Littérature scientifique sur le sujet « Quantum nanostructures »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantum nanostructures ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Quantum nanostructures"

1

Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.

Texte intégral
Résumé :
Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing
Styles APA, Harvard, Vancouver, ISO, etc.
2

Afshar, Elham N., Georgi Xosrovashvili, Rasoul Rouhi, and Nima E. Gorji. "Review on the application of nanostructure materials in solar cells." Modern Physics Letters B 29, no. 21 (2015): 1550118. http://dx.doi.org/10.1142/s0217984915501183.

Texte intégral
Résumé :
In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes
Styles APA, Harvard, Vancouver, ISO, etc.
3

Poempool, Thanavorn, Zon, Suwit Kiravittaya, et al. "GaSb and InSb Quantum Nanostructures: Morphologies and Optical Properties." MRS Advances 1, no. 23 (2015): 1677–82. http://dx.doi.org/10.1557/adv.2015.6.

Texte intégral
Résumé :
ABSTRACTGaSb/GaAs and InSb/GaAs material systems can create type-II quantum nanostructures which provide interesting electronic and optical properties such as having long carrier life time, low carriers-recombination rate, and emitting/absorbing low photon energy. These characteristics of type-II nanostructures can be applied for infrared or gas detection devices, for memory devices and even for novel intermediate band solar cells. In contrast, lattice mismatches of GaSb/GaAs and InSb/GaAs material system are 7.8% and 14.6%, respectively, which need some specific molecular beam epitaxial (MBE)
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chen, Hongjun, and Lianzhou Wang. "Nanostructure sensitization of transition metal oxides for visible-light photocatalysis." Beilstein Journal of Nanotechnology 5 (May 23, 2014): 696–710. http://dx.doi.org/10.3762/bjnano.5.82.

Texte intégral
Résumé :
To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tai, Alan. "Quantum Well Model for Charge Transfer in Aperiodic DNA and Superlattice Sequences." Biophysica 4, no. 3 (2024): 411–41. http://dx.doi.org/10.3390/biophysica4030027.

Texte intégral
Résumé :
This study presents a quantum well model using the transfer matrix technique to analyze the charge transfer characteristics of nanostructure sequences in both DNA and superlattices. The unconfined state, or unbound state, above the quantum well is used to investigate carrier behaviors in a semiconductor nanostructure. These analytical approaches can be extended to enhance the understanding of charge transfer in DNA nanostructures with periodic and aperiodic sequences. Experimental validation was conducted through photoreflectance spectroscopy on nanostructures within the semiconductor superlat
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shah, Rushil, Abhijit Saha, Zahraa Najah, et al. "Role of Quantum Dots and Nanostructures in Photovoltaic Energy Conversion." E3S Web of Conferences 552 (2024): 01096. http://dx.doi.org/10.1051/e3sconf/202455201096.

Texte intégral
Résumé :
Nanostructures and quantum dots have substantial effects on enhancing photovoltaic energy conversion efficiency, as evidenced in this comprehensive study. Materials that are nanostructured and nanosized particles are commonly used to address the urgent issues related to energy conversion. The use of nanostructured substances to address issues with energy and natural resources has garnered a lot of interest lately. Directional nanostructures in particular show promise for the conversion, collection, and storage of energy. Due to their unique properties, such as electrical conductivity, mechanic
Styles APA, Harvard, Vancouver, ISO, etc.
7

Paul, Neelima, Ezzeldin Metwalli, Yuan Yao, et al. "Templating growth of gold nanostructures with a CdSe quantum dot array." Nanoscale 7, no. 21 (2015): 9703–14. http://dx.doi.org/10.1039/c5nr01121c.

Texte intégral
Résumé :
The controlled gold sputtering on quantum dot arrays forms gold nanostructures exclusively on top of quantum dots by self-assembly. A real time observation of the gold nanostructure growth is enabled with grazing incidence small-angle X-ray scattering (GISAXS).
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vysikaylo, P. I. "Quantum Size Effects Arising from Nanocomposites Physical Doping with Nanostructures Having High Electron Affinit." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 3 (96) (June 2021): 150–75. http://dx.doi.org/10.18698/1812-3368-2021-3-150-175.

Texte intégral
Résumé :
This article considers main problems in application of nanostructured materials in high technologies. Theoretical development and experimental verification of methods for creating and studying the properties of physically doped materials with spatially inhomogeneous structure on micro and nanometer scale are proposed. Results of studying 11 quantum size effects exposed to nanocomposites physical doping with nanostructures with high electron affinity are presented. Theoretical and available experimental data were compared in regard to creation of nanostructured materials, including those with i
Styles APA, Harvard, Vancouver, ISO, etc.
9

Douhan, Rahaf, Kirill Lozovoy, Andrey Kokhanenko, Hazem Deeb, Vladimir Dirko, and Kristina Khomyakova. "Recent Advances in Si-Compatible Nanostructured Photodetectors." Technologies 11, no. 1 (2023): 17. http://dx.doi.org/10.3390/technologies11010017.

Texte intégral
Résumé :
In this review the latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are highlighted. Such nanostructures have a number of unique properties, that made them striking to scientists’ attention and device applications. Since silicon is the dominating semiconductor material in the electro
Styles APA, Harvard, Vancouver, ISO, etc.
10

Prevenslik, Thomas. "Unphysical Heat Transfer by Molecular Dynamics." Applied Mechanics and Materials 184-185 (June 2012): 1446–50. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.1446.

Texte intégral
Résumé :
Molecular Dynamics (MD) simulations based on classical statistical mechanics allow the atom to have thermal heat capacity. Quantum mechanics (QM) differs in that the heat capacity of atoms in submicron nanostructures vanishes. Nevertheless, MD simulations of heat transfer in discrete nanostructures are routlinely performed and abound in the literature. Not only are discrete MD sumultions invalid by QM, but give unphysical results, e.g., thermal conducitvity in nanofluids is found to exceed standard mixing rules while in solid metal films depends on thickness. QM explains the unphysical results
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Quantum nanostructures"

1

Todorov, Tchavdar N. "Quantum transport in nanostructures." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334909.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Leadbeater, Mark. "Quantum dynamics of superconducting nanostructures." Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Barbosa, Jose Camilo. "Quantum transport in semiconductor nanostructures." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Reina, Estupin̄án John-Henry. "Quantum information processing in nanostructures." Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:6375c7c4-ecf6-4e88-a0f5-ff7493393d37.

Texte intégral
Résumé :
Since information has been regarded as a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shortell, Matthew P. "Zinc oxide quantum dot nanostructures." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/76335/4/Matthew_Shortell_Thesis.pdf.

Texte intégral
Résumé :
Zinc oxide (ZnO) is one of the most intensely studied wide band gap semiconductors due to its many desirable properties. This project established new techniques for investigating the hydrodynamic properties of ZnO nanoparticles, their assembly into useful photonic structures, and their multiphoton absorption coefficients for excitation with visible or infrared light rather than ultraviolet light. The methods developed are also applicable to a wide range of nanoparticle samples.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nemec, Norbert. "Quantum transport in carbon-based nanostructures." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985358963.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Smeeton, Timothy Michael. "The nanostructures of InGaN quantum wells." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Boese, Daniel. "Quantum transport through nanostructures : quantum dots, molecules, and quantum wires = Quantentransport durch Nanostrukturen /." Aachen : Shaker, 2002. http://swbplus.bsz-bw.de/bsz096321318abs.htm.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wesslén, Carl-Johan. "Many-Body effects in Semiconductor Nanostructures." Licentiate thesis, Stockholms universitet, Fysikum, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102344.

Texte intégral
Résumé :
Low dimensional semiconductor structures are modeled using techniques from the field of many-body atomic physics. B-splines are used to create a one-particle basis, used to solve the more complex many-body problems. Details on methods such as the Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC) are discussed. Results from the CC singles and doubles method are compared to other high-precision methods for the circular harmonic oscillator quantum dot. The results show a good agreement for the energy of many-body states of up to 12 electrons. Properties
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pang, Hongliang, and 庞鸿亮. "Quantum control of spins in semiconductor nanostructures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208042.

Texte intégral
Résumé :
Spins localized in semiconductor nanostructures have been intensively investigated for quantum spintronics. These include the spin of single electron localized by quantum dots or impurities, and spins of the lattice nuclei. These localized spins can be exploited as carriers of quantum information, while in some circumstances they also play the role of deleterious noise sources for other quantum objects through their couplings. Quantum control of the spins in semiconductor nanostructures is therefore of central interest for quantum applications. In this thesis, we address several problems relat
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Quantum nanostructures"

1

Sakaki, H., and H. Noge. Nanostructures and Quantum Effects. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mitin, V. V. Quantum mechanics for nanostructures. Cambridge University Press, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sarkar, Sarben, ed. Exotic States in Quantum Nanostructures. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9974-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sarben, Sarkar, ed. Exotic states in quantum nanostructures. Kluwer Academic Publishers, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jahnke, Frank. Quantum optics with semiconductor nanostructures. Woodhead, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Barbosa, José Camilo. Quantum transport in semiconductor nanostructures. typescript, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Khanna, S. N., and A. W. Castleman. Quantum Phenomena in Clusters and Nanostructures. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-02606-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Khanna, S. N. Quantum Phenomena in Clusters and Nanostructures. Springer Berlin Heidelberg, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mahler, Günter. Quantum networks: Dynamics of open nanostructures. Springer, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mahler, Günter. Quantum Networks: Dynamics of Open Nanostructures. Springer Berlin Heidelberg, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Quantum nanostructures"

1

Delerue, Christophe, and Michel Lannoo. "Quantum Confined Systems." In Nanostructures. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08903-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Crespi, V. H., P. Zhang, and P. E. Lammert. "New Quantum Nanostructures." In Quantum Computing and Quantum Bits in Mesoscopic Systems. Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9092-1_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Geller, M., and A. Marent. "Quantum Dots for Memories." In Semiconductor Nanostructures. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Eigler, D. "Quantum Corrals." In Nanostructures and Quantum Effects. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8_43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dähne, Mario, Holger Eisele, and Karl Jacobi. "The Atomic Structure of Quantum Dots." In Semiconductor Nanostructures. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Munárriz, J., A. V. Malyshev, and F. Domínguez-Adame. "Towards a Graphene-Based Quantum Interference Device." In Carbon Nanostructures. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shchukin, Vitaly, Eckehard Schöll, and Peter Kratzer. "Thermodynamics and Kinetics of Quantum Dot Growth." In Semiconductor Nanostructures. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Akimov, Ilya, Joachim Puls, Michael Rabe, and Fritz Henneberger. "Visible-Bandgap II–VI Quantum Dot Heterostructures." In Semiconductor Nanostructures. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pohl, Udo W., Sven Rodt, and Axel Hoffmann. "Optical Properties of III–V Quantum Dots." In Semiconductor Nanostructures. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Scholz, Matthias, Thomas Aichele, and Oliver Benson. "Single-Photon Generation from Single Quantum Dots." In Semiconductor Nanostructures. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Quantum nanostructures"

1

El-Boghdady, Mustafa M., and Mohamed A. Swillam. "Quantum algorithm for modeling confinement in nanostructures." In Quantum Computing, Communication, and Simulation V, edited by Philip R. Hemmer and Alan L. Migdall. SPIE, 2025. https://doi.org/10.1117/12.3044859.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vuckovic, Jelena. "Scalable classical and quantum photonics." In Photonic and Phononic Properties of Engineered Nanostructures XV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2025. https://doi.org/10.1117/12.3052533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Codreanu, Nina, Matteo Pasini, Tim Turan, et al. "Quantum network nodes based on diamond photonic nanostructures." In CLEO: Fundamental Science. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm3f.3.

Texte intégral
Résumé :
We present our optimized diamond fabrication process based on quasi-isotropic crystal-plane-dependent reactive-ion-etching at low and high temperature plasma regime. We demonstrate successful integration of SnV centers in diamond waveguides showing quantum non-linear effects. We report on our latest results on all-diamond photonic crystal cavities.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Palwe, Ajinkya, Gaurav Pratap Singh, Arun Jaiswal, et al. "Fabrication of ZnO Quantum Dot Doped Polymer Nanostructures using Two-photon Lithography." In CLEO: Applications and Technology. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.am3c.5.

Texte intégral
Résumé :
We demonstrate the fabrication of ZnO doped polymer nanostructures using two-photon lithography. These nanostructures offer a versatile platform with enhanced properties, valuable for various applications spanning electronics, sensing, biomedical, and energy.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shalaev, Vladimir M. "Silicon quantum photonics with single-photon emitters." In Photonic and Phononic Properties of Engineered Nanostructures XV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2025. https://doi.org/10.1117/12.3052517.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Marandi, Alireza. "Ultrafast quantum and classical nonlinear nanophotonic circuits." In Photonic and Phononic Properties of Engineered Nanostructures XV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2025. https://doi.org/10.1117/12.3052321.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Faraon, Andrei, and Chun Ju Wu. "Quantum nano-photonics with rare-earth ions." In Photonic and Phononic Properties of Engineered Nanostructures XV, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2025. https://doi.org/10.1117/12.3052390.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Deveaud, B., S. Haacke, M. Hartig, R. Ambigapathy, I. Bar Joseph, and R. A. Taylor. "Femtosecond luminescence of semiconductor nanostructures." In Quantum Optoelectronics. Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qthd.2.

Texte intégral
Résumé :
Luminescence has been quite widely used for the study of semiconductor nanostructures, and more especially time resolved luminescence, due to the ease to get a luminescence signal. The interpretation of the results however is sometimes quite complex, and one generally finds that some care has to be taken for the results to be meaningful. In particular, the homogeneity of the excited density over the detected luminescence signal is a quite important parameter, also it is often desirable to work at the lowest possible densities.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ma, Xu-Cun. "Quantum effects in nanostructures." In WOMEN IN PHYSICS: 6th IUPAP International Conference on Women in Physics. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5110065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Prevenslik, Thomas. "Validity of Molecular Dynamics by Quantum Mechanics." In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22027.

Texte intégral
Résumé :
MD is commonly used in computational physics to determine the atomic response of nanostructures. MD stands for molecular dynamics. With theoretical basis in statistical mechanics, MD relates the thermal energy of the atom to its momentum by the equipartition theorem. Momenta of atoms in an ensemble are determined by solving Newton’s equations with inter-atomic forces derived from Lennard-Jones potentials. MD therefore assumes the atom always has heat capacity as otherwise the momenta of the atoms cannot be related to their temperature. In bulk materials, the continuum is simulated in MD by imp
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Quantum nanostructures"

1

Washburn, Sean. Quantum Transport in Si/SiGe Nanostructures. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada395028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

O'ROURKE, PATRICK. QUANTUM FIELDS ON DRIVEN PLASMONIC NANOSTRUCTURES. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1827692.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Awschalom, David D. Classical and Quantum Properties of Magnetic Nanostructures. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada386964.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Leburton, Jean-Pierre. Quantum Transport and Scattering Time Engineering in Nanostructures. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada413484.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wu, Zhigang. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1406114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

ZAIDI, SALEEM H. Characterization of Si nanostructures using internal quantum efficiency measurements. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/754397.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Panfil, Yossef E., Meirav Oded, Nir Waiskopf, and Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, 2020. http://dx.doi.org/10.51167/acm00008.

Texte intégral
Résumé :
The recent technological advancements have greatly improved the quality and resolution of displays. Yet, issues like full-color gamut representation and the long-lasting durability of the color emitters require further progression. Colloidal quantum dots manifest an inherent narrow spectral emission with optical stability, combined with various chemical processability options which will allow for their integration in display applications. Apart from their numerous advantages, they also present unique opportunities for the next technological leaps in the field.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chow, Weng Wah Dr, .), Sungkwun Kenneth Lyo, Jeffrey George Cederberg, Normand Arthur Modine, and Robert Malcolm Biefeld. Quantum coherence in semiconductor nanostructures for improved lasers and detectors. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/878573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Galli, Giulia, Zhaojun Bai, David Ceperley, et al. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1214797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kim, K. W., Segi Yu, M. U. Erdogan, et al. Solid-State Dynamics and Quantum Transport in Novel Semiconductor Nanostructures. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada285946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!