
19

NOBARY, M. A. GOMSHI. « BOUND STATE AND RADIATIVE CORRECTIONS TO HEAVY QUARK FRAGMENTATION FUNCTIONS ». Modern Physics Letters A 10, no 13n14 (10 mai 1995) : 1019–26. http://dx.doi.org/10.1142/s0217732395001125.

Texte intégral
Résumé :
We comment on heavy quark fragmentation models motivated by QCD and study the influence of bound state and radiative corrections on heavy quark fragmentation emphasizing the comparison between the theoretical predictions and experimental data. It seems that meson constituents internal motion and initial state QCD gluon radiation may have a kinematical role in improving the agreement between theory and experiment. These effects are more striking in the case of charm fragmentation.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kisslinger, Leonard S., et Debasish Das. « Review of QCD, quark–gluon plasma, heavy quark hybrids, and heavy quark state production in p–p and A–A collisions ». International Journal of Modern Physics A 31, no 07 (2 mars 2016) : 1630010. http://dx.doi.org/10.1142/s0217751x16300106.

Texte intégral
Résumé :
This is a review of the Quantum Chromodynamics Cosmological Phase Transitions, the quark–gluon plasma, the production of heavy quark states via [Formula: see text]–[Formula: see text] collisions and Relativistic Heavy Ion Collisions (RHIC) using the mixed hybrid theory for the [Formula: see text] and [Formula: see text] states; and the possible detection of the quark–gluon plasma via heavy quark production using RHIC. Recent research on fragmentation for the production of [Formula: see text] mesons is reviewed, as is future theoretical and experimental research on the Collins and Sivers fragmentation functions for pions produced in polarized [Formula: see text]–[Formula: see text] collisions.
Styles APA, Harvard, Vancouver, ISO, etc.
21

KO, CHE MING. « JET CONVERSIONS IN QUARK-GLUON PLASMA ». International Journal of Modern Physics E 20, no 07 (juillet 2011) : 1641–45. http://dx.doi.org/10.1142/s0218301311020010.

Texte intégral
Résumé :
In addition to loosing energy, a quark or gluon jet traversing through a quark-gluon plasma can also be converted to a gluon or quark jet through scattering with the thermal quarks and gluons. Their conversion rates due to two-body elastic [Formula: see text] and inelastic [Formula: see text] scattering have been evaluated in the lowest order in QCD. Including both energy loss and conversions of quark and gluon jets in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, a net conversion of quark jets to gluon jets has been found. This reduces the difference between the nuclear modification factors for quark and gluon jets in heavy ion collisions and thus enhances the ratios of high transverse momentum protons and antiprotons to pions that are produced from the fragmentation of these jets. To account for the observed similar ratios in central Au + Au and p + p collisions at same energy requires, however, a much larger net quark to gluon jet conversion rate than that given by the lowest-order QCD, indicating the importance of higher-order processes and the strongly coupling nature of the quark-gluon plasma in describing the propagation of jets in the quark-gluon plasma.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Martynenko, A. P., et V. A. Saleev. « Heavy quark fragmentation functions in the heavy quark effective theory ». Physical Review D 53, no 11 (1 juin 1996) : 6666–69. http://dx.doi.org/10.1103/physrevd.53.6666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

CASHMORE, R. J. « The Physics of Heavy Quark Fragmentation ». Annals of the New York Academy of Sciences 535, no 1 International (juillet 1988) : 118–30. http://dx.doi.org/10.1111/j.1749-6632.1988.tb51505.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ma, Bo-Qiang, et Jacques Soffer. « Quark Flavor Separation inΛ-Baryon Fragmentation ». Physical Review Letters 82, no 11 (15 mars 1999) : 2250–53. http://dx.doi.org/10.1103/physrevlett.82.2250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Jakob, R., P. J. Mulders et J. Rodrigues. « Modelling quark distribution and fragmentation functions ». Nuclear Physics A 626, no 4 (décembre 1997) : 937–65. http://dx.doi.org/10.1016/s0375-9474(97)00588-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Anselmino, M., P. Kroll et B. Pire. « Coherent versus incoherent quark fragmentation picture ». Zeitschrift für Physik C Particles and Fields 29, no 1 (mars 1985) : 135–42. http://dx.doi.org/10.1007/bf01571395.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Jaffe, R. L., et L. Randall. « Heavy quark fragmentation into heavy mesons ». Nuclear Physics B 412, no 1-2 (janvier 1994) : 79–105. http://dx.doi.org/10.1016/0550-3213(94)90495-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Cornet, Fernando, et Carlos A. García Canal. « Spin dependence of heavy quark fragmentation ». Physics Letters B 662, no 4 (mai 2008) : 341–43. http://dx.doi.org/10.1016/j.physletb.2008.03.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dobado, A., et M. Urdiales. « Nonperturbative fragmentation of the top quark ». Physical Review D 44, no 9 (1 novembre 1991) : 2737–45. http://dx.doi.org/10.1103/physrevd.44.2737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Falk, Adam F., Michael Luke, Martin J. Savage et Mark B. Wise. « Heavy quark fragmentation to polarised quarkonium ». Physics Letters B 312, no 4 (août 1993) : 486–90. http://dx.doi.org/10.1016/0370-2693(93)90986-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

MA, BO-QIANG. « TRANSVERSITY AND AZIMUTHAL SPIN ASYMMETRY OF PION ELECTROPRODUCTION ». International Journal of Modern Physics A 18, no 08 (30 mars 2003) : 1381–90. http://dx.doi.org/10.1142/s0217751x03014745.

Texte intégral
Résumé :
The quark transversity distributions are discussed in a light-cone SU(6) quark-diquark model and in a perturbative QCD based analysis. The azimuthal spin asymmetries, both for charged and neutral pion production in semi-inclusive deep inelastic scattering of unpolarized charged lepton beams on longitudinally and transversely polarized nucleon targets, are analyzed. It is found that different approaches to the distribution and fragmentation functions may lead to quite different predictions. It is also found that the unfavored quark to pion fragmentation functions should be taken into account for π- production from a proton target.
Styles APA, Harvard, Vancouver, ISO, etc.
32

CORCELLA, GENNARO. « TOP MASS MEASUREMENT AND BOTTOM FRAGMENTATION AT THE LHC ». International Journal of Modern Physics A 16, supp01a (octobre 2001) : 372–74. http://dx.doi.org/10.1142/s0217751x01006966.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

PRONKO, ALEXANDRE. « Fragmentation differences of quark and gluon jets at Tevatron ». International Journal of Modern Physics A 20, no 16 (30 juin 2005) : 3723–25. http://dx.doi.org/10.1142/s0217751x05027424.

Texte intégral
Résumé :
We present the results on fragmentation differences of quark and gluon jets obtained by CDF at [Formula: see text]. We compare the multiplicities and momentum distributions of charged particles in two data samples: dijet data and photon+jet data. These two samples have a different quark/gluon jet content, which allows a measurement of the inclusive properties of gluon and quark jets. The results are compared to the earlier measurements obtained at e+e- collisions and to the re-summed perturbative QCD calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Yang, Weihua. « Parity-odd fragmentation functions ». International Journal of Modern Physics A 34, no 25 (9 septembre 2019) : 1950144. http://dx.doi.org/10.1142/s0217751x19501446.

Texte intégral
Résumé :
Quantum chromodynamics is a non-Abelian gauge theory of strong interactions, in which the parity symmetry can be violated by the nontrivial [Formula: see text]-vacuum tunneling effects. The [Formula: see text]-vacuum induces the local parity-odd domains. Those reactions that occur in these domains can be affected by the tunneling effects and quantities become parity-odd. In this paper we consider the fragmentation process where parity-odd fragmentation functions are introduced. We present the fragmentation functions by decomposing the quark–quark correlator. Among the total 16 fragmentation functions, eight of them are parity conserved, and the others are parity violated. They have a one-to-one correspondence. Positivity bounds of these one-dimensional fragmentation functions are shown. To be explicit, we also introduce an operator definition of the parity-odd correlator. According to the definition, we give a proof that the parity-odd fragmentation functions are local quantities and vanish when sum over all the hadrons [Formula: see text].
Styles APA, Harvard, Vancouver, ISO, etc.
35

Nejad, S. Mohammad Moosavi, et Mahdi Delpasand. « Spin-dependent fragmentation functions of gluon splitting into heavy quarkonia considering three different scenarios ». International Journal of Modern Physics A 30, no 32 (17 novembre 2015) : 1550179. http://dx.doi.org/10.1142/s0217751x15501791.

Texte intégral
Résumé :
Heavy quarkonium production is a powerful implement to study the strong interaction dynamics and QCD theory. Fragmentation is the dominant production mechanism for heavy quarkonia with large transverse momentum. With the large heavy quark mass, the relative motion of the heavy quark pair inside a heavy quarkonium is effectively nonrelativistic and it is also well known that their fragmentation functions can be calculated in the perturbative QCD framework. Here, we analytically calculate the process-independent fragmentation functions for a gluon to split into the spin-singlet and spin-triplet [Formula: see text]-wave heavy quarkonia using three different scenarios. We will show that the fragmentation probability of the gluon into the spin-triplet bound-state is the biggest one.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Plumari, Salvatore, Vincenzo Minissale, Santosh K. Das, Francesco Scardina et Vincenzo Greco. « Strange and heavy hadrons production from coalescence plus fragmentation in AA collisions at RHIC and LHC ». EPJ Web of Conferences 171 (2018) : 13005. http://dx.doi.org/10.1051/epjconf/201817113005.

Texte intégral
Résumé :
In a coalescence plus fragmentation approach we study the pT spectra of charmed hadrons D0, Ds up to about 10 GeV and the Λ+c /D0 ratio from RHIC to LHC energies. In this study we have included the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence. The pT dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass. In particular we found that the Λc/D0 is much flatter than the one for light baryon/meson ratio like p/π and Λ/K.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Corcella, Gennaro, et Federico Mescia. « A phenomenological study of bottom-quark fragmentation in top-quark decay ». European Physical Journal C 65, no 1-2 (22 octobre 2009) : 171–80. http://dx.doi.org/10.1140/epjc/s10052-009-1170-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Plumari, Salvatore, Santosh K. Das, Francesco Scardina, Vincenzo Minissale et Vincenzo Greco. « Heavy Quark Dynamics toward thermalization : RAA, υ1, υ2, υ3 ». EPJ Web of Conferences 171 (2018) : 18014. http://dx.doi.org/10.1051/epjconf/201817118014.

Texte intégral
Résumé :
We describe the propagation of Heavy quarks (HQs) in the quark-gluon plasma (QGP) within a relativistic Boltzmann transport (RBT) approach. The interaction between heavy quarks and light quarks is described within quasi-particle approach which is able to catch the main features of non-perturbative interaction as the increasing of the interaction in the region of low temperature near TC. In our calculations the hadronization of charm quarks in D mesons is described by mean of an hybrid model of coalescence plus fragmentation. We show that the coalescence play a key role to get a good description of the experimental data for the nuclear suppression factor RAA and the elliptic flow υ2(pT) at both RHIC and LHC energies. Moreover, we show some recent results on the direct flow υ1 and triangular flow υ3 of D meson.
Styles APA, Harvard, Vancouver, ISO, etc.
39

KOCH, P., B. MÜLLER, H. STÖCKER et W. GREINER. « ANTIBARYON-BARYON RATIOS AS A SIGNAL FOR QUARK GLUON PLASMA FORMATION ». Modern Physics Letters A 03, no 08 (juillet 1988) : 737–42. http://dx.doi.org/10.1142/s021773238800088x.

Texte intégral
Résumé :
In a previously developed non-equilibrium model for hadronization of a quark gluon plasma, we study hadronic signals for plasma formation. We find that fragmentation of gluons into quark-antiquark pairs can lead to a strong enhancement of various antibaryon to baryon ratios if a baryon-rich quark gluon plasma is formed.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Braaten, Eric, Kingman Cheung, Sean Fleming et Tzu Chiang Yuan. « Perturbative QCD fragmentation functions as a model for heavy-quark fragmentation ». Physical Review D 51, no 9 (1 mai 1995) : 4819–29. http://dx.doi.org/10.1103/physrevd.51.4819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

INDUMATHI, D., et H. SAVEETHA. « STUDY OF VECTOR MESON FRAGMENTATION USING A BROKEN SU(3) MODEL ». International Journal of Modern Physics A 27, no 19 (26 juillet 2012) : 1250103. http://dx.doi.org/10.1142/s0217751x12501035.

Texte intégral
Résumé :
Inclusive hadro-production in e+e- annihilation processes is examined to study the fragmentation process. A broken SU(3) model is used to determine the quark and gluon fragmentation functions of octet vector mesons, ρ and K*, in a simple way with an SU(3) breaking parameter λ. These are expressed in terms of just two light quark fragmentation functions, V(x, Q2) and γ(x, Q2) and the gluon fragmentation function Dg(x, Q2). These functions are parametrized at the low input scale of [Formula: see text], evolved through LO DGLAP evolution including charm and bottom flavor at appropriate thresholds, and fitted by comparison with data at the Z-pole. The model is extended with the introduction of a few additional parameters to include a study of singlet–octet mixing and hence ω and ϕ fragmentation. The model gives good fits to the available data for x ≳0.01, where x is the scaled energy of the hadron. The model is then applied successfully to ω, ϕ production in pp collisions at the relativistic heavy ion collider, RHIC, these data form an important baseline for the study of Quark Gluon Plasma in heavy nucleus collisions at RHIC, and also in future at the LHC.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ghaffary, Tooraj. « Charged Particles Multiplicity and Scaling Violation of Fragmentation Functions in Electron-Positron Annihilation ». Advances in High Energy Physics 2016 (2016) : 1–8. http://dx.doi.org/10.1155/2016/4506809.

Texte intégral
Résumé :
By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.
Styles APA, Harvard, Vancouver, ISO, etc.
43

WANG, QUN, XI-MING LIU et QU-BING XIE. « THE HEAVY QUARK FRAGMENTATION FUNCTION AND THE MULTIPLICITY DIFFERENCE BETWEEN HEAVY AND LIGHT QUARK HADRONIC EVENTS IN e+e- ANNIHILATION IN THE LONGITUDINAL PHASE SPACE MODEL ». International Journal of Modern Physics A 13, no 13 (20 mai 1998) : 2145–63. http://dx.doi.org/10.1142/s0217751x98000962.

Texte intégral
Résumé :
The heavy quark fragmentation function and the multiplicity difference between heavy and light quark hadronic events are explained in a unified framework, namely the longitudinal phase space model. Good agreement of the predictions with data has been achieved.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Paulucci, L., et J. E. Horvath. « Strange quark matter fragmentation in astrophysical events ». Physics Letters B 733 (juin 2014) : 164–68. http://dx.doi.org/10.1016/j.physletb.2014.04.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Chen, Yu-Qi, et Mark B. Wise. « Remark on charm quark fragmentation toD**mesons ». Physical Review D 50, no 7 (1 octobre 1994) : 4706–7. http://dx.doi.org/10.1103/physrevd.50.4706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Efremov, A. V., O. G. Smirnova et L. G. Tkatchev. « On the T-odd quark fragmentation function ». Nuclear Physics B - Proceedings Supplements 79, no 1-3 (octobre 1999) : 554–56. http://dx.doi.org/10.1016/s0920-5632(99)00781-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bourhis, L., M. Fontannaz et J. P. Guillet. « Quark and gluon fragmentation functions into photons ». European Physical Journal C 2, no 3 (1998) : 529. http://dx.doi.org/10.1007/s100520050158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bourhis, L., M. Fontannaz et J. P. Guillet. « Quark and gluon fragmentation functions into photons ». European Physical Journal C 2, no 3 (avril 1998) : 529–37. http://dx.doi.org/10.1007/s100529800708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Braaten, Eric, Kingman Cheung et Tzu Chiang Yuan. « Z0decay into charmonium via charm quark fragmentation ». Physical Review D 48, no 9 (1 novembre 1993) : 4230–35. http://dx.doi.org/10.1103/physrevd.48.4230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Fujita, T., et J. Hüfner. « Quark fragmentation function in the Schwinger model ». Physical Review D 40, no 2 (15 juillet 1989) : 604–6. http://dx.doi.org/10.1103/physrevd.40.604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie