Articles de revues sur le sujet « Quantum electronics »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Quantum electronics.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Quantum electronics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mukhammadova, Dilafruz Ahmadovna. « The Role Of Quantum Electronics In Alternative Energy ». American Journal of Applied sciences 03, no 01 (30 janvier 2021) : 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.

Texte intégral
Résumé :
The article deals with Quantum electronics, as a field of physics that studies methods of amplification and generation of electromagnetic radiation based on the phenomenon of stimulated radiation in nonequilibrium quantum systems, as well as the properties of amplifiers and generators obtained in this way and their application, a description of the structure of the most important lasers is given, physical foundations of quantum electronics, which are reduced primarily to the application of Einstein's theory of radiation to thermodynamically nonequilibrium systems with discrete energy levels. The article is intended for undergraduates of the Department of Physics, Radio Engineering, who have interests in the field of research and applications of laser radiation, and is aimed at giving them the minimum necessary for that initial information on quantum electronics.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Weinbub, Josef, et Robert Kosik. « Computational perspective on recent advances in quantum electronics : from electron quantum optics to nanoelectronic devices and systems ». Journal of Physics : Condensed Matter 34, no 16 (22 février 2022) : 163001. http://dx.doi.org/10.1088/1361-648x/ac49c6.

Texte intégral
Résumé :
Abstract Quantum electronics has significantly evolved over the last decades. Where initially the clear focus was on light–matter interactions, nowadays approaches based on the electron’s wave nature have solidified themselves as additional focus areas. This development is largely driven by continuous advances in electron quantum optics, electron based quantum information processing, electronic materials, and nanoelectronic devices and systems. The pace of research in all of these areas is astonishing and is accompanied by substantial theoretical and experimental advancements. What is particularly exciting is the fact that the computational methods, together with broadly available large-scale computing resources, have matured to such a degree so as to be essential enabling technologies themselves. These methods allow to predict, analyze, and design not only individual physical processes but also entire devices and systems, which would otherwise be very challenging or sometimes even out of reach with conventional experimental capabilities. This review is thus a testament to the increasingly towering importance of computational methods for advancing the expanding field of quantum electronics. To that end, computational aspects of a representative selection of recent research in quantum electronics are highlighted where a major focus is on the electron’s wave nature. By categorizing the research into concrete technological applications, researchers and engineers will be able to use this review as a source for inspiration regarding problem-specific computational methods.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith et Mark A. Eriksson. « Silicon quantum electronics ». Reviews of Modern Physics 85, no 3 (10 juillet 2013) : 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

SAKAKI, H. « Quantum Microstructures and Quantum Wave Electronics. » Nihon Kessho Gakkaishi 33, no 3 (1991) : 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Guo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li et al. « Low-latency readout electronics for dynamic superconducting quantum computing ». AIP Advances 12, no 4 (1 avril 2022) : 045024. http://dx.doi.org/10.1063/5.0088879.

Texte intégral
Résumé :
Dynamic quantum computing can support quantum error correction circuits to build a large general-purpose quantum computer, which requires electronic instruments to perform the closed-loop operation of readout, processing, and control within 1% of the qubit coherence time. In this paper, we present low-latency readout electronics for dynamic superconducting quantum computing. The readout electronics use a low-latency analog-to-digital converter to capture analog signals, a field-programmable gate array (FPGA) to process digital signals, and the general I/O resources of the FPGA to forward the readout results. Running an algorithm based on the design of multichannel parallelism and single instruction multiple data on an FPGA, the readout electronics achieve a readout latency of 40 ns from the last sample input to the readout valid output. The feedback data link for cross-instrument communication shows a communication latency of 48 ns when 16 bits of data are transmitted over a 2 m-length cable using a homologous clock to drive the transceiver. With codeword-based triggering mechanisms, readout electronics can be used in dynamic superconducting quantum computing.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Liu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood et Edward H. Sargent. « Colloidal quantum dot electronics ». Nature Electronics 4, no 8 (août 2021) : 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Taichenachev, Alexey V. « Department of Quantum Electronics ». Siberian Journal of Physics 1, no 1 (2006) : 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sinclair, B. D. « Lasers and quantum electronics ». Physics Bulletin 37, no 10 (octobre 1986) : 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dragoman, M., et D. Dragoman. « Graphene-based quantum electronics ». Progress in Quantum Electronics 33, no 6 (novembre 2009) : 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rost, Jan-Michael. « Tubes for quantum electronics ». Nature Photonics 4, no 2 (février 2010) : 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Miller, A., et I. White. « Optical and quantum electronics ». Optical and Quantum Electronics 34, no 5-6 (mai 2002) : 621–26. http://dx.doi.org/10.1007/bf02892621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zapol'skiĭ, A. K. « News in quantum electronics ». Soviet Journal of Quantum Electronics 22, no 9 (30 septembre 1992) : 873–74. http://dx.doi.org/10.1070/qe1992v022n09abeh003621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hinken, J. H., V. Kose, Harold Weinstock, Martin Nisenoff et Robert L. Fagaly. « Superconductor Electronics : Fundamentals and Microwave Applications ; Superconducting Quantum Electronics ; Superconducting Electronics ». Physics Today 44, no 2 (février 1991) : 92–94. http://dx.doi.org/10.1063/1.2809995.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Tang, Haijun, Irfan Ahmed, Pargorn Puttapirat, Tianhao Wu, Yuwei lan, Yanpeng Zhang et Enling Li. « Investigation of multi-bunching by generating multi-order fluorescence of NV center in diamond ». Physical Chemistry Chemical Physics 20, no 8 (2018) : 5721–25. http://dx.doi.org/10.1039/c7cp08005k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tamulis, Arvydas, Vykintas Tamulis et Aiste Ziriakoviene. « Quantum Mechanical Design of Molecular Computers Elements Suitable for Self-Assembling to Quantum Computing Living Systems ». Solid State Phenomena 97-98 (avril 2004) : 173–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.97-98.173.

Texte intégral
Résumé :
There are presented logic gates of molecular electronics digital computers. Maximal length of these molecular electronics digital logic gates are no more than four nanometers and maximal width 2.5 nm. The results of light induced internal molecular motions in azo-dyes molecules have been used for the design of light driven logically controlled (OR, AND) molecular machines composed from organic photoactive electron donor dithieno[3,2-b:2',3'-d]thiophene and ferrocene molecules, electron accepting tetracyano-indane molecule, and moving azo-benzene molecular fragment. Density functional theory (DFT) B3PW91/6-311G model calculations were performed for the geometry optimization of these molecular electronics logical gates. Applied DFT time dependent (DFT-TD/B3PW91) method and our visualization program give absorption spectra of designed molecular gates and show from which fragments electrons are hopping in various excited states. Quantum mechanical investigations of proton Nuclear Magnetic Resonance (NMR) values of Cu, Co, Zn, Mn and Fe biliverdin derivatives and their dimers using ab initio Hartree-Fock (HF) and DFT methods indicate that these modified derivatives should generate from one to twelve Quantum Bits (QuBits). The chemical shifts are obtained as the difference of the values of the tetramethylsilane (Si(CH3)4) molecule Gauge-Independent Atomic Orbital (GIAO) nuclear magnetic shielding tensor on the hydrogen atoms and that of the magnetically active molecules. There are designed several single supermolecule and supramolecular devices containing molecular electronics digital logic gates, photoactive molecular machines and elements of molecular NMR quantum computers that allowed to design several supramolecular Control NOT NMR quantum computing gates. Self-assembling simulations of these molecular quantum computing gates induced idea of self-assembled molecular quantum supercomputer and molecular quantum computing life.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wang, Haomin, Hui Shan Wang, Chuanxu Ma, Lingxiu Chen, Chengxin Jiang, Chen Chen, Xiaoming Xie, An-Ping Li et Xinran Wang. « Graphene nanoribbons for quantum electronics ». Nature Reviews Physics 3, no 12 (28 septembre 2021) : 791–802. http://dx.doi.org/10.1038/s42254-021-00370-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Devoret, Michel. « New era for quantum electronics ». Physics World 14, no 6 (juin 2001) : 27–28. http://dx.doi.org/10.1088/2058-7058/14/6/25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Boyd, Robert W., Michael G. Raymer et Alexander A. Manenkov. « Fifty years of quantum electronics ». Journal of Modern Optics 52, no 12 (15 août 2005) : 1635. http://dx.doi.org/10.1080/09500340500164856.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Townes *, Charles H. « Early history of quantum electronics ». Journal of Modern Optics 52, no 12 (15 août 2005) : 1637–45. http://dx.doi.org/10.1080/09500340500164930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Knight, Peter L. « Thirteenth National Quantum Electronics Conference ». Journal of Modern Optics 45, no 6 (1 juin 1998) : 1097. http://dx.doi.org/10.1080/095003498151221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Schubert, Max, Bernd Wilhelmi et Lorenzo M. Narducci. « Nonlinear Optics and Quantum Electronics ». Physics Today 41, no 2 (février 1988) : 80–82. http://dx.doi.org/10.1063/1.2811321.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Teich, M. C., et B. E. A. Saleh. « Branching processes in quantum electronics ». IEEE Journal of Selected Topics in Quantum Electronics 6, no 6 (novembre 2000) : 1450–57. http://dx.doi.org/10.1109/2944.902200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ke, San-Huang, Weitao Yang et Harold U. Baranger. « Quantum-Interference-Controlled Molecular Electronics ». Nano Letters 8, no 10 (8 octobre 2008) : 3257–61. http://dx.doi.org/10.1021/nl8016175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Barnett, S. M. « Nonlinear optics and quantum electronics ». Optics & ; Laser Technology 19, no 4 (août 1987) : 218–20. http://dx.doi.org/10.1016/0030-3992(87)90074-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Knight, Peter. « Nonlinear Optics and Quantum Electronics ». Journal of Modern Optics 34, no 4 (avril 1987) : 482. http://dx.doi.org/10.1080/09500348714550481.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ducloy, M. « 1996 EPS Quantum Electronics Prize ». Europhysics News 26, no 6 (1995) : 135. http://dx.doi.org/10.1051/epn/19952606135b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sohn, Lydia L. « A quantum leap for electronics ». Nature 394, no 6689 (juillet 1998) : 131–32. http://dx.doi.org/10.1038/28058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Cuoco, M., et A. Di Bernardo. « Materials challenges for SrRuO3 : From conventional to quantum electronics ». APL Materials 10, no 9 (1 septembre 2022) : 090902. http://dx.doi.org/10.1063/5.0100912.

Texte intégral
Résumé :
The need for faster and more miniaturized electronics is challenging scientists to develop novel forms of electronics based on quantum degrees of freedom different from electron charge. In this fast-developing field, often referred to as quantum electronics, the metal-oxide perovskite SrRuO3 can play an important role thanks to its diverse physical properties, which have been intensively investigated, mostly for conventional electronics. In addition to being chemically stable, easy to fabricate with high quality and to grow epitaxially onto many oxides—these are all desirable properties also for conventional electronics—SrRuO3 has interesting properties for quantum electronics like itinerant ferromagnetism and metallic behavior, strong correlation between magnetic anisotropy and spin–orbit coupling, strain-tunable magnetization, and anomalous Hall and Berry effects. In this Perspective, after describing the main phenomena emerging from the interplay between spin, orbital, lattice, and topological quantum degrees of freedom in SrRuO3, we discuss the challenges still open to achieve control over these phenomena. We then provide our perspectives on the most promising applications of SrRuO3 for devices for conventional and quantum electronics. We suggest new device configurations and discuss the materials challenges for their realization. For conventional electronics, we single out applications where SrRuO3 devices can bring competitive advantages over existing ones. For quantum electronics, we propose devices that can help gain a deeper understanding of quantum effects in SrRuO3 to exploit them for quantum technologies. We finally give an outlook about properties of SrRuO3 still waiting for discovery and applications that may stem from them.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev et Anatoliy Vasilevich Dvurechenskii. « Semiconductor Nanostructures for Modern Electronics ». Solid State Phenomena 310 (septembre 2020) : 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.

Texte intégral
Résumé :
Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing of energy band structure, quantization of energy spectrum of a charge carrier and a pronounced spin-related phenomena. Superposition of quantum states and formation of entangled states of photons offers new opportunities for the realization of quantum bits, development of nanoscale systems for quantum cryptography and quantum computing. Advanced growth techniques such as molecular beam epitaxy and chemical vapour epitaxy, atomic layer deposition as well as optical, electron and probe nanolithography for nanostructure fabrication have been widely used. Nanostructure characterization is performed using nanometer resolution tools including high-resolution, reflection and scanning electron microscopy as well as scanning tunneling and atomic force microscopy. Quantum properties of semiconductor nanostructures have been evaluated from precise electrical and optical measurements. Modern concepts of various semiconductor devices in electronics and photonics including single-photon emitters, memory elements, photodetectors and highly sensitive biosensors are developed very intensively. The perspectives of nanostructured materials for the creation of a new generation of universal memory and neuromorphic computing elements are under lively discussion. This paper is devoted to a brief description of current achievements in the investigation and modeling of single-electron and single-photon phenomena in semiconductor nanostructures, as well as in the fabrication of a new generation of elements for micro-, nano, optoelectronics and quantum devices.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Schmid, Christoph P., Fabian Langer, Stefan Schlauderer, Martin Gmitra, Jaroslav Fabian, Philipp Nagler, Christian Schuller et al. « Lightwave control of the valley pseudospin in a monolayer of tungsten diselenide ». EPJ Web of Conferences 205 (2019) : 05011. http://dx.doi.org/10.1051/epjconf/201920505011.

Texte intégral
Résumé :
As conventional electronic is approaching its ultimate limits, tremendous efforts have been taken to explore novel concepts of ultrafast quantum control. Lightwave electronics - the foundation of attosecond science - has opened a spectacular perspective by utilizing the oscillating carrier wave of an intense light pulse to control the translational motion of the electron’s charge faster than a single cycle of light [1-7]. Despite their promising potential as future information carriers [8,10], the internal quantum attributes such as spins and valley pseudospins have not been switchable at optical clock rates. Here we demonstrate a novel subcycle control scheme of the electron’s pseudospin in a monolayer of tungsten diselenide using strong mid-infrared lightwaves [9]. Our work opens the door towards systematic valleytronic protocols at optical clock rates.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Siu, Timothy C., Joshua Y. Wong, Matthew O. Hight et Timothy A. Su. « Single-cluster electronics ». Physical Chemistry Chemical Physics 23, no 16 (2021) : 9643–59. http://dx.doi.org/10.1039/d1cp00809a.

Texte intégral
Résumé :
This article reviews the scope of inorganic cluster compounds measured in single-molecule junctions. The article explores how the structure and bonding of inorganic clusters give rise to specific quantum transport phenomena in molecular junctions.
Styles APA, Harvard, Vancouver, ISO, etc.
32

HARRIS, J. S. « FROM BLOCH FUNCTIONS TO QUANTUM WELLS ». International Journal of Modern Physics B 04, no 06 (mai 1990) : 1149–79. http://dx.doi.org/10.1142/s0217979290000577.

Texte intégral
Résumé :
The early foundations for the electronics revolution were set in Professor Felix Bloch’s Ph. D. dissertation. The fundamental insights of this work are reviewed in light of both their impact on modern electronics, and particularly, their relevance for today’s quantum well engineered devices, and their potential to be tomorrow’s electronics foundation.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Northrop, D. C. « Book Review : Quantum Electronics (3rd Ed.) ». International Journal of Electrical Engineering & ; Education 27, no 1 (janvier 1990) : 12. http://dx.doi.org/10.1177/002072099002700102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Krokhin, Oleg N. « The early years of quantum electronics ». Physics-Uspekhi 47, no 10 (31 octobre 2004) : 1045–48. http://dx.doi.org/10.1070/pu2004v047n10abeh001907.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Seideman, Tamar. « Current-driven dynamics in quantum electronics ». Journal of Modern Optics 50, no 15-17 (octobre 2003) : 2393–410. http://dx.doi.org/10.1080/09500340308233571.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Manenkov, A. A. « EPR and development of quantum electronics ». Journal of Physics : Conference Series 324 (21 octobre 2011) : 012001. http://dx.doi.org/10.1088/1742-6596/324/1/012001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Krokhin, Oleg N. « The early years of quantum electronics ». Uspekhi Fizicheskih Nauk 174, no 10 (2004) : 1117. http://dx.doi.org/10.3367/ufnr.0174.200410h.1117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Nimtz, Gu¨nter, et Winfried Heitmann. « Superluminal photonic tunneling and quantum electronics ». Progress in Quantum Electronics 21, no 2 (janvier 1997) : 81–108. http://dx.doi.org/10.1016/s0079-6727(97)84686-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Yokoyama, N., S. Muto, K. Imamura, M. Takatsu, T. Mori, Y. Sugiyama, Y. Sakuma, H. Nakao et T. Adachihara. « Quantum functional devices for advanced electronics ». Solid-State Electronics 40, no 1-8 (janvier 1996) : 505–11. http://dx.doi.org/10.1016/0038-1101(95)00279-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Grimes, Dale M. « Quantum theory and classical, nonlinear electronics ». Physica D : Nonlinear Phenomena 20, no 2-3 (juin 1986) : 285–302. http://dx.doi.org/10.1016/0167-2789(86)90034-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Woerdman, J. P. « EQEC : 2nd European Quantum Electronics Conference ». Europhysics News 20, no 11-12 (1989) : 170. http://dx.doi.org/10.1051/epn/19892011170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zapol'skiĭ, A. K. « What is new in quantum electronics ? » Soviet Journal of Quantum Electronics 22, no 7 (31 juillet 1992) : 675–76. http://dx.doi.org/10.1070/qe1992v022n07abeh003569.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

CITRIN, D. S. « INTERBAND OPTICAL PROPERTIES OF QUANTUM WIRES : THEORY AND APPLICATION ». Journal of Nonlinear Optical Physics & ; Materials 04, no 01 (janvier 1995) : 83–98. http://dx.doi.org/10.1142/s0218863595000057.

Texte intégral
Résumé :
The electronic states near the fundamental gap largely determine the most commonly investigated linear and nonlinear optical properties of quantum wires. We first discuss heavy-hole-light-hole band-mixing effects and illustrate the consequences with an application in opto-electronics, namely a quantum-wire-array based polarization modulator. Next, an overview of polariton effects which determine the time scale for excitonic radiative decay is given and comparison with recent experiments made.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hamham, Soufiyan, Abdelouahed Cherqaoui, Said Belaaouad et Youssef Naimi. « Organic Semiconductivity and Photovoltaism : Concepts and applications ». Mediterranean Journal of Chemistry 9, no 1 (30 août 2019) : 65–77. http://dx.doi.org/10.13171/mjc91190820600sh.

Texte intégral
Résumé :
This work has for the objective, the theoretical explanation of the semi-conduction mechanisms as well as the photovoltaism in molecular organic materials by the creation of excitons and the transfer of π electrons of a donor (P3HT) to an acceptor (PCBM). In focusing on the broad technological applications of the molecular optoelectronic phenomena, this will provide the capital importance of the molecular electronic as a scientific and technical revolution which extends from the energy, has medicine up to the areas confusing nanotechnology and quantum electronics.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhang, Lifu, Ruihao Ni et You Zhou. « Controlling quantum phases of electrons and excitons in moiré superlattices ». Journal of Applied Physics 133, no 8 (28 février 2023) : 080901. http://dx.doi.org/10.1063/5.0139179.

Texte intégral
Résumé :
Moiré lattices formed in twisted and lattice-mismatched van der Waals heterostructures have emerged as a platform to engineer the novel electronic and excitonic states at the nanoscale. This Perspective reviews the materials science of moiré heterostructures with a focus on the structural properties of the interface and its structural–property relationships. We first review the studies of the atomic relaxation and domain structures in moiré superlattices and how these structural studies provide critical insights into understanding the behaviors of quantum-confined electrons and excitons. We discuss the general frameworks to manipulate moiré structures and how such control can be harnessed for engineering new phases of matter and simulating various quantum phenomena. Finally, we discuss routes toward large-scale moiré heterostructures and give an outlook on their applications in quantum electronics and optoelectronics. Special emphasis will be placed on the challenges and opportunities of the reliable fabrication and dynamical manipulation of moiré heterostructures.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kausar, Ayesha. « Polyaniline and quantum dot-based nanostructures : Developments and perspectives ». Journal of Plastic Film & ; Sheeting 36, no 4 (14 mai 2020) : 430–47. http://dx.doi.org/10.1177/8756087920926649.

Texte intégral
Résumé :
Quantum dots are 2–5 nm nanoparticles with exceptional optical, electronic, luminescence, and semiconducting properties. Polyaniline is an exclusive conjugated polymer. This article reviews recent efforts, scientific trials, and technological solicitations of the polyaniline/quantum dot-based nanocomposites. Polyaniline/quantum dot mixtures form a unique composition for advance materials and applications. Carbon dots, graphene quantum dots, and several inorganic quantum dots have been added to a conducting polymer. A functional quantum dot may develop electrostatic, van der Waal, and π–π stacking interactions with the conjugated polymer backbone. Uniform quantum dot dispersion in polyaniline may result in inimitable morphology, electrical conductivity, electrochemical properties, capacitance, and sensing features. Finally, this review expounds on the many applications for polyaniline/quantum dot nanocomposites including dye-sensitized solar cell, supercapacitor, electronics, gas sensor, biosensor, and bioimaging.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kabel, Jeff, Sambhawana Sharma, Amit Acharya, Dongyan Zhang et Yoke Khin Yap. « Molybdenum Disulfide Quantum Dots : Properties, Synthesis, and Applications ». C 7, no 2 (8 mai 2021) : 45. http://dx.doi.org/10.3390/c7020045.

Texte intégral
Résumé :
Molybdenum disulfide quantum dots (MoS2 QDs) are a unique class of zero-dimensional (0D) van der Waals nanostructures. MoS2 QDs have attracted significant attention due to their unique optical, electronic, chemical, and biological properties due to the presence of edge states of these van der Waals QDs for various chemical functionalization. Their novel properties have enabled applications in many fields, including advanced electronics, electrocatalysis, and biomedicine. In this review, the various synthesis techniques, the novel properties, and the wide applications of MoS2 quantum dots are discussed in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hill, Charles D., Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons et Lloyd C. L. Hollenberg. « A surface code quantum computer in silicon ». Science Advances 1, no 9 (octobre 2015) : e1500707. http://dx.doi.org/10.1126/sciadv.1500707.

Texte intégral
Résumé :
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
Styles APA, Harvard, Vancouver, ISO, etc.
49

TAVKHELIDZE, AVTO, et VASIKO SVANIDZE. « QUANTUM STATE DEPRESSION IN A SEMICONDUCTOR QUANTUM WELL ». International Journal of Nanoscience 07, no 06 (décembre 2008) : 333–38. http://dx.doi.org/10.1142/s0219581x0800550x.

Texte intégral
Résumé :
In this study, the quantum state depression (QSD) in a semiconductor quantum well (QW) is investigated. The QSD emerges from the ridged geometry of the QW boundary. Ridges impose additional boundary conditions on the electron wave function, and some quantum states become forbidden. State density is reduced in all energy bands, including the conduction band (CB). Hence, electrons, rejected from the filled bands, must occupy quantum states in the empty bands due to the Pauli exclusion principle. Both the electron concentration in the CB and the Fermi energy increased, as in the case of donor doping. Since quantum state density is reduced, the ridged quantum well (RQW) exhibits quantum properties at widths approaching 200 nm. A wide RQW can be used to improve photon confinement in QW-based optoelectronic devices. Reduction in the state density increases the carrier mobility and makes the ballistic transport regime more pronounced in the semiconductor QW devices. Furthermore, the QSD doping does not introduce scattering centers and can be used for power electronics.
Styles APA, Harvard, Vancouver, ISO, etc.
50

FU, Y., S. HELLSTRÖM et H. ÅGREN. « NONLINEAR OPTICAL PROPERTIES OF QUANTUM DOTS : EXCITONS IN NANOSTRUCTURES ». Journal of Nonlinear Optical Physics & ; Materials 18, no 02 (juin 2009) : 195–226. http://dx.doi.org/10.1142/s0218863509004579.

Texte intégral
Résumé :
We review the concepts of excitons and excitonic polaritons, their nonlinear optical properties in nanostructures and their applications within integrated electronics and optoelectronics. Various theoretical aspects of excitons and excitonic polaritons are introduced, followed by a summary of their experimental and application-specific development in nanostructures at the electronic and photonic engineering levels. A number of technical applications are highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie