Livres sur le sujet « Quantum molecule »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Quantum molecule.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs livres pour votre recherche sur le sujet « Quantum molecule ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Craig, D. P. Molecular quantum electrodynamics : An introduction to radiation-molecule interactions. Mineola, N.Y : Dover Publications, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Morello, Andrea. Quantum spin dynamics in single-molecule magnets. [S.l : s.n.], 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nano : The emerging science of nanotechnology : remaking the world-molecule by molecule. Boston : Little, Brown, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kaila, M. M. Molecular Imaging of the Brain : Using Multi-Quantum Coherence and Diagnostics of Brain Disorders. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lorente, Nicolas. Architecture and Design of Molecule Logic Gates and Atom Circuits : Proceedings of the 2nd AtMol European Workshop. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Jiang, et Zhiming M. Wang, dir. Quantum Dot Molecules. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8130-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Salam, Akbar. Molecular Quantum Electrodynamics. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470535462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gatti, Fabien, dir. Molecular Quantum Dynamics. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45290-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Atkins, P. W. Molecular quantum mechanics. 3e éd. New York : Oxford University Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Atkins, P. W. Molecular quantum mechanics. 2e éd. Oxford [Oxfordshire] : Oxford University Press, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Atkins, P. W. Molecular quantum mechanics. 4e éd. New York : Oxford University Press, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Quantum chemistry. 6e éd. Upper Saddle River, N.J : Prentice Hall, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

N, Levine Ira. Quantum chemistry. 5e éd. Upper Saddle River, N.J : Prentice Hall, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Quantum chemistry. 4e éd. Englewood Cliffs, N.J : Prentice Hall, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Atoms, molecules and photons : An introduction to atomic-, molecular- and quantum-physics. 2e éd. Heidelberg : Springer, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Demtröder, Wolfgang. Atoms, molecules and photons : an introduction to atomic-, molecular- and quantum physics. Berlin, DE : Springer, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Molecular physics and elements of quantum chemistry : Introduction to experiments and theory. Berlin : Springer Verlag, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Molecular physics and elements of quantum chemistry : Introduction to experiments and theory. 2e éd. Berlin : Springer, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Quantum biochemistry. Weinheim : Wiley-VCH, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ato ms, molecules and photons : An introduction to atomic-, molecular-, and quantum-physics. Berlin : Springer, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

V, Putz Mihai, dir. Quantum frontiers of atoms and molecules. Hauppauge, N.Y : Nova Science Publishers, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Atoms in molecules : A quantum theory. Oxford : Clarendon Press, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Quantum chemistry of atoms and molecules. Cambridge [Cambridgeshire] : Cambridge University Press, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bader, Richard F. W. Atoms in molecules : A quantum theory. Oxford [England] : Clarendon Press, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Relativistic quantum theory of atoms and molecules : Theory and computation. New York : Springer, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Haken, Hermann. Molecular Physics and Elements of Quantum Chemistry : Introduction to Experiments and Theory. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Yamanouchi, Kaoru. Quantum Mechanics of Molecular Structures. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32381-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Broeckhove, J., et L. Lathouwers, dir. Time-Dependent Quantum Molecular Dynamics. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2326-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Shapiro, Moshe, et Paul Brumer. Quantum Control of Molecular Processes. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639700.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Shukla, Sandeep K., et R. Iris Bahar, dir. Nano, Quantum and Molecular Computing. Boston : Kluwer Academic Publishers, 2004. http://dx.doi.org/10.1007/b116438.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

1955-, Broeckhove Jan, Lathouwers Luc 1951-, North Atlantic Treaty Organization. Scientific Affairs Division. et NATO Advanced Research Workshop on Time-dependent Quantum Molecular Dynamics : Theory and Experiment (1992 : Snowbird, Utah), dir. Time-dependent quantum molecular dynamics. New York : Plenum Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

McWeeny, R. Methods of molecular quantum mechanics. 2e éd. London : Academic Press, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Yamanouchi, Kaoru. Quantum Mechanics of Molecular Structures. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

T, Sutcliffe B., dir. Methods of molecular quantum mechanics. 2e éd. London : Academic Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

PARIGGER. Quantum Mechanics Diatomic Molecule Ap. Institute of Physics Publishing, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Quantum Moiré : Cleaving the Spirit Molecule. Independently Published, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Parigger, Christian G. Quantum Mechanics of the Diatomic Molecule with Applications. IOP Publishing, 2019. http://dx.doi.org/10.1088/2053-2563/ab3cc7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Morawetz, Klaus. Nonequilibrium Quantum Hydrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0015.

Texte intégral
Résumé :
The balance equations resulting from the nonlocal kinetic equation are derived. They show besides the Landau-like quasiparticle contributions explicit two-particle correlated parts which can be interpreted as molecular contributions. It looks like as if two particles form a short-living molecule. All observables like density, momentum and energy are found as a conserving system of balance equations where the correlated parts are in agreement with the forms obtained when calculating the reduced density matrix with the extended quasiparticle functional. Therefore the nonlocal kinetic equation for the quasiparticle distribution forms a consistent theory. The entropy is shown to consist also of a quasiparticle part and a correlated part. The explicit entropy gain is proved to complete the H-theorem even for nonlocal collision events. The limit of Landau theory is explored when neglecting the delay time. The rearrangement energy is found to mediate between the spectral quasiparticle energy and the Landau variational quasiparticle energy.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wernsdorfer, W. Molecular nanomagnets. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.4.

Texte intégral
Résumé :
This article describes the quantum phenomena observed in molecular nanomagnets. Molecular nanomagnets, or single-molecule magnets (SMMs), provides a fundamental link between spintronics and molecular electronics. SMMs combine the classic macroscale properties of a magnet with the quantum properties of a nanoscale entity. The resulting field, molecular spintronics, aims at manipulating spins and charges in electronic devices containing one or more molecules. This article first considers molecular nanomagnets and the giant spin model for nanomagnets before discussing the quantum dynamics of a dimer of nanomagnets, resonant photon absorption in Cr7Ni antiferromagnetic rings, and photon-assisted tunnelling in a single-molecule magnet. It also examines environmental decoherence effects in nanomagnets and concludes by highlighting the new trends towards molecular spintronics using junctions and nano-SQUIDs.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fabre, Claude, Vahid Sandoghdar, Nicolas Treps et Leticia F. Cugliandolo, dir. Quantum Optics and Nanophotonics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198768609.001.0001.

Texte intégral
Résumé :
Over the last few decades, the quantum aspects of light have been explored and major progress has been made in understanding the specific quantum aspects of the interaction between light and matter. Single photons are now routinely produced by single molecules on surfaces, vacancies in crystals, and quantum dots. The micrometre and nanometre scale is also the privileged range where fluctuations of electromagnetic fields manifest themselves through the Casimir force. The domain of classical optics has recently seen many exciting new developments, especially in the areas of nano-optics, nano-antennas, metamaterials, and optical cloaking. Approaches based on single-molecule detection and plasmonics have provided new avenues for exploring light–matter interaction at the nanometre scale. All these topics have in common a trend to consider and use smaller and smaller objects, down to the micrometre, nanometre, and even atomic range, a region where one gradually passes from classical physics to quantum physics. The summer school held in Les Houches in July 2013 treated all these subjects lying at the frontier between nanophotonics and quantum optics, in a series of lectures given by world experts in the domain and gathered together in the present volume.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Succi, Sauro. QLB for Quantum Many-Body and Quantum Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0033.

Texte intégral
Résumé :
Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ultrasensitive and single-molecule detection technologies : 21-22 and 24 January 2006, San Jose, California, USA. Bellingham, Wash : SPIE, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Strasberg, Philipp. Quantum Stochastic Thermodynamics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192895585.001.0001.

Texte intégral
Résumé :
Abstract Processes at the nanoscale happen far away from the thermodynamic limit, far from equilibrium and are dominated by fluctuations and, perhaps, even quantum effects. This book establishes a consistent thermodynamic framework for such processes by combining tools from non-equilibrium statistical mechanics and the theory of open quantum systems. The book is accessible for graduate students and of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability. It puts most emphasis on the microscopic derivation and understanding of key principles and concepts as well as their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon and time-reversal symmetry, among other topics. Furthermore, the book treats a few applications in detail to illustrate the general theory and its potential for practical applications. These are single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser and related set-ups in quantum optics.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Bensimon, David, Vincent Croquette, Jean-François Allemand, Xavier Michalet et Terence Strick. Single-Molecule Studies of Nucleic Acids and Their Proteins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198530923.001.0001.

Texte intégral
Résumé :
This book presents a comprehensive overview of the foundations of single-molecule studies, based on manipulation of the molecules and observation of these with fluorescent probes. It first discusses the forces present at the single-molecule scale, the methods to manipulate them, and their pros and cons. It goes on to present an introduction to single-molecule fluorescent studies based on a quantum description of absorption and emission of radiation due to Einstein. Various considerations in the study of single molecules are introduced (including signal to noise, non-radiative decay, triplet states, etc.) and some novel super-resolution methods are sketched. The elastic and dynamic properties of polymers, their relation to experiments on DNA and RNA, and the structural transitions observed in those molecules upon stretching, twisting, and unzipping are presented. The use of these single-molecule approaches for the investigation of DNA–protein interactions is highlighted via the study of DNA and RNA polymerases, helicases, and topoisomerases. Beyond the confirmation of expected mechanisms (e.g., the relaxation of DNA torsion by topoisomerases in quantized steps) and the discovery of unexpected ones (e.g., strand-switching by helicases, DNA scrunching by RNA polymerases, and chiral discrimination by bacterial topoII), these approaches have also fostered novel (third generation) sequencing technologies.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Launay, Jean-Pierre, et Michel Verdaguer. The mastered electron : molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.

Texte intégral
Résumé :
After a historical account of the evolution which led to the concept of Molecular Electronics, the “Hybrid Molecular Electronics” approach (that is, molecules connected to nanosized metallic electrodes) is discussed. The different types of transport (one-step, two-step with different forms of tunnelling) are described, including the case where the molecule is paramagnetic (Kondo resonance). Several molecular achievements are presented: wires, diodes, memory cells, field-effect transistors, switches, using molecules, but also carbon nanotubes. A spin-off result is the possibility of imaging Molecular Orbitals. The emerging field of molecular spintronics is presented. Besides hybrid devices, examples are given of electronic functionalities using ensembles of molecules, either in solution (logical functions) or in the solid state (memory elements). The relation with the domain of Quantum Computing is presented, including the particular domain of Quantum Hamiltonian Computing. The chapter finishes by an introduction to molecular machines, with the problem of the directional control of their motion.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gryczynski, Zygmunt, et Joerg Enderlein. Ultrasensitive and Single-Molecule Detection Technologies II : 20-21 and 23 January 2007, San Jose, California, USA. SPIE, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Launay, Jean-Pierre, et Michel Verdaguer. Electrons in Molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.001.0001.

Texte intégral
Résumé :
The book treats in a unified way electronic properties of molecules (magnetic, electrical, photophysical), culminating with the mastering of electrons, i.e. molecular electronics and spintronics and molecular machines. Chapter 1 recalls basic concepts. Chapter 2 describes the magnetic properties due to localized electrons. This includes phenomena such as spin cross-over, exchange interaction from dihydrogen to extended molecular magnetic systems, and magnetic anisotropy with single-molecule magnets. Chapter 3 is devoted to the electrical properties due to moving electrons. One considers first electron transfer in discrete molecular systems, in particular in mixed valence compounds. Then, extended molecular solids, in particular molecular conductors, are described by band theory. Special attention is paid to structural distortions (Peierls instability) and interelectronic repulsions in narrow-band systems. Chapter 4 treats photophysical properties, mainly electron transfer in the excited state and its applications to photodiodes, organic light emitting diodes, photovoltaic cells and water photolysis. Energy transfer is also treated. Photomagnetism (how a photonic excitation modifies magnetic properties) is introduced. Finally, Chapter 5 combines the previous knowledge for three advanced subjects: first molecular electronics in its hybrid form (molecules connected to electrodes acting as wires, diodes, memory elements, field-effect transistors) or in the quantum computation approach. Then, molecular spintronics, using, besides the charge, the spin of the electron. Finally the theme of molecular machines is presented, with the problem of the directionality control of their motion.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kaila, M. M., et Rakhi Kaila. Molecular Imaging of the Brain : Using Multi-Quantum Coherence and Diagnostics of Brain Disorders. Springer Berlin / Heidelberg, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Thygesen, K. S., et A. Rubio. Correlated electron transport in molecular junctions. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.23.

Texte intégral
Résumé :
This article focuses on correlated electron transport in molecular junctions. More specifically, it considers how electronic correlation effects can be included in transport calculations using many-body perturbation theory within the Keldysh non-equilibrium Green’s function formalism. The article uses the GW self-energy method (G denotes the Green’s function and W is the screened interaction) which has been successfully applied to describe quasi-particle excitations in periodic solids. It begins by formulating the quantum-transport problem and introducing the non-equilibrium Green’s function formalism. It then derives an expression for the current within the NEGF formalism that holds for interactions in the central region. It also combines the GW scheme with a Wannier function basis set to study electron transport through two prototypical junctions: a benzene molecule coupled to featureless leads and a hydrogen molecule between two semi-infinite platinum chains. The results are analyzed using a generic two-level model of a molecular junction.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Joachim, Christian, et Nicolas Lorente. Architecture and Design of Molecule Logic Gates and Atom Circuits : Proceedings of the 2nd AtMol European Workshop. Springer, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie