Littérature scientifique sur le sujet « Quantum nanostructures »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Quantum nanostructures ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Quantum nanostructures"

1

Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev et Anatoliy Vasilevich Dvurechenskii. « Semiconductor Nanostructures for Modern Electronics ». Solid State Phenomena 310 (septembre 2020) : 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.

Texte intégral
Résumé :
Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing of energy band structure, quantization of energy spectrum of a charge carrier and a pronounced spin-related phenomena. Superposition of quantum states and formation of entangled states of photons offers new opportunities for the realization of quantum bits, development of nanoscale systems for quantum cryptography and quantum computing. Advanced growth techniques such as molecular beam epitaxy and chemical vapour epitaxy, atomic layer deposition as well as optical, electron and probe nanolithography for nanostructure fabrication have been widely used. Nanostructure characterization is performed using nanometer resolution tools including high-resolution, reflection and scanning electron microscopy as well as scanning tunneling and atomic force microscopy. Quantum properties of semiconductor nanostructures have been evaluated from precise electrical and optical measurements. Modern concepts of various semiconductor devices in electronics and photonics including single-photon emitters, memory elements, photodetectors and highly sensitive biosensors are developed very intensively. The perspectives of nanostructured materials for the creation of a new generation of universal memory and neuromorphic computing elements are under lively discussion. This paper is devoted to a brief description of current achievements in the investigation and modeling of single-electron and single-photon phenomena in semiconductor nanostructures, as well as in the fabrication of a new generation of elements for micro-, nano, optoelectronics and quantum devices.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Afshar, Elham N., Georgi Xosrovashvili, Rasoul Rouhi et Nima E. Gorji. « Review on the application of nanostructure materials in solar cells ». Modern Physics Letters B 29, no 21 (10 août 2015) : 1550118. http://dx.doi.org/10.1142/s0217984915501183.

Texte intégral
Résumé :
In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Poempool, Thanavorn, Zon, Suwit Kiravittaya, Suwat Sopitpan, Supachok Thainoi, Songphol Kanjanachuchai, Somchai Ratanathamaphan et Somsak Panyakeow. « GaSb and InSb Quantum Nanostructures : Morphologies and Optical Properties ». MRS Advances 1, no 23 (10 décembre 2015) : 1677–82. http://dx.doi.org/10.1557/adv.2015.6.

Texte intégral
Résumé :
ABSTRACTGaSb/GaAs and InSb/GaAs material systems can create type-II quantum nanostructures which provide interesting electronic and optical properties such as having long carrier life time, low carriers-recombination rate, and emitting/absorbing low photon energy. These characteristics of type-II nanostructures can be applied for infrared or gas detection devices, for memory devices and even for novel intermediate band solar cells. In contrast, lattice mismatches of GaSb/GaAs and InSb/GaAs material system are 7.8% and 14.6%, respectively, which need some specific molecular beam epitaxial (MBE) growth conditions for quantum nanostructure formation via Stranski–Krastanov growth mode.In this paper, the growth of self-assembled GaSb and InSb quantum nanostructures on (001) GaAs substrate by using MBE was reported. The surface morphology of these two quantum nanostructures and their optical properties were characterized by atomic force microscopy and photoluminescence (PL). The experimental results were compared between these two quantum nanostructures. Due to the lattice mismatch in each material system and the difference in sticking coefficient of Ga- and In-atoms during epitaxial growth, we obtain GaSb/GaAs quantum dots (QDs) with a density ∼1010 dots/cm2 and InSb/GaAs QDs with a density of ∼108 dots/cm2. The facet analysis of individual quantum nanostructure in each material system reveals that GaSb/GaAs QD has a dome-like shape with nearly isotropic property while InSb QDs form a rectangular-like shape with elongation along [110]-direction showing a strong anisotropic property.Low temperature PL spectra from capped GaSb and InSb quantum nanostructures show the energy peaks at 1.08-1.11 and 1.16-1.17 eV, respectively. The variations of PL peaks as a function of both temperature and excitation power are investigated. PL peak shows clear blue shift when excitation power is increased. This work manifests a possibility to use both GaSb and InSb quantum nanostructures for nanoelectronic and nanophotonic applications.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chen, Hongjun, et Lianzhou Wang. « Nanostructure sensitization of transition metal oxides for visible-light photocatalysis ». Beilstein Journal of Nanotechnology 5 (23 mai 2014) : 696–710. http://dx.doi.org/10.3762/bjnano.5.82.

Texte intégral
Résumé :
To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Paul, Neelima, Ezzeldin Metwalli, Yuan Yao, Matthias Schwartzkopf, Shun Yu, Stephan V. Roth, Peter Müller-Buschbaum et Amitesh Paul. « Templating growth of gold nanostructures with a CdSe quantum dot array ». Nanoscale 7, no 21 (2015) : 9703–14. http://dx.doi.org/10.1039/c5nr01121c.

Texte intégral
Résumé :
The controlled gold sputtering on quantum dot arrays forms gold nanostructures exclusively on top of quantum dots by self-assembly. A real time observation of the gold nanostructure growth is enabled with grazing incidence small-angle X-ray scattering (GISAXS).
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vysikaylo, P. I. « Quantum Size Effects Arising from Nanocomposites Physical Doping with Nanostructures Having High Electron Affinit ». Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no 3 (96) (juin 2021) : 150–75. http://dx.doi.org/10.18698/1812-3368-2021-3-150-175.

Texte intégral
Résumé :
This article considers main problems in application of nanostructured materials in high technologies. Theoretical development and experimental verification of methods for creating and studying the properties of physically doped materials with spatially inhomogeneous structure on micro and nanometer scale are proposed. Results of studying 11 quantum size effects exposed to nanocomposites physical doping with nanostructures with high electron affinity are presented. Theoretical and available experimental data were compared in regard to creation of nanostructured materials, including those with increased strength and wear resistance, inhomogeneous at the nanoscale and physically doped with nanostructures, i.e., quantum traps for free electrons. Solving these problems makes it possible to create new nanostructured materials, investigate their varying physical properties, design, manufacture and operate devices and instruments with new technical and functional capabilities, including those used in the nuclear industry. Nanocrystalline structures, as well as composite multiphase materials and coatings properties could be controlled by changing concentrations of the free carbon nanostructures there. It was found out that carbon nanostructures in the composite material significantly improve impact strength, microhardness, luminescence characteristics, temperature resistance and conductivity up to 10 orders of magnitude, and expand the range of such components’ possible applications in comparison with pure materials, for example, copper, aluminum, transition metal carbides, luminophores, semiconductors (thermoelectric) and silicone (siloxane, polysiloxane, organosilicon) compounds
Styles APA, Harvard, Vancouver, ISO, etc.
7

Prevenslik, Thomas. « Unphysical Heat Transfer by Molecular Dynamics ». Applied Mechanics and Materials 184-185 (juin 2012) : 1446–50. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.1446.

Texte intégral
Résumé :
Molecular Dynamics (MD) simulations based on classical statistical mechanics allow the atom to have thermal heat capacity. Quantum mechanics (QM) differs in that the heat capacity of atoms in submicron nanostructures vanishes. Nevertheless, MD simulations of heat transfer in discrete nanostructures are routlinely performed and abound in the literature. Not only are discrete MD sumultions invalid by QM, but give unphysical results, e.g., thermal conducitvity in nanofluids is found to exceed standard mixing rules while in solid metal films depends on thickness. QM explains the unphysical results by negating the heat capacity of atoms in discrete nanostructures, thereby precluding the usual conservation of absorbed electromagnetic (EM) energy by an increase in temperature. Instead, the absorbed EM energy is conserved by QED inducing the creation of non-thermal EM radiation inside the nanostructure that by the photoelectric effect creates charge in the nanostructure, or is emitted to the surroundings. QED stands for quantum electrodynamics. Unphysical results occur because the QED induced radiation is not included in the nanoscale heat balance, but if included the physical results for discrete nanostructures are found. Examples of unphysical MD simulatons are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Douhan, Rahaf, Kirill Lozovoy, Andrey Kokhanenko, Hazem Deeb, Vladimir Dirko et Kristina Khomyakova. « Recent Advances in Si-Compatible Nanostructured Photodetectors ». Technologies 11, no 1 (24 janvier 2023) : 17. http://dx.doi.org/10.3390/technologies11010017.

Texte intégral
Résumé :
In this review the latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are highlighted. Such nanostructures have a number of unique properties, that made them striking to scientists’ attention and device applications. Since silicon is the dominating semiconductor material in the electronic industry over the past decades, and as germanium and tin nanostructures are very compatible with silicon, the combination of these factors makes them the promising candidate to use in future technologies.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Henini, Mohamed. « Quantum dot nanostructures ». Materials Today 5, no 6 (juin 2002) : 48–53. http://dx.doi.org/10.1016/s1369-7021(02)00639-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Piryatinski, Yuri P., Markiian B. Malynovskyi, Maryna M. Sevryukova, Anatoli B. Verbitsky, Olga A. Kapush, Aleksey G. Rozhin et Petro M. Lutsyk. « Mixing of Excitons in Nanostructures Based on a Perylene Dye with CdTe Quantum Dots ». Materials 16, no 2 (6 janvier 2023) : 552. http://dx.doi.org/10.3390/ma16020552.

Texte intégral
Résumé :
Semiconductor quantum dots of the A2B6 group and organic semiconductors have been widely studied and applied in optoelectronics. This study aims to combine CdTe quantum dots and perylene-based dye molecules into advanced nanostructure system targeting to improve their functional properties. In such systems, new electronic states, a mixture of Wannier–Mott excitons with charge-transfer excitons, have appeared at the interface of CdTe quantum dots and the perylene dye. The nature of such new states has been analyzed by absorption and photoluminescence spectroscopy with picosecond time resolution. Furthermore, aggregation of perylene dye on the CdTe has been elucidated, and contribution of Förster resonant energy transfer has been observed between aggregated forms of the dye and CdTe quantum dots in the hybrid CdTe-perylene nanostructures. The studied nanostructures have strongly quenched emission of quantum dots enabling potential application of such systems in dissociative sensing.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Quantum nanostructures"

1

Todorov, Tchavdar N. « Quantum transport in nanostructures ». Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334909.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Leadbeater, Mark. « Quantum dynamics of superconducting nanostructures ». Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Barbosa, Jose Camilo. « Quantum transport in semiconductor nanostructures ». Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Reina, Estupin̄án John-Henry. « Quantum information processing in nanostructures ». Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:6375c7c4-ecf6-4e88-a0f5-ff7493393d37.

Texte intégral
Résumé :
Since information has been regarded as a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, "nanostructures," through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of quantum dots technology is described. In so doing, the theoretical background and the practicalities required for this thesis are introduced. A discussion of the current quantum hardware used for quantum information processing is given. In particular, the solid-state proposals to date are emphasised. A detailed prescription is given, using an optically-driven coupled quantum dot system, to reliably prepare and manipulate exciton maximally entangled Bell and Greenberger-Horne-Zeilinger (GHZ) states. Manipulation of the strength and duration of selective light-pulses needed for producing these highly entangled states provides us with crucial elements for the processing of solid-state based quantum information. The all-optical generation of states of the so-called Bell basis for a system of two quantum dots (QDs) is exploited for performing the quantum teleportation of the excitonic state of a dot in an array of three coupled QDs. Theoretical predictions suggest that several hundred single quantum bit rotations and controlled-NOT gates could be performed before decoherence of the excitonic states takes place. In addition, the exciton coherent dynamics of a coupled QD system confined within a semiconductor single mode microcavity is reported. It is shown that this system enables the control of exciton entanglement by varying the coupling strength between the optically-driven dot system and the microcavity. The exciton entanglement shows collapses and revivals for suitable amplitudes of the incident radiation field and dot-cavity coupling strengths. The results given here could offer a new approach for the control of decoherence mechanisms arising from entangled "artificial molecules." In addition to these ultrafast coherent optical control proposals, an approach for reliable implementation of quantum logic gates and long decoherence times in a QD system based on nuclear magnetic resonance (NMR) is given, where the nuclear resonance is controlled by the ground state "magic number" transitions of few-electron QDs in an external magnetic field. The dynamical evolution of quantum registers of arbitrary length in the presence of environmentally-induced decoherence effects is studied in detail. The cases of quantum bits (qubits) coupling individually to different environments ("independent decoherence"), and qubits interacting collectively with the same reservoir ("collective decoherence") are analysed in order to find explicit decoherence functions for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: this sensitivity is a characteristic of both types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour - "recoherence" - is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. The results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the system's Hilbert space that do not become entangled with the environment, making them ideal elements for the engineering of "noiseless" quantum codes. The relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix are also discussed. This thesis concludes by summarising and pointing out future directions, and in particular, by discussing some biological resonant energy transfer processes that may be useful for the processing of information at a quantum level.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shortell, Matthew P. « Zinc oxide quantum dot nanostructures ». Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/76335/4/Matthew_Shortell_Thesis.pdf.

Texte intégral
Résumé :
Zinc oxide (ZnO) is one of the most intensely studied wide band gap semiconductors due to its many desirable properties. This project established new techniques for investigating the hydrodynamic properties of ZnO nanoparticles, their assembly into useful photonic structures, and their multiphoton absorption coefficients for excitation with visible or infrared light rather than ultraviolet light. The methods developed are also applicable to a wide range of nanoparticle samples.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nemec, Norbert. « Quantum transport in carbon-based nanostructures ». [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985358963.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Smeeton, Timothy Michael. « The nanostructures of InGaN quantum wells ». Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Boese, Daniel. « Quantum transport through nanostructures : quantum dots, molecules, and quantum wires = Quantentransport durch Nanostrukturen / ». Aachen : Shaker, 2002. http://swbplus.bsz-bw.de/bsz096321318abs.htm.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wesslén, Carl-Johan. « Many-Body effects in Semiconductor Nanostructures ». Licentiate thesis, Stockholms universitet, Fysikum, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102344.

Texte intégral
Résumé :
Low dimensional semiconductor structures are modeled using techniques from the field of many-body atomic physics. B-splines are used to create a one-particle basis, used to solve the more complex many-body problems. Details on methods such as the Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC) are discussed. Results from the CC singles and doubles method are compared to other high-precision methods for the circular harmonic oscillator quantum dot. The results show a good agreement for the energy of many-body states of up to 12 electrons. Properties of elliptical quantum dots, circular quantum dots, quantum rings and concentric quantum rings are all reviewed. The effects of tilted external magnetic fields applied to the elliptical dot are discussed, and the energy splitting between the lowest singlet and triplet states is explored for varying geometrical properties. Results are compared to experimental energy splittings for the same system containing 2 electrons.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pang, Hongliang, et 庞鸿亮. « Quantum control of spins in semiconductor nanostructures ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208042.

Texte intégral
Résumé :
Spins localized in semiconductor nanostructures have been intensively investigated for quantum spintronics. These include the spin of single electron localized by quantum dots or impurities, and spins of the lattice nuclei. These localized spins can be exploited as carriers of quantum information, while in some circumstances they also play the role of deleterious noise sources for other quantum objects through their couplings. Quantum control of the spins in semiconductor nanostructures is therefore of central interest for quantum applications. In this thesis, we address several problems related to the quantum control of electron or hole spin and nuclear spins in semiconductor quantum dots and impurity centers. The first problem studied is the control of nuclear spin bath for a hole spin qubit in III-V semiconductor quantum dot. In quantum dots formed on III-V compounds, the direct band gap of the host material allows ultrafast optical addressability of a single electron or hole spin qubit. However, nonzero nuclear spins of group III and group V elements result in a large statistical fluctuation in the Zeeman splitting of the spin qubit which then dephases in nanosecond time scale. We present a novel feedback scheme to suppress the statistical fluctuation of the nuclear spin field for enhancing the coherence time of the hole spin qubit. We also find positive feedback control which can amplify the magnitude of the nuclear field, so that a bimodal distribution can develop, realizing a quantum environment that can not be described by a single temperature. The second problem addressed here is the control of donor spin qubits in silicon architecture which have ultra-long quantum coherence time. We developed the quantum control scheme to realize the quantum metrology of magnetic field gradient, based on the celebrated Kane’s architecture for quantum computation. The scheme can also be generalized to calibrate the locations of the donors. In the third part of the thesis, we investigate a novel type of quantum dot formed in a new class of two-dimensional semiconductors, monolayer transition metal dichalcogenides (TMDs), which exhibit interesting spin and pseudospin physics. This novel quantum dot system may offer new opportunity for quantum spintronics in the ultimate 2D limit, and we investigate here the valley pseudospin as a possible quantum bit carrier. A main finding is that, contrary to the intuition, the lateral confinement by the quantum dot potential does not lead to noticeable valley hybridization, and therefore the valley pseudospin in monolayer TMDs QD can well inherit the valley physics such as the valley optical selection rules from the 2D bulk which implies a variety of quantum control possibilities.
published_or_final_version
Physics
Doctoral
Doctor of Philosophy
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Quantum nanostructures"

1

Sakaki, H., et H. Noge. Nanostructures and Quantum Effects. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mitin, V. V. Quantum mechanics for nanostructures. New York : Cambridge University Press, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sarkar, Sarben, dir. Exotic States in Quantum Nanostructures. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9974-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Barbosa, José Camilo. Quantum transport in semiconductor nanostructures. [s.l.] : typescript, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sarben, Sarkar, dir. Exotic states in quantum nanostructures. Dordrecht : Kluwer Academic Publishers, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jahnke, Frank. Quantum optics with semiconductor nanostructures. Oxford : Woodhead, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Khanna, S. N., et A. W. Castleman. Quantum Phenomena in Clusters and Nanostructures. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-02606-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mahler, Günter. Quantum Networks : Dynamics of Open Nanostructures. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Achim, Weberruss Volker, dir. Quantum networks : Dynamics of open nanostructures. 2e éd. Berlin : Springer, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mahler, Günter. Quantum networks : Dynamics of open nanostructures. Berlin : Springer, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Quantum nanostructures"

1

Delerue, Christophe, et Michel Lannoo. « Quantum Confined Systems ». Dans Nanostructures, 47–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08903-3_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Crespi, V. H., P. Zhang et P. E. Lammert. « New Quantum Nanostructures ». Dans Quantum Computing and Quantum Bits in Mesoscopic Systems, 87–94. Boston, MA : Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9092-1_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Geller, M., et A. Marent. « Quantum Dots for Memories ». Dans Semiconductor Nanostructures, 221–35. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Eigler, D. « Quantum Corrals ». Dans Nanostructures and Quantum Effects, 311–14. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8_43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dähne, Mario, Holger Eisele et Karl Jacobi. « The Atomic Structure of Quantum Dots ». Dans Semiconductor Nanostructures, 123–37. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Munárriz, J., A. V. Malyshev et F. Domínguez-Adame. « Towards a Graphene-Based Quantum Interference Device ». Dans Carbon Nanostructures, 57–60. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shchukin, Vitaly, Eckehard Schöll et Peter Kratzer. « Thermodynamics and Kinetics of Quantum Dot Growth ». Dans Semiconductor Nanostructures, 1–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Akimov, Ilya, Joachim Puls, Michael Rabe et Fritz Henneberger. « Visible-Bandgap II–VI Quantum Dot Heterostructures ». Dans Semiconductor Nanostructures, 237–54. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pohl, Udo W., Sven Rodt et Axel Hoffmann. « Optical Properties of III–V Quantum Dots ». Dans Semiconductor Nanostructures, 269–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Scholz, Matthias, Thomas Aichele et Oliver Benson. « Single-Photon Generation from Single Quantum Dots ». Dans Semiconductor Nanostructures, 329–49. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Quantum nanostructures"

1

Deveaud, B., S. Haacke, M. Hartig, R. Ambigapathy, I. Bar Joseph et R. A. Taylor. « Femtosecond luminescence of semiconductor nanostructures ». Dans Quantum Optoelectronics. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qthd.2.

Texte intégral
Résumé :
Luminescence has been quite widely used for the study of semiconductor nanostructures, and more especially time resolved luminescence, due to the ease to get a luminescence signal. The interpretation of the results however is sometimes quite complex, and one generally finds that some care has to be taken for the results to be meaningful. In particular, the homogeneity of the excited density over the detected luminescence signal is a quite important parameter, also it is often desirable to work at the lowest possible densities.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ma, Xu-Cun. « Quantum effects in nanostructures ». Dans WOMEN IN PHYSICS : 6th IUPAP International Conference on Women in Physics. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5110065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Prevenslik, Thomas. « Validity of Molecular Dynamics by Quantum Mechanics ». Dans ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22027.

Texte intégral
Résumé :
MD is commonly used in computational physics to determine the atomic response of nanostructures. MD stands for molecular dynamics. With theoretical basis in statistical mechanics, MD relates the thermal energy of the atom to its momentum by the equipartition theorem. Momenta of atoms in an ensemble are determined by solving Newton’s equations with inter-atomic forces derived from Lennard-Jones potentials. MD therefore assumes the atom always has heat capacity as otherwise the momenta of the atoms cannot be related to their temperature. In bulk materials, the continuum is simulated in MD by imposing PBC on an ensemble of atoms, the atoms always having heat capacity. PBC stands for periodic boundary conditions. MD simulations of the bulk are valid because atoms in the bulk do indeed have heat capacity. Nanostructures differ from the bulk. Unlike the continuum, the atom confined in discrete submicron geometries is precluded by QM from having the heat capacity necessary to conserve absorbed EM energy by an increase in temperature. QM stands for quantum mechanics and EM for electromagnetic. Quantum corrections of MD solutions that would show the heat capacity of nanostructures vanishes are not performed. What this means is the MD simulations of discrete nanostructures in the literature not only have no physical meaning, but are knowingly invalid by QM. In the alternative, conservation of absorbed EM energy is proposed to proceed by the creation of QED induced non-thermal EM radiation at the TIR frequency of the nanostructure. QED stands for quantum electrodynamics and TIR for total internal reflection. The QED radiation creates excitons (holon and electron pairs) that upon recombination produce EM radiation that charges the nanostructure or is emitted to the surroundings — a consequence only possible by QM as charge is not created in statistical mechanics. Invalid discrete MD simulations are illustrated with nanofluids, nanocars, linear motors, and sputtering. Finally, a valid MD simulation by QM is presented for the stiffening of NWs in tensile tests. NW stands for nanowire.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kannan, Balaji, et Arun Majumdar. « Novel Microfabrication Techniques for Highly Specific Programmed Assembly of Nanostructures ». Dans ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46053.

Texte intégral
Résumé :
Chemically synthesized nanostructures such as nanowires1, carbon nanotubes2 and quantum dots3 possess extraordinary physical, electronic and optical properties that are not found in bulk matter. These characteristics make them attractive candidates for building subsequent generations of novel and superior devices that will find application in areas such as electronics, photonics, energy and biotechnology. In order to realize the full potential of these nanoscale materials, manufacturing techniques that combine the advantages of top-down lithography with bottom-up programmed assembly need to be developed, so that nanostructures can be organized into higher-level devices and systems in a rational manner. However, it is essential that nanostructure assembly occur only at specified locations of the substrate and nowhere else, since otherwise undesirable structures and devices will result. Towards this end, we have developed a hybrid micro/nanoscale-manufacturing paradigm that can be used to program the assembly of nanostructured building blocks at specific, pre-defined locations of a chip in a highly parallel fashion. As a prototype system we have used synthetic DNA molecules and gold nanoparticles modified with complementary DNA strands as the building blocks to demonstrate the highly selective and specific assembly of these nanomaterials on lithographically patterned substrates.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Emiliani, V., T. Guenther, F. Intonti, Ch Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel et K. H. Ploog. « Femtosecond near-field spectroscopy of GaAs nanostructures ». Dans Quantum Optoelectronics. Washington, D.C. : OSA, 1999. http://dx.doi.org/10.1364/qo.1999.qmd1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Adrados, C., R. Hivet, J. Ph Karr, M. Romanelli, A. Amo, T. C. H. Liew, R. Houdré et al. « Quantum information with semiconductor nanostructures ». Dans International Conference on Quantum Information. Washington, D.C. : OSA, 2011. http://dx.doi.org/10.1364/icqi.2011.qtua1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ayad, Marina A., et Mohamed A. Swillam. « Efficient modelling of quantum nanostructures ». Dans 14th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2014). IEEE, 2014. http://dx.doi.org/10.1109/nusod.2014.6935356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wysokiński, K. I., T. Domański, B. Szukiewicz, Grzegorz Michałek et Bogdan R. Bułka. « QUANTUM TRANSPORT IN HYBRID NANOSTRUCTURES ». Dans 11th International School on Theoretical Physics. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814740371_0006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Srivastava, Vipin. « Nanostructures under quantum-Hall conditions ». Dans Semi - DL tentative, sous la direction de Harold G. Craighead et J. M. Gibson. SPIE, 1990. http://dx.doi.org/10.1117/12.20786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Aslam, Nabeel, Nicolas Palazzo, Erik Knall, Daniel Kim, Nadine Meister, Ryan Gelly, Ryan Cimmino et al. « Nanoscale Nuclear Magnetic Resonance with Quantum Sensors enhanced by Nanostructures ». Dans Quantum 2.0. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw4c.3.

Texte intégral
Résumé :
Nanoscale Nuclear Magnetic Resonance (NMR) based on Nitrogen-vacancy centers in Diamond is promising for biochemistry applications. We integrate the Quantum Sensors into Nanostructures and realize NMR spectroscopy of nanoconfined liquids.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Quantum nanostructures"

1

Washburn, Sean. Quantum Transport in Si/SiGe Nanostructures. Fort Belvoir, VA : Defense Technical Information Center, janvier 1999. http://dx.doi.org/10.21236/ada395028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

O'ROURKE, PATRICK. QUANTUM FIELDS ON DRIVEN PLASMONIC NANOSTRUCTURES. Office of Scientific and Technical Information (OSTI), octobre 2021. http://dx.doi.org/10.2172/1827692.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Awschalom, David D. Classical and Quantum Properties of Magnetic Nanostructures. Fort Belvoir, VA : Defense Technical Information Center, novembre 1998. http://dx.doi.org/10.21236/ada386964.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Leburton, Jean-Pierre. Quantum Transport and Scattering Time Engineering in Nanostructures. Fort Belvoir, VA : Defense Technical Information Center, novembre 2002. http://dx.doi.org/10.21236/ada413484.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wu, Zhigang. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications. Office of Scientific and Technical Information (OSTI), mai 2017. http://dx.doi.org/10.2172/1406114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

ZAIDI, SALEEM H. Characterization of Si nanostructures using internal quantum efficiency measurements. Office of Scientific and Technical Information (OSTI), avril 2000. http://dx.doi.org/10.2172/754397.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Panfil, Yossef E., Meirav Oded, Nir Waiskopf et Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, novembre 2020. http://dx.doi.org/10.51167/acm00008.

Texte intégral
Résumé :
The recent technological advancements have greatly improved the quality and resolution of displays. Yet, issues like full-color gamut representation and the long-lasting durability of the color emitters require further progression. Colloidal quantum dots manifest an inherent narrow spectral emission with optical stability, combined with various chemical processability options which will allow for their integration in display applications. Apart from their numerous advantages, they also present unique opportunities for the next technological leaps in the field.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chow, Weng Wah Dr, .), Sungkwun Kenneth Lyo, Jeffrey George Cederberg, Normand Arthur Modine et Robert Malcolm Biefeld. Quantum coherence in semiconductor nanostructures for improved lasers and detectors. Office of Scientific and Technical Information (OSTI), février 2006. http://dx.doi.org/10.2172/878573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Galli, Giulia, Zhaojun Bai, David Ceperley, Wei Cai, Francois Gygi, Nicola Marzari, Warren Pickett, Nicola Spaldin, Jean-Luc Fattebert et Eric Schwegler. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report. Office of Scientific and Technical Information (OSTI), septembre 2015. http://dx.doi.org/10.2172/1214797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kim, K. W., Segi Yu, M. U. Erdogan, Michael A. Stoscio, V. Sankaran, M. Dutta, A. R. Bhatt, Gerald J. Iafrante, Jun He et J. M. Higman. Solid-State Dynamics and Quantum Transport in Novel Semiconductor Nanostructures. Fort Belvoir, VA : Defense Technical Information Center, octobre 1994. http://dx.doi.org/10.21236/ada285946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie