Littérature scientifique sur le sujet « Quantum radar »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantum radar ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Quantum radar"

1

Luong, David, Sreeraman Rajan et Bhashyam Balaji. « Quantum Monopulse Radar ». Applied Computational Electromagnetics Society 35, no 11 (5 février 2021) : 1430–32. http://dx.doi.org/10.47037/2020.aces.j.351184.

Texte intégral
Résumé :
We evaluate the feasibility of a quantum monopulse radar, focusing on quantum illumination (QI) radars and quantum two-mode squeezing (QTMS) radars. Based on their similarity with noise radar, for which monopulse operation is known to be possible, we find that QTMS radars can be adapted into monopulse radars, but QI radars cannot. We conclude that quantum monopulse radars are feasible.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Djordjevic, Ivan B. « On Entanglement-Assisted Multistatic Radar Techniques ». Entropy 24, no 7 (17 juillet 2022) : 990. http://dx.doi.org/10.3390/e24070990.

Texte intégral
Résumé :
Entanglement-based quantum sensors have much better sensitivity than corresponding classical sensors in a noisy and lossy regime. In our recent paper, we showed that the entanglement-assisted (EA) joint monostatic–bistatic quantum radar performs much better than conventional radars. Here, we propose an entanglement-assisted (EA) multistatic radar that significantly outperforms EA bistatic, coherent state-based quantum, and classical radars. The proposed EA multistatic radar employs multiple entangled transmitters performing transmit-side optical phase conjugation, multiple coherent detection-based receivers serving as EA detectors, and a joint detector.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lanzagorta, Marco. « Quantum Radar ». Synthesis Lectures on Quantum Computing 3, no 1 (31 octobre 2011) : 1–139. http://dx.doi.org/10.2200/s00384ed1v01y201110qmc005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Djordjevic, Ivan B. « Entanglement-Assisted Joint Monostatic-Bistatic Radars ». Entropy 24, no 6 (26 mai 2022) : 756. http://dx.doi.org/10.3390/e24060756.

Texte intégral
Résumé :
With the help of entanglement, we can build quantum sensors with sensitivity better than that of classical sensors. In this paper we propose an entanglement assisted (EA) joint monostatic-bistatic quantum radar scheme, which significantly outperforms corresponding conventional radars. The proposed joint monostatic-bistatic quantum radar is composed of two radars, one having both wideband entangled source and EA detector, and the second one with only an EA detector. The optical phase conjugation (OPC) is applied on the transmitter side, while classical coherent detection schemes are applied in both receivers. The joint monostatic-bistatic integrated EA transmitter is proposed suitable for implementation in LiNbO3 technology. The detection probability of the proposed EA joint target detection scheme outperforms significantly corresponding classical, coherent states-based quantum detection, and EA monostatic detection schemes. The proposed EA joint target detection scheme is evaluated by modelling the direct radar return and forward scattering channels as both lossy and noisy Bosonic channels, and assuming that the distribution of entanglement over idler channels is not perfect.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Norouzi, Milad, Jamileh Seyed-Yazdi, Seyed Mohammad Hosseiny et Patrizia Livreri. « Investigation of the JPA-Bandwidth Improvement in the Performance of the QTMS Radar ». Entropy 25, no 10 (22 septembre 2023) : 1368. http://dx.doi.org/10.3390/e25101368.

Texte intégral
Résumé :
Josephson parametric amplifier (JPA) engineering is a significant component in the quantum two-mode squeezed radar (QTMS) to enhance, for instance, radar performance and the detection range or bandwidth. We simulated a proposal of using engineered JPA (EJPA) to enhance the performance of a QTMS radar. We defined the signal-to-noise ratio (SNR) and detection range equations of the QTMS radar. The engineered JPA led to a remarkable improvement in the quantum radar performance, i.e., a large enhancement in SNR of about 6 dB more than the conventional QTMS radar (with respect to the latest version of the QTMS radar and not to the classical radar), a substantial improvement in the probability of detection through far fewer channels. The important point in this work was that we expressed the importance of choosing suitable detectors for the QTMS radars. Finally, we simulated the transmission of the signal to the target in the QTMS radar and obtained a huge increase in the QTMS radar range, up to 482 m in the current study.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lu, Shaoze, Zhijun Meng, Jun Huang, Mingxu Yi et Zeyang Wang. « Study on Quantum Radar Detection Probability Based on Flying-Wing Stealth Aircraft ». Sensors 22, no 16 (9 août 2022) : 5944. http://dx.doi.org/10.3390/s22165944.

Texte intégral
Résumé :
The development of quantum radar technology presents a challenge to stealth targets, so it is necessary to study the quantum detection probability. In this study, an analytical expression of the quantum radar cross section (QRCS) for complex targets is presented. Based on this QRCS expression, a calculation method for the detection probability for quantum radar is creatively proposed. Moreover, a self-designed flying-wing stealth aircraft is adopted to obtain the detection probability distributions of the conventional radar and the quantum radar in different directions. As revealed by the result of this study, the detection probabilities of the quantum radar and the conventional radar are significantly different, and the detection probability of the quantum radar has obvious advantages in most regions with a certain distance.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tian, Zhi-Fu, Di Wu et Tao Hu. « Theoretical study of single-photon quantum radar cross-section of cylindrical curved surface ». Acta Physica Sinica 71, no 3 (2022) : 034204. http://dx.doi.org/10.7498/aps.71.20211295.

Texte intégral
Résumé :
To examine the single-photon quantum radar cross-section of cylindrical surface and its specific advantages over the classical radar cross-section, a photon wave function in which the distance vectors causing interference are decomposed is introduced in this study. A closed-form expression of the single-photon quantum radar cross-section of cylindrical surface is derived. The influences of the length and curvature radius of cylindrical surfaces with different electrical sizes are analyzed, and the closed-form expressions of the quantum and classical radar cross-sections of cylindrical surface are compared with each other. The analyses of the closed-form expression and simulation results show that the electrical length of the cylindrical surface determines the number of side lobes of the quantum radar cross-section; meanwhile, the curvature radius has a linear relation with the overall strength of the quantum radar cross-section, and the electrical size of the curvature radius determines the envelope of the quantum radar cross-section curve. Compared with the classical radar cross-section, the quantum radar cross-section of a cylindrical surface has the advantage of side-lobe enhancement, which is beneficial for detecting stealth targets.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chang, C. W. Sandbo, A. M. Vadiraj, J. Bourassa, B. Balaji et C. M. Wilson. « Quantum-enhanced noise radar ». Applied Physics Letters 114, no 11 (18 mars 2019) : 112601. http://dx.doi.org/10.1063/1.5085002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Blakely, Jonathan N. « Bounds on Probability of Detection Error in Quantum-Enhanced Noise Radar ». Quantum Reports 2, no 3 (21 juillet 2020) : 400–413. http://dx.doi.org/10.3390/quantum2030028.

Texte intégral
Résumé :
Several methods for exploiting quantum effects in radar have been proposed, and some have been shown theoretically to outperform any classical radar scheme. Here, a model is presented of quantum-enhanced noise radar enabling a similar analysis. This quantum radar scheme has a potential advantage in terms of ease of implementation insofar as it requires no quantum memory. A significant feature of the model introduced is the inclusion of quantum noise consistent with the Heisenberg uncertainty principle applied to simultaneous determination of field quadratures. The model enables direct comparison to other quantum and classical radar schemes. A bound on the probability of an error in target detection is shown to match that of the optimal classical-state scheme. The detection error is found to be typically higher than for ideal quantum illumination, but orders of magnitude lower than for the most similar classical noise radar scheme.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kulshreshtha, Abhijit, et Abdulkareem Sh Mahdi Al-Obaidi. « Stealth Detection System via Multistage Radar and Quantum Radar ». Indonesian Journal of Science and Technology 5, no 3 (1 décembre 2020) : 470–86. http://dx.doi.org/10.17509/ijost.v5i3.26806.

Texte intégral
Résumé :
In today’s era of advanced weapons and technology development, many remarkable inventions have shifted the balance of war towards the strategically enhanced military equipped with tactical weapons and armaments. One of these strategic advancements is stealth technology due to which stealth aircraft are high in demand for the military. The question that rises is How to detect a stealth object? This paper proposes a novel anti-stealth technique using void detection, high frequency wave interference and neutrino beam propagation. Void detection method uses a modified satellite-based radar that searches for areas in the aerospace from which the transmitted signals sent to the ground receiving station are blocked or deflected. High frequency wave interference method is used to generate a stellar trajectory of the stealth aircraft at the detected void. Neutrino beam comprises of energy quanta mainly neutrinos, which are able to surpass the absorption or deflection systems in the stealth body of aircraft. This unique phenomenon produces a moving image, which is the precise location of the aircraft in the space. Using these methods, the trajectory of the aircraft is detected which ultimately leads to the detection of the stealth aircraft itself. The newly proposed methods which are theoretically more reliable than the existing methods may not have been tested but the method planning make them practically feasible considering that the technology used is a part of advanced engineering today.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Quantum radar"

1

Borderieux, Sylvain. « Apport de la théorie de l’information quantique dans la perspective du radar quantique ». Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0011.

Texte intégral
Résumé :
Cette thèse propose une approche originale de la thématique du radar à illumination quantique en recourant à la théorie de l’information quantique pour étudier l’évolution des corrélations quantiques le long d’une chaîne radar. Ce mémoire propose d’abord un parallèle des différences et similitudes entre les théories du radar classique et du radar quantique en insistant sur les principes propres aux deux théories. Le radar à illumination quantique étudié utilise des paires de photons intriqués pour établir la présence ou l’absence d’un objet faiblement réfléchissant baigné dans un bruit thermique parasitant la détection. À partir de la mise en parallèle, les travaux se sont concentrés sur l’influence de l’environnement atmosphérique dans l’évolution de l’intrication du système de photons du radar et dans l’évolution des corrélations quantiques représentées par la discorde quantique. L’objectif des recherches était de montrer un lien entre la discorde quantique et la stratégie de détection binaire du radar quantique. Les résultats tendent à montrer ce lien même si des améliorations aux modèles composés pour l’étude seraient bienvenues. Cela permettrait notamment d’orienter la recherche vers des cas concrets pouvant bénéficier d’une application expérimentale du procédé d’illumination quantique
This thesis provides an original approach of the quantum illumination radar using the quantum information theory to study the evolution of quantum correlations in a radar system. We first propose a parallel between the classical radar theory and the quantum radar theory to determine similarities anf differences insisting on the last point. The quantum illumination radar uses pairs of entangled photons to detect the absence of the presence of a low-reflecting object into a bright thermal background that disturbs the detection. Using the parallel between the radar theories, research has been done on the atmospheric influence on the evolution of entanglement of the system of photons in the radar, and on the evolution of quantum correlations quantified by the quantum discord. The objective of research was to show a link between the quantum discord and the binary decision strategy of the quantum radar. Results suggest this link even if improvements should be required on the tested models. It should permit to study practical situations particularly if we think about a possible experiment on a quantum illumination protocol
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Quantum radar"

1

Lanzagorta, Marco. Quantum Radar. Cham : Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Larsen, Reif. I am Radar. Toronto, Ontario, Canada : Hamish Hamilton, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Boffin : A personal story of the early days of radar, radio astronomy, and quantum optics. Bristol : Adam Hilger, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Brown, R. Hanbury. Boffin : A personal story of the early days of radar, radio astronomy, and quantum optics. Bristol : Institute of Physics Publishing, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

United States. National Aeronautics and Space Administration., dir. Analysis of measurements for solid state lidar development : Contract no. NAS8-38609 ... contract period : August 8,1994 - December 7, 1995. [Washington, DC : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Quantum Radar. Morgan & Claypool, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lanzagorta, Marco. Quantum Radar. Morgan & Claypool Publishers, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lanzagorta, Marco. Quantum Radar. Springer International Publishing AG, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hirota, Osamu, dir. Quantum Communication, Quantum Radar, and Quantum Cipher. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-8561-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Larsen, Reif. I Am Radar. Penguin Random House, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Quantum radar"

1

Durak, Kadir, Zeki Seskir et Bulat Rami. « Quantum Radar ». Dans Quantum Computing Environments, 125–65. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89746-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lanzagorta, Marco. « Quantum Radar Cross Section ». Dans Quantum Radar, 129–51. Cham : Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lanzagorta, Marco. « Classical Radar Theory ». Dans Quantum Radar, 61–88. Cham : Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lanzagorta, Marco. « Conclusions ». Dans Quantum Radar, 152–54. Cham : Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lanzagorta, Marco. « Introduction ». Dans Quantum Radar, 1–5. Cham : Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02515-0_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Schempp, Walter. « Quantum Holography, Synthetic Aperture Radar Imaging and Computed Tomographic Imaging ». Dans Quantum Measurements in Optics, 323–43. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Marghany, Maged. « Quantum Interferometry Radar for Oil and Gas Explorations ». Dans Remote Sensing and Image Processing in Mineralogy, 193–214. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781003033776-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kay, Steven, et Muralidhar Rangaswamy. « The Ubiquitous Matched Filter : A Tutorial and Application to Radar Detection ». Dans Classical, Semi-classical and Quantum Noise, 91–108. New York, NY : Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-6624-7_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fang, Chonghua, Liang Hua, Shi Xinyang, Yang Xu et Xianliang Zeng. « The Computation of Quantum Radar Cross Section for the Regular Five-Pointed Star ». Dans Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 561–65. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90196-7_48.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Gexiang, Laizhao Hu et Weidong Jin. « Quantum Computing Based Machine Learning Method and Its Application in Radar Emitter Signal Recognition ». Dans Modeling Decisions for Artificial Intelligence, 92–103. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27774-3_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Quantum radar"

1

Lukin, Konstantin. « Quantum Radar vs Noise Radar ». Dans 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). IEEE, 2016. http://dx.doi.org/10.1109/msmw.2016.7538137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Djordjevic, Ivan B. « Entanglement Assisted Bistatic Radars Outperforming Coherent States-based Quantum Radars ». Dans Signal Processing in Photonic Communications. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sppcom.2022.spw2j.4.

Texte intégral
Résumé :
We propose an entanglement assisted bistatic radar employing the optical phase conjugation on transmitter side and classical coherent detection on receiver side, which significantly outperforms corresponding classical and coherent states-based quantum radars.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Luong, David, Sreeraman Rajan et Bhashyam Balaji. « Quantum Monopulse Radar ». Dans 2020 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2020. http://dx.doi.org/10.23919/aces49320.2020.9196136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bourassa, Jerome, et Christopher M. Wilson. « Amplification Requirements For Quantum Radar Signals ». Dans 2020 IEEE International Radar Conference (RADAR). IEEE, 2020. http://dx.doi.org/10.1109/radar42522.2020.9114574.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Han, Amr Helmy et Bhashyam Balaji. « Inspiring radar from quantum-enhanced lidar ». Dans 2020 IEEE International Radar Conference (RADAR). IEEE, 2020. http://dx.doi.org/10.1109/radar42522.2020.9114825.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lukin, Konstantin. « Quantum Radar and Noise Radar Concepts ». Dans 2021 IEEE Radar Conference (RadarConf21). IEEE, 2021. http://dx.doi.org/10.1109/radarconf2147009.2021.9455276.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mogilevtsev, D., I. Peshko, I. Karuseichyk, A. Mikhalychev, A. P. Nizovtsev, G. Ya Slepyan et A. Boag. « Quantum Noise Radar : Assessing Quantum Correlations ». Dans 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2019. http://dx.doi.org/10.1109/comcas44984.2019.8958223.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Luong, David, et Bhashyam Balaji. « Quantum radar, quantum networks, not-so-quantum hackers ». Dans Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, sous la direction de Lynne L. Grewe, Erik P. Blasch et Ivan Kadar. SPIE, 2019. http://dx.doi.org/10.1117/12.2519453.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Brandsema, Matthew J., Marco Lanzagorta et Ram M. Narayanan. « Quantum Electromagnetic Scattering and the Sidelobe Advantage ». Dans 2020 IEEE International Radar Conference (RADAR). IEEE, 2020. http://dx.doi.org/10.1109/radar42522.2020.9114591.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Frasca, Marco, et Alfonso Farina. « Entangled coherent states for quantum radar applications ». Dans 2020 IEEE International Radar Conference (RADAR). IEEE, 2020. http://dx.doi.org/10.1109/radar42522.2020.9114592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie