Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Quantum Processing.

Articles de revues sur le sujet « Quantum Processing »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Quantum Processing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Ahlswede, R., et P. Lober. « Quantum data processing ». IEEE Transactions on Information Theory 47, no 1 (2001) : 474–78. http://dx.doi.org/10.1109/18.904565.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Eldar, Y. C., et A. V. Oppenheim. « Quantum signal processing ». IEEE Signal Processing Magazine 19, no 6 (novembre 2002) : 12–32. http://dx.doi.org/10.1109/msp.2002.1043298.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ferry, D. K., R. Akis et J. Harris. « Quantum wave processing ». Superlattices and Microstructures 30, no 2 (août 2001) : 81–94. http://dx.doi.org/10.1006/spmi.2001.0998.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nagy, Marius, et Naya Nagy. « Image processing : why quantum ? » Quantum Information and Computation 20, no 7&8 (juin 2020) : 616–26. http://dx.doi.org/10.26421/qic20.7-8-6.

Texte intégral
Résumé :
Quantum Image Processing has exploded in recent years with dozens of papers trying to take advantage of quantum parallelism in order to offer a better alternative to how current computers are dealing with digital images. The vast majority of these papers define or make use of quantum representations based on very large superposition states spanning as many terms as there are pixels in the image they try to represent. While such a representation may apparently offer an advantage in terms of space (number of qubits used) and speed of processing (due to quantum parallelism), it also harbors a fundamental flaw: only one pixel can be recovered from the quantum representation of the entire image, and even that one is obtained non-deterministically through a measurement operation applied on the superposition state. We investigate in detail this measurement bottleneck problem by looking at the number of copies of the quantum representation that are necessary in order to recover various fractions of the original image. The results clearly show that any potential advantage a quantum representation might bring with respect to a classical one is paid for dearly with the huge amount of resources (space and time) required by a quantum approach to image processing.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Qiang, Xiaogang, Xiaoqi Zhou, Kanin Aungskunsiri, Hugo Cable et Jeremy L. O’Brien. « Quantum processing by remote quantum control ». Quantum Science and Technology 2, no 4 (24 août 2017) : 045002. http://dx.doi.org/10.1088/2058-9565/aa78d6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cirac, J. I., L. M. Duan, D. Jaksch et P. Zoller. « Quantum Information Processing with Quantum Optics ». Annales Henri Poincaré 4, S2 (décembre 2003) : 759–81. http://dx.doi.org/10.1007/s00023-003-0960-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

TAKEOKA, Masahiro, et Masahide SASAKI. « Introduction to Optical Quantum Information Processing 3. Quantum Information Processing Protocols and Quantum Computation ». Review of Laser Engineering 33, no 1 (2005) : 57–61. http://dx.doi.org/10.2184/lsj.33.57.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

KIM, Jaewan. « Quantum Physics and Information Processing : Quantum Computers ». Physics and High Technology 21, no 12 (31 décembre 2012) : 21. http://dx.doi.org/10.3938/phit.21.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Benhelm, J., G. Kirchmair, R. Gerritsma, F. Zähringer, T. Monz, P. Schindler, M. Chwalla et al. « Ca+quantum bits for quantum information processing ». Physica Scripta T137 (décembre 2009) : 014008. http://dx.doi.org/10.1088/0031-8949/2009/t137/014008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Benincasa, Dionigi M. T., Leron Borsten, Michel Buck et Fay Dowker. « Quantum information processing and relativistic quantum fields ». Classical and Quantum Gravity 31, no 7 (5 mars 2014) : 075007. http://dx.doi.org/10.1088/0264-9381/31/7/075007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Knight, P. « QUANTUM COMPUTING:Enhanced : Quantum Information Processing Without Entanglement ». Science 287, no 5452 (21 janvier 2000) : 441–42. http://dx.doi.org/10.1126/science.287.5452.441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

An-Min, Wang. « Quantum Central Processing Unit and Quantum Algorithm ». Chinese Physics Letters 19, no 5 (18 avril 2002) : 620–22. http://dx.doi.org/10.1088/0256-307x/19/5/304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Troiani, F., U. Hohenester et E. Molinari. « Quantum-Information Processing in Semiconductor Quantum Dots ». physica status solidi (b) 224, no 3 (avril 2001) : 849–53. http://dx.doi.org/10.1002/(sici)1521-3951(200104)224:3<849 ::aid-pssb849>3.0.co;2-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Deng, Y., M. X. Luo et S. Y. Ma. « Efficient Quantum Information Processing via Quantum Compressions ». International Journal of Theoretical Physics 55, no 1 (25 avril 2015) : 212–31. http://dx.doi.org/10.1007/s10773-015-2652-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Roussel, B., C. Cabart, G. Fève, E. Thibierge et P. Degiovanni. « Electron quantum optics as quantum signal processing ». physica status solidi (b) 254, no 3 (23 janvier 2017) : 1600621. http://dx.doi.org/10.1002/pssb.201600621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ramanathan, Chandrasekhar, Nicolas Boulant, Zhiying Chen, David G. Cory, Isaac Chuang et Matthias Steffen. « NMR Quantum Information Processing ». Quantum Information Processing 3, no 1-5 (octobre 2004) : 15–44. http://dx.doi.org/10.1007/s11128-004-3668-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kok, Pieter. « Photonic quantum information processing ». Contemporary Physics 57, no 4 (10 mai 2016) : 526–44. http://dx.doi.org/10.1080/00107514.2016.1178472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Mosca, M., R. Jozsa, A. Steane et A. Ekert. « Quantum–enhanced information processing ». Philosophical Transactions of the Royal Society of London. Series A : Mathematical, Physical and Engineering Sciences 358, no 1765 (15 janvier 2000) : 261–79. http://dx.doi.org/10.1098/rsta.2000.0531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ruan, Yue, Xiling Xue et Yuanxia Shen. « Quantum Image Processing : Opportunities and Challenges ». Mathematical Problems in Engineering 2021 (4 janvier 2021) : 1–8. http://dx.doi.org/10.1155/2021/6671613.

Texte intégral
Résumé :
Quantum image processing (QIP) is a research branch of quantum information and quantum computing. It studies how to take advantage of quantum mechanics’ properties to represent images in a quantum computer and then, based on that image format, implement various image operations. Due to the quantum parallel computing derived from quantum state superposition and entanglement, QIP has natural advantages over classical image processing. But some related works misuse the notion of quantum superiority and mislead the research of QIP, which leads to a big controversy. In this paper, after describing this field’s research status, we list and analyze the doubts about QIP and argue “quantum image classification and recognition” would be the most significant opportunity to exhibit the real quantum superiority. We present the reasons for this judgment and dwell on the challenges for this opportunity in the era of NISQ (Noisy Intermediate-Scale Quantum).
Styles APA, Harvard, Vancouver, ISO, etc.
20

ALTAISKY, MIKHAIL V., et NATALIA E. KAPUTKINA. « QUANTUM HIERARCHIC MODELS FOR INFORMATION PROCESSING ». International Journal of Quantum Information 10, no 02 (mars 2012) : 1250026. http://dx.doi.org/10.1142/s0219749912500268.

Texte intégral
Résumé :
Both classical and quantum computations operate with the registers of bits. At nanometer scale the quantum fluctuations at the position of a given bit, say, a quantum dot, not only lead to the decoherence of quantum state of this bit, but also affect the quantum states of the neighboring bits, and therefore affect the state of the whole register. That is why the requirement of reliable separate access to each bit poses the limit on miniaturization, i.e. constrains the memory capacity and the speed of computation. In the present paper we suggest an algorithmic way to tackle the problem of constructing reliable and compact registers of quantum bits. We suggest accessing the states of a quantum register hierarchically, descending from the state of the whole register to the states of its parts. Our method is similar to quantum wavelet transform, and can be applied to information compression, quantum memory, quantum computations.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Khabbazi Oskouei, Samad, Stefano Mancini et Mark M. Wilde. « Union bound for quantum information processing ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 475, no 2221 (janvier 2019) : 20180612. http://dx.doi.org/10.1098/rspa.2018.0612.

Texte intégral
Résumé :
In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi–Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory 49 , 1753–1768. ( doi:10.1109/TIT.2003.813556 )), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy–Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wu, Shuyue, et Jingfang Wang. « A Quantum Pointer Signal Processing Research ». Indonesian Journal of Electrical Engineering and Computer Science 2, no 3 (1 juin 2016) : 675. http://dx.doi.org/10.11591/ijeecs.v2.i3.pp675-683.

Texte intégral
Résumé :
<span lang="EN-US">In quantum gray-scale image processing, the storage in quantum states is the color information and the position information According to the advantage of small range of the gray scale in a gray-scale image, a novel storage expression of quantum gray-scale image is proposed and demonstrated in this study. Besides, a new concept of "quantum pointer" is put forward based on the expression. Quantum pointer is the vinculum between the information of gray-scale and position of each pixel in quantum gray-scale images. The feasibility is verified for the proposed quantum pointer, and the properties of bi-direction and sub-block are used, the storing and other operations of quantum gray-scale image are simpler and more convenient. </span>
Styles APA, Harvard, Vancouver, ISO, etc.
23

Blais, Alexandre, Steven M. Girvin et William D. Oliver. « Quantum information processing and quantum optics with circuit quantum electrodynamics ». Nature Physics 16, no 3 (mars 2020) : 247–56. http://dx.doi.org/10.1038/s41567-020-0806-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Venegas-Andraca, Salvador Elías. « Introductory words : Special issue on quantum image processing published by Quantum Information Processing ». Quantum Information Processing 14, no 5 (30 avril 2015) : 1535–37. http://dx.doi.org/10.1007/s11128-015-1001-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

OMAR, YASSER. « PARTICLE STATISTICS IN QUANTUM INFORMATION PROCESSING ». International Journal of Quantum Information 03, no 01 (mars 2005) : 201–5. http://dx.doi.org/10.1142/s021974990500075x.

Texte intégral
Résumé :
Particle statistics is a fundamental part of quantum physics, and yet its role and use in the context of quantum information have been poorly explored so far. After briefly introducing particle statistics and the Symmetrization Postulate, we argue that this fundamental aspect of nature can be seen as a resource for quantum information processing and present examples showing how it is possible to do useful and efficient quantum information processing using only the effects of particle statistics.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jun, Liu, Wang Qiong, Kuang Le-Man et Zeng Hao-Sheng. « Distributed quantum information processing via quantum dot spins ». Chinese Physics B 19, no 3 (mars 2010) : 030313. http://dx.doi.org/10.1088/1674-1056/19/3/030313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Long, Gui Lu. « Duality Quantum Computing and Duality Quantum Information Processing ». International Journal of Theoretical Physics 50, no 4 (1 décembre 2010) : 1305–18. http://dx.doi.org/10.1007/s10773-010-0603-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yamamoto, Y. « Quantum Communication and Information Processing with Quantum Dots ». Quantum Information Processing 5, no 5 (29 août 2006) : 299–311. http://dx.doi.org/10.1007/s11128-006-0027-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Stobińska, M., A. Buraczewski, M. Moore, W. R. Clements, J. J. Renema, S. W. Nam, T. Gerrits et al. « Quantum interference enables constant-time quantum information processing ». Science Advances 5, no 7 (juillet 2019) : eaau9674. http://dx.doi.org/10.1126/sciadv.aau9674.

Texte intégral
Résumé :
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the discrete Fourier transform. It is implemented with the fast Fourier transform (FFT) algorithm that assumes a periodic input of specific lengths, which rarely holds true. A lesser-known transform, the Kravchuk-Fourier (KT), allows one to operate on finite strings of arbitrary length. It is of high demand in digital image processing and computer vision but features a prohibitive runtime. Here, we report a one-step computation of a fractional quantum KT. The quantum d-nary (qudit) architecture we use comprises only one gate and offers processing time independent of the input size. The gate may use a multiphoton Hong-Ou-Mandel effect. Existing quantum technologies may scale it up toward diverse applications.
Styles APA, Harvard, Vancouver, ISO, etc.
30

An-Min, Wang. « A Universal Quantum Network-Quantum Central Processing Unit ». Chinese Physics Letters 18, no 2 (février 2001) : 166–68. http://dx.doi.org/10.1088/0256-307x/18/2/304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

D’Amico, Irene, Eliana Biolatti, Fausto Rossi, Sergio DeRinaldis, Ross Rinaldis et Roberto Cingolani. « GaN quantum dot based quantum information/computation processing ». Superlattices and Microstructures 31, no 2-4 (février 2002) : 117–25. http://dx.doi.org/10.1006/spmi.2002.1033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Xia, Hai-Ying, Han Zhang, Shu-Xiang Song, Haisheng Li, Yi-Jie Zhou et Xiao Chen. « Design and simulation of quantum image binarization using quantum comparator ». Modern Physics Letters A 35, no 09 (9 décembre 2019) : 2050049. http://dx.doi.org/10.1142/s0217732320500492.

Texte intégral
Résumé :
Compared with classical image processing, quantum image processing provides a possible solution for faster image processing, which has been widely concerned. Quantum image binarization is a basic operation and plays an important role in image processing. Hence, we proposed an efficient design of quantum image binarization using quantum comparator. To reduce quantum cost and quantum delay, the comparator was optimized by rearranging the quantum gates. Then, a complete circuit implementation of quantum image binarization was designed using the comparator. Furthermore, we analyzed the performance of our design in terms of quantum cost, quantum delay and ancillary bits. Finally, the simulation verifies the correctness of our design.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Monras, A., et O. Romero-Isart. « Quantum information processing with quantum zeno many-body dynamics ». Quantum Information and Computation 10, no 3&4 (mars 2010) : 201–22. http://dx.doi.org/10.26421/qic10.3-4-3.

Texte intégral
Résumé :
We show how the quantum Zeno effect can be exploited to control quantum many-body dynamics for quantum information and computation purposes. In particular, we consider a one dimensional array of three level systems interacting via a nearest-neighbour interaction. By encoding the qubit on two levels and using simple projective frequent measurements yielding the quantum Zeno effect, we demonstrate how to implement a well defined quantum register, quantum state transfer on demand, universal two-qubit gates and two-qubit parity measurements. Thus, we argue that the main ingredients for universal quantum computation can be achieved in a spin chain with an {\em always-on} and {\em constant} many-body Hamiltonian. We also show some possible modifications of the initially assumed dynamics in order to create maximally entangled qubit pairs and single qubit gates.
Styles APA, Harvard, Vancouver, ISO, etc.
34

RAHIMI, ROBABEH, KAZUNOBU SATO, KOU FURUKAWA, KAZUO TOYOTA, DAISUKE SHIOMI, TOSHIHIRO NAKAMURA, MASAHIRO KITAGAWA et TAKEJI TAKUI. « PULSED ENDOR-BASED QUANTUM INFORMATION PROCESSING ». International Journal of Quantum Information 03, supp01 (novembre 2005) : 197–204. http://dx.doi.org/10.1142/s0219749905001377.

Texte intégral
Résumé :
Pulsed Electron Nuclear DOuble Resonance (pulsed ENDOR) has been studied for realization of quantum algorithms, emphasizing the implementation of organic molecular entities with an electron spin and a nuclear spin for quantum information processing. The scheme has been examined in terms of quantum information processing. Particularly, superdense coding has been implemented from the experimental side and the preliminary results are represented as theoretical expectations.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Laflamme, R., D. Cory, C. Negrevergne et L. Viola. « NMR quantum information processing and entanglement ». Quantum Information and Computation 2, no 2 (février 2002) : 166–76. http://dx.doi.org/10.26421/qic2.2-5.

Texte intégral
Résumé :
In this essay we discuss the issue of quantum information and recent nuclear magnetic resonance (NMR) experiments. We explain why these experiments should be regarded as quantum information processing (QIP) despite the fact that, in present liquid state NMR experiments, no entanglement is found. We comment on how these experiments contribute to the future of QIP and include a brief discussion on the origin of the power of quantum computers.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wrachtrup, Jörg, et Fedor Jelezko. « Processing quantum information in diamond ». Journal of Physics : Condensed Matter 18, no 21 (12 mai 2006) : S807—S824. http://dx.doi.org/10.1088/0953-8984/18/21/s08.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Delaubert, V., N. Treps, C. Fabre, H. A. Bachor et P. Réfrégier. « Quantum limits in image processing ». EPL (Europhysics Letters) 81, no 4 (18 janvier 2008) : 44001. http://dx.doi.org/10.1209/0295-5075/81/44001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Gough, John E., et Viacheslav P. Belavkin. « Quantum control and information processing ». Quantum Information Processing 12, no 3 (18 octobre 2012) : 1397–415. http://dx.doi.org/10.1007/s11128-012-0491-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Mahesh, T. S. « Quantum information processing by NMR ». Resonance 20, no 11 (novembre 2015) : 1053–65. http://dx.doi.org/10.1007/s12045-015-0273-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zoller, P., Th Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco et al. « Quantum information processing and communication ». European Physical Journal D 36, no 2 (13 septembre 2005) : 203–28. http://dx.doi.org/10.1140/epjd/e2005-00251-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Munro, W. J., Kae Nemoto, T. P. Spiller, S. D. Barrett, Pieter Kok et R. G. Beausoleil. « Efficient optical quantum information processing ». Journal of Optics B : Quantum and Semiclassical Optics 7, no 7 (30 juin 2005) : S135—S140. http://dx.doi.org/10.1088/1464-4266/7/7/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Andersen, U. L., G. Leuchs et C. Silberhorn. « Continuous-variable quantum information processing ». Laser & ; Photonics Reviews 4, no 3 (13 juillet 2009) : 337–54. http://dx.doi.org/10.1002/lpor.200910010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Furusawa, Akira. « Perspective on hybrid quantum information processing : a method for large-scale quantum information processing ». Journal of Optics 19, no 7 (6 juin 2017) : 070401. http://dx.doi.org/10.1088/2040-8986/aa72fc.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ren, Wanghao, Zhiming Li, Yiming Huang, Runqiu Guo, Lansheng Feng, Hailing Li, Yang Li et Xiaoyu Li. « Quantum generative adversarial networks for learning and loading quantum image in noisy environment ». Modern Physics Letters B 35, no 21 (9 juin 2021) : 2150360. http://dx.doi.org/10.1142/s0217984921503607.

Texte intégral
Résumé :
Quantum machine learning is expected to be one of the potential applications that can be realized in the near future. Finding potential applications for it has become one of the hot topics in the quantum computing community. With the increase of digital image processing, researchers try to use quantum image processing instead of classical image processing to improve the ability of image processing. Inspired by previous studies on the adversarial quantum circuit learning, we introduce a quantum generative adversarial framework for loading and learning a quantum image. In this paper, we extend quantum generative adversarial networks to the quantum image processing field and show how to learning and loading an classical image using quantum circuits. By reducing quantum gates without gradient changes, we reduced the number of basic quantum building block from 15 to 13. Our framework effectively generates pure state subject to bit flip, bit phase flip, phase flip, and depolarizing channel noise. We numerically simulate the loading and learning of classical images on the MINST database and CIFAR-10 database. In the quantum image processing field, our framework can be used to learn a quantum image as a subroutine of other quantum circuits. Through numerical simulation, our method can still quickly converge under the influence of a variety of noises.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Serra, R. M., et I. S. Oliveira. « Nuclear magnetic resonance quantum information processing ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 370, no 1976 (13 octobre 2012) : 4615–19. http://dx.doi.org/10.1098/rsta.2012.0332.

Texte intégral
Résumé :
For the past decade, nuclear magnetic resonance (NMR) has been established as a main experimental technique for testing quantum protocols in small systems. This Theme Issue presents recent advances and major challenges of NMR quantum information possessing (QIP), including contributions by researchers from 10 different countries. In this introduction, after a short comment on NMR-QIP basics, we briefly anticipate the contents of this issue.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Meichanetzidis, Konstantinos, Stefano Gogioso, Giovanni de Felice, Nicolò Chiappori, Alexis Toumi et Bob Coecke. « Quantum Natural Language Processing on Near-Term Quantum Computers ». Electronic Proceedings in Theoretical Computer Science 340 (6 septembre 2021) : 213–29. http://dx.doi.org/10.4204/eptcs.340.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Burkard, G., et D. Loss. « Quantum Information Processing Using Electron Spins in Quantum Dots ». Acta Physica Polonica A 100, no 2 (août 2001) : 109–27. http://dx.doi.org/10.12693/aphyspola.100.109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Xu, Wenling, Tiejun Wang, Cong Cao et Chuan Wang. « High dimensional quantum logic gates and quantum information processing ». Chinese Science Bulletin 64, no 16 (9 mai 2019) : 1691–701. http://dx.doi.org/10.1360/n972019-00252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Deng, Fu-Guo, Bao-Cang Ren et Xi-Han Li. « Quantum hyperentanglement and its applications in quantum information processing ». Science Bulletin 62, no 1 (janvier 2017) : 46–68. http://dx.doi.org/10.1016/j.scib.2016.11.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Jacak, L., J. Krasnyj, D. Jacak, R. Gonczarek, M. Krzyżosiak et P. Machnikowski. « Spin-Based Quantum Information Processing in Magnetic Quantum Dots ». Open Systems & ; Information Dynamics 12, no 02 (juin 2005) : 133–41. http://dx.doi.org/10.1007/s11080-005-5724-0.

Texte intégral
Résumé :
We define the qubit as a pair of singlet and triplet states of two electrons in a He-type quantum dot (QD) placed in a diluted magnetic semiconductor (DMS) medium. The molecular field is here essential as it removes the degeneracy of the triplet state and strongly enhances the Zeeman splitting. Methods of qubit rotation as well as two-qubit operations are suggested. The system of a QD in a DMS is described in a way which allows an analysis of the decoherence due to spin waves in the DMS subsystem.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie