Articles de revues sur le sujet « Quantum Dot - Cellular Imaging »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Quantum Dot - Cellular Imaging.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Quantum Dot - Cellular Imaging ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Smith, Andrew M., Xiaohu Gao et Shuming Nie. « Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶ ». Photochemistry and Photobiology 80, no 3 (2004) : 377. http://dx.doi.org/10.1562/0031-8655(2004)080<0377:qdnfiv>2.0.co;2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Smith, Andrew M., Xiaohu Gao et Shuming Nie. « Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶ ». Photochemistry and Photobiology 80, no 3 (2004) : 377. http://dx.doi.org/10.1562/2004-06-21-ir-209.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Smith, Andrew M., Xiaohu Gao et Shuming Nie. « Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶ ». Photochemistry and Photobiology 80, no 3 (30 avril 2007) : 377–85. http://dx.doi.org/10.1111/j.1751-1097.2004.tb00102.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jiang, Tongtong, Naiqiang Yin, Ling Liu, Jiangluqi Song, Qianpeng Huang, Lixin Zhu et Xiaoliang Xu. « A Au nanoflower@SiO2@CdTe/CdS/ZnS quantum dot multi-functional nanoprobe for photothermal treatment and cellular imaging ». RSC Adv. 4, no 45 (2014) : 23630–36. http://dx.doi.org/10.1039/c4ra02965h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Yu-Hui, Ying-Ming Zhang, Yang Yang, Li-Xia Chen et Yu Liu. « Controlled DNA condensation and targeted cellular imaging by ligand exchange in a polysaccharide–quantum dot conjugate ». Chemical Communications 52, no 36 (2016) : 6087–90. http://dx.doi.org/10.1039/c6cc01571a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zheng, Jianing, Arezou Ghazani, Qiang Song, Sawitri Mardyani, Warren Chan et Chen Wang. « Cellular Imaging and Surface Marker Labeling of Hematopoietic Cells Using Quantum Dot Bioconjugates ». Laboratory Hematology 12, no 2 (1 juin 2006) : 94–98. http://dx.doi.org/10.1532/lh96.04073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lee, Jiyeon, Gyoyeon Hwang, Yeon Sun Hong et Taebo Sim. « One step synthesis of quantum dot–magnetic nanoparticle heterodimers for dual modal imaging applications ». Analyst 140, no 8 (2015) : 2864–68. http://dx.doi.org/10.1039/c4an02322f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Mengying, Brittany P. Bishop, Nicole L. Thompson, Kate Hildahl, Binh Dang, Olesya Mironchuk, Nina Chen, Reyn Aoki, Vincent C. Holmberg et Elizabeth Nance. « Quantum dot cellular uptake and toxicity in the developing brain : implications for use as imaging probes ». Nanoscale Advances 1, no 9 (2019) : 3424–42. http://dx.doi.org/10.1039/c9na00334g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Park, Junwon, Sankarprasad Bhuniya, Hyunseung Lee, Young-Woock Noh, Yong Taik Lim, Jong Hwa Jung, Kwan Soo Hong et Jong Seung Kim. « A DTTA-ligated uridine–quantum dot conjugate as a bimodal contrast agent for cellular imaging ». Chemical Communications 48, no 26 (2012) : 3218. http://dx.doi.org/10.1039/c2cc17555j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jooken, Stijn, Yovan de Coene, Olivier Deschaume, Dániel Zámbó, Tangi Aubert, Zeger Hens, Dirk Dorfs et al. « Enhanced electric field sensitivity of quantum dot/rod two-photon fluorescence and its relevance for cell transmembrane voltage imaging ». Nanophotonics 10, no 9 (21 mai 2021) : 2407–20. http://dx.doi.org/10.1515/nanoph-2021-0077.

Texte intégral
Résumé :
Abstract The optoelectronic properties of semiconductor nanoparticles make them valuable candidates for the long-term monitoring of transmembrane electric fields in excitable cells. In this work, we show that the electric field sensitivity of the fluorescence intensity of type-I and quasi-type-II quantum dots and quantum rods is enhanced under two-photon excitation compared to single-photon excitation. Based on the superior electric field sensitivity of the two-photon excited fluorescence, we demonstrate the ability of quantum dots and rods to track fast switching E-fields. These findings indicate the potential of semiconductor nanoparticles as cellular voltage probes in multiphoton imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Vijaya Bharathi, M., Santanu Maiti, Bidisha Sarkar, Kaustab Ghosh et Priyankar Paira. « Water-mediated green synthesis of PbS quantum dot and its glutathione and biotin conjugates for non-invasive live cell imaging ». Royal Society Open Science 5, no 3 (mars 2018) : 171614. http://dx.doi.org/10.1098/rsos.171614.

Texte intégral
Résumé :
This study addresses the cellular uptake of nanomaterials in the field of bio-applications. In the present study, we have synthesized water-soluble lead sulfide quantum dot (PbS QD) with glutathione and 3-MPA (mercaptopropionic acid) as the stabilizing ligand using a green approach. 3-MPA-capped QDs were further modified with streptavidin and then bound to biotin because of its high conjugation efficiency. Labelling and bio-imaging of cells with these bio-conjugated QDs were evaluated. The bright red fluorescence from these types of QDs in HeLa cells makes these materials suitable for deep tissue imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Pillai, Sreenadh Sasidharan, Hiroshi Yukawa, Daisuke Onoshima, Vasudevanpillai Biju et Yoshinobu Baba. « Quantum Dot-Peptide Nanoassembly on Mesoporous Silica Nanoparticle for Biosensing ». Nano Hybrids and Composites 19 (février 2018) : 55–72. http://dx.doi.org/10.4028/www.scientific.net/nhc.19.55.

Texte intégral
Résumé :
Quantum dots (QDs) are powerful luminescent probes for detecting single-molecules and imaging live cells. Despite several reports on bioimaging and biosensing applications of QDs, controlled and targeted detection of biomolecules using quantum dots is an ongoing challenge. When a QD is conjugated with an ideal chromophore, which can be a fluorescent or a non-fluorescent dye molecule, QD luminescence can be quenched by Förster resonance energy transfer (FRET) to the quencher dye. However, the photoluminescence of QD can be recovered upon on-demand release of the quencher. Our study focuses on quenching of QD photoluminescence after conjugation with a non-fluorescent dye molecule, black hole quencher 1 (BHQ-1), intermediated with a molecular sensing target peptide GPLG↓VRGK. Based on steady-state and time-resolved photoluminescence measurements of QD and the QD-peptide-BHQ-1 sensor assemblies, we attribute the quenching of photoluminescence intensity and lifetime to FRET from the QD to BHQ-1molecules. Here the intermediate peptide GPLG↓VRGK can be cleaved by matrix metalloproteinase-2 (MMP-2), an enzyme that is upregulated in cancer cells extra cellular matrix (ECM), at its Gly and Val region shown by the down headed arrow. Here the QD-pep-BHQ-1 conjugate detected the MMP-2 presence at the extra cellular matrix of H1299 cancer cells. Further the QD-pep-BHQ-1 molecules were conjugated at the surface of a mesoporous silica nanoparticle (MSN) scaffold to localize maximum target peptide in a nanospace volume for the future αvβ3 integrin receptor targeted detection of MMP-2. The luminescence quenching of MSN-QD-pep-BHQ-1 conjugates were analyzed with time resolved photoluminescence measurement.
Styles APA, Harvard, Vancouver, ISO, etc.
13

McFarlane, Mollie, Nicholas Hall et Gail McConnell. « Enhanced fluorescence from semiconductor quantum dot-labelled cells excited at 280 nm ». Methods and Applications in Fluorescence 10, no 2 (9 mars 2022) : 025004. http://dx.doi.org/10.1088/2050-6120/ac5878.

Texte intégral
Résumé :
Abstract Semiconductor quantum dots (QDs) have significant advantages over more traditional fluorophores used in fluorescence microscopy including reduced photobleaching, long-term photostability and high quantum yields, but due to limitations in light sources and optics, are often excited far from their optimum excitation wavelengths in the deep-UV. Here, we present a quantitative comparison of the excitation of semiconductor QDs at a wavelength of 280 nm, compared to the longer wavelength of 365 nm, within a cellular environment. We report increased fluorescence intensity and enhanced image quality when using 280 nm excitation compared to 365 nm excitation for cell imaging across multiple datasets, with a highest average fluorescence intensity increase of 3.59-fold. We also find no significant photobleaching of QDs associated with 280 nm excitation and find that on average, ∼80% of cells can tolerate exposure to high-intensity 280 nm irradiation over a 6-hour period.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ducongé, Frédéric, Thomas Pons, Carine Pestourie, Laurence Hérin, Benoît Thézé, Karine Gombert, Benoît Mahler et al. « Fluorine-18-Labeled Phospholipid Quantum Dot Micelles forin VivoMultimodal Imaging from Whole Body to Cellular Scales ». Bioconjugate Chemistry 19, no 9 (17 septembre 2008) : 1921–26. http://dx.doi.org/10.1021/bc800179j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bhave, Gauri, Youngkyu Lee, Kazunori Hoshino et John X. J. Zhang. « Colloidal Quantum Dot-Based Light Emitting Diodes With Solution Processed Electron Transporting Layer for Cellular Imaging ». IEEE Sensors Journal 15, no 1 (janvier 2015) : 234–39. http://dx.doi.org/10.1109/jsen.2014.2341675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sur, Vishma Pratap, Aninda Mazumdar, Amirmansoor Ashrafi, Atripan Mukherjee, Vedran Milosavljevic, Hana Michalkova, Pavel Kopel, Lukáš Richtera et Amitava Moulick. « A Novel Biocompatible Titanium–Gadolinium Quantum Dot as a Bacterial Detecting Agent with High Antibacterial Activity ». Nanomaterials 10, no 4 (17 avril 2020) : 778. http://dx.doi.org/10.3390/nano10040778.

Texte intégral
Résumé :
In this study, the titanium–gadolinium quantum dots (TGQDs) were novel, first of its type to be synthesized, and fully characterized to date. Multiple physical characterization includes scanning electron microscopy (SEM), scanning electrochemical microscope (SCEM), x-ray fluorescence, spectrophotometry, and dynamic light scattering were carried out. The obtained results confirmed appropriate size and shape distributions in addition to processing optical features with high quantum yield. The synthesized TGQD was used as a fluorescent dye for bacterial detection and imaging by fluorescent microscopy and spectrophotometry, where TGQD stained only bacterial cells, but not human cells. The significant antibacterial activities of the TGQDs were found against a highly pathogenic bacterium (Staphylococcus aureus) and its antibiotic resistant strains (vancomycin and methicillin resistant Staphylococcus aureus) using growth curve analysis and determination of minimum inhibitory concentration (MIC) analysis. Live/dead cell imaging assay using phase-contrast microscope was performed for further confirmation of the antibacterial activity. Cell wall disruption and release of cell content was observed to be the prime mode of action with the reduction of cellular oxygen demand (OD).
Styles APA, Harvard, Vancouver, ISO, etc.
17

KAUL, Z. « Quantum Dot-Based Protein Imaging and Functional Significance of Two Mitochondrial Chaperones in Cellular Senescence and Carcinogenesis ». Annals of the New York Academy of Sciences 1067, no 1 (1 mai 2006) : 469–73. http://dx.doi.org/10.1196/annals.1354.067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kim, Min, Sabarinathan Rangasamy, Yumi Shim et Joon Song. « Cell lysis-free quantum dot multicolor cellular imaging-based mechanism study for TNF-α-induced insulin resistance ». Journal of Nanobiotechnology 13, no 1 (2015) : 4. http://dx.doi.org/10.1186/s12951-015-0064-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Park, Solji, Parthasarathy Arumugam, Baskaran Purushothaman, Sung-Yon Kim, Dal-Hee Min, Noo Li Jeon et Joon Myong Song. « Quantum-dot nanoprobes and AOTF based cross talk eliminated six color imaging of biomolecules in cellular system ». Analytica Chimica Acta 985 (septembre 2017) : 166–74. http://dx.doi.org/10.1016/j.aca.2017.07.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Xiaoxuan, Feng Qu, Zubin Chen, Tao Liang et Anlian Qu. « Labeling and imaging of GLUT4 in live L6 cells with quantum dots ». Biochemistry and Cell Biology 87, no 4 (août 2009) : 687–94. http://dx.doi.org/10.1139/o09-041.

Texte intégral
Résumé :
GLUT4 is sequestered in intracellular storage compartments in a basal state and is rapidly translocated to the cell surface in response to insulin stimulation. Regulation of GLUT4 distribution is key for maintaining whole-body glucose homeostasis. To investigate the complicated intracellular movement of GLUT4 vesicles and their interactions with organelles in detail, new probes suitable for long-term tracking of cellular events are required. In this study, we introduce for the first time quantum dots (QDs) as a superior probe into the research of the mechanisms of GLUT4 translocation. QDs are light-emitting semiconductor nanoparticles with unique optical and spectroscopic properties, such as broad absorption, narrow and tunable emission, resistance to photobleaching, strong luminescence, and long luminescent lifetimes. Owing to their remarkable photophysical properties and relatively small size, QDs are emerging as an alternative to conventional dyes for fluorescence-based applications. We have developed a procedure for labeling and imaging GLUT4 in live cells with streptavidin-conjugated quantum dot (QD-SA) and demonstrated that QDs contained in cytoplasm have no obvious negative influence on L6 cells. This study provides a sensitive, nontoxic, long-term imaging platform for observing the dynamics and regulated characteristics of GLUT4 transport.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Wei, Xiong, et Guo Min. « A New Nano-Design of a Fault-Tolerant Coplanar RAM with Set/Reset Ability Based on Quantum-Dots ». ECS Journal of Solid State Science and Technology 11, no 4 (1 avril 2022) : 041002. http://dx.doi.org/10.1149/2162-8777/ac611c.

Texte intégral
Résumé :
Quantum Dot Cellular Automata (QCA) is a recent technology that has piqued researchers’ interest because of its small size and low energy consumption. With the help of quantum dots, the QCA technology delivers a new computational foundation for constructing digital circuits. Medical imaging and quantum computing are just a few applications for quantum dots. Quantum dots are nanocrystals that transmit data at the nano-scale. Since the memory is an important digital circuit, this work proposes a fault-tolerant loop-based coplanar Random Access Memory (RAM) with set/reset capability that uses the QCA rules. The memory cell’s operation is verified both physically and through simulations with the QCADesigner program. The quantum cost of the proposed memory cell shows that it has a negligible quantum cost. The proposed QCA-based memory circuit performs well in simulations, with 96 QCA cells and the output signal generated after 0.75 clock phases. The gates and wire in this design have around 85 percent better fault-tolerant capability than the best-presented memory systems. Furthermore, this circuit can tolerate most cell omission, displacement, misalignment, and deposition faults. This structure can be used to create high-performance higher-order fault-tolerant memory structures.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hondow, Nicole, M. Rowan Brown, Tobias Starborg, Alexander G. Montieth, Rik Brydson, Huw D. Summers, Paul Rees et Andy Brown. « Serial block face SEM and TEM imaging for quantitative measurement of cellular uptake of semiconductor quantum dot nanoparticles ». Microscopy and Microanalysis 21, S3 (août 2015) : 1553–54. http://dx.doi.org/10.1017/s1431927615008545.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Rowland, Clare E., Kimihiro Susumu, Michael H. Stewart, Eunkeu Oh, Antti J. Mäkinen, Thomas J. O’Shaughnessy, Gary Kushto et al. « Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence : Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes ». Nano Letters 15, no 10 (2 octobre 2015) : 6848–54. http://dx.doi.org/10.1021/acs.nanolett.5b02725.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Nair, Lakshmi V., Yutaka Nagaoka, Toru Maekawa, D. Sakthikumar et Ramapurath S. Jayasree. « Quantum Dot Tailored to Single Wall Carbon Nanotubes : A Multifunctional Hybrid Nanoconstruct for Cellular Imaging and Targeted Photothermal Therapy ». Small 10, no 14 (1 avril 2014) : 2771–75. http://dx.doi.org/10.1002/smll.201400418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Orndorff, Rebecca L., Nankang Hong, Kevin Yu, Sheldon I. Feinstein, Blaine J. Zern, Aron B. Fisher, Vladimir R. Muzykantov et Shampa Chatterjee. « NOX2 in lung inflammation : quantum dot based in situ imaging of NOX2-mediated expression of vascular cell adhesion molecule-1 ». American Journal of Physiology-Lung Cellular and Molecular Physiology 306, no 3 (1 février 2014) : L260—L268. http://dx.doi.org/10.1152/ajplung.00278.2013.

Texte intégral
Résumé :
Quantum dot (QD) imaging is a powerful tool for studying signaling pathways as they occur. Here we employ this tool to study adhesion molecule expression with lung inflammation in vivo. A key event in pulmonary inflammation is the regulation of vascular endothelial cell adhesion molecule-1 (VCAM), which drives activated immune cell adherence. The induction of VCAM expression is known to be associated with reactive oxygen species (ROS) production, but the exact mechanism or the cellular source of ROS that regulates VCAM in inflamed lungs is not known. NADPH oxidase 2 (NOX2) has been reported to be a major source of ROS with pulmonary inflammation. NOX2 is expressed by both endothelial and immune cells. Here we use VCAM-targeted QDs in a mouse model to show that NOX2, specifically endothelial NOX2, induces VCAM expression with lung inflammation in vivo.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Nair, Lakshmi V., Yutaka Nagaoka, Toru Maekawa, D. Sakthikumar et Ramapurath S. Jayasree. « Quantum Dots : Quantum Dot Tailored to Single Wall Carbon Nanotubes : A Multifunctional Hybrid Nanoconstruct for Cellular Imaging and Targeted Photothermal Therapy (Small 14/2014) ». Small 10, no 14 (juillet 2014) : 2964. http://dx.doi.org/10.1002/smll.201470085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Feng, Li, Hong-Yu Long, Ren-Kai Liu, Dan-Ni Sun, Chao Liu, Li-Li Long, Yi Li, Si Chen et Bo Xiao. « A Quantum Dot Probe Conjugated with Aβ Antibody for Molecular Imaging of Alzheimer’s Disease in a Mouse Model ». Cellular and Molecular Neurobiology 33, no 6 (22 mai 2013) : 759–65. http://dx.doi.org/10.1007/s10571-013-9943-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Darwish, Ghinwa H., Jérémie Asselin, Michael V. Tran, Rupsa Gupta, Hyungki Kim, Denis Boudreau et W. Russ Algar. « Fully Self-Assembled Silica Nanoparticle–Semiconductor Quantum Dot Supra-Nanoparticles and Immunoconjugates for Enhanced Cellular Imaging by Microscopy and Smartphone Camera ». ACS Applied Materials & ; Interfaces 12, no 30 (16 juillet 2020) : 33530–40. http://dx.doi.org/10.1021/acsami.0c09553.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bhandari, Satyapriya, Sabyasachi Pramanik, Naba Kumar Biswas, Shilaj Roy et Uday Narayan Pan. « Enhanced Luminescence of a Quantum Dot Complex Following Interaction with Protein for Applications in Cellular Imaging, Sensing, and White-Light Generation ». ACS Applied Nano Materials 2, no 4 (13 mars 2019) : 2358–66. http://dx.doi.org/10.1021/acsanm.9b00233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Qin, Chong, Wei Li, Qin Li, Wen Yin, Xiaowei Zhang, Zhiping Zhang, Xian-En Zhang et Zongqiang Cui. « Real-time dissection of dynamic uncoating of individual influenza viruses ». Proceedings of the National Academy of Sciences 116, no 7 (9 janvier 2019) : 2577–82. http://dx.doi.org/10.1073/pnas.1812632116.

Texte intégral
Résumé :
Uncoating is an obligatory step in the virus life cycle that serves as an antiviral target. Unfortunately, it is challenging to study viral uncoating due to methodology limitations for detecting this transient and dynamic event. The uncoating of influenza A virus (IAV), which contains an unusual genome of eight segmented RNAs, is particularly poorly understood. Here, by encapsulating quantum dot (QD)-conjugated viral ribonucleoprotein complexes (vRNPs) within infectious IAV virions and applying single-particle imaging, we tracked the uncoating process of individual IAV virions. Approximately 30% of IAV particles were found to undergo uncoating through fusion with late endosomes in the “around-nucleus” region at 30 to 90 minutes postinfection. Inhibition of viral M2 proton channels and cellular endosome acidification prevented IAV uncoating. IAV vRNPs are released separately into the cytosol after virus uncoating. Then, individual vRNPs undergo a three-stage movement to the cell nucleus and display two diffusion patterns when inside the nucleus. These findings reveal IAV uncoating and vRNP trafficking mechanisms, filling a critical gap in knowledge about influenza viral infection.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hoshino, Akiyoshi, Noriyoshi Manabe, Kouki Fujioka, Kazuo Suzuki, Masato Yasuhara et Kenji Yamamoto. « Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine : surface modification regulates biological function, including cytotoxicity ». Journal of Artificial Organs 10, no 3 (20 septembre 2007) : 149–57. http://dx.doi.org/10.1007/s10047-007-0379-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gonda, Kohsuke, Tomonobu M. Watanabe et Hideo Higuchi. « 2P243 Imaging of membrane protrusion of cellular migration in tumor using quantum dots(39. Cell motility,Poster Session,Abstract,Meeting Program of EABS & ; BSJ 2006) ». Seibutsu Butsuri 46, supplement2 (2006) : S356. http://dx.doi.org/10.2142/biophys.46.s356_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Dinda, Amit Kumar, et Chandravilas Keshvan Prashant. « Novel Biomaterials and Nano-Biotechnology Approaches in Tumor Diagnosis ». Advances in Science and Technology 76 (octobre 2010) : 78–89. http://dx.doi.org/10.4028/www.scientific.net/ast.76.78.

Texte intégral
Résumé :
Each year 10.9 million people worldwide are diagnosed with cancer and it is the third most common disease in world. Early diagnosis of cancer and cure are major challenges. Recent advances in development of novel biomaterials as well as rapid progress in the area of nano-biotechnology has potentials to change all the current modalities of cancer diagnosis and management. The unique physical and chemical properties of nanomaterials are extremely helpful for detection of biomarkers of the disease, molecular imaging as well as specific targeted therapy sparing the normal organs. Nanoparticle (NP) has large surface area which can be conjugated or coated with different molecular probes for diverse detection system (optical, electrical, magnetic etc.) as well as used as a vehicle to carry different biomolecules and anticancer drugs to tumor cells. Semiconductor quantum dot (QD) with novel optical and electronic properties helped to devise a new class of NP probes for molecular, cellular, and in vivo imaging. A large variety of materials ranging from metal, ceramic, polymer, lipid, protein and nucleic acid are used for developing novel nanoparticles with multiple functions which can detect different aspects of cancer biology and progression. The major issue of concern is biocompatibility and safety of these materials and their fate after in-vivo use. However with collaborative interdisciplinary research it will be possible to develop safer nanomaterials in future
Styles APA, Harvard, Vancouver, ISO, etc.
34

Sarkisyan, Gor, Stuart M. Cahalan, Pedro J. Gonzalez-Cabrera, Nora B. Leaf et Hugh Rosen. « Real-time differential labeling of blood, interstitium, and lymphatic and single-field analysis of vasculature dynamics in vivo ». American Journal of Physiology-Cell Physiology 302, no 10 (15 mai 2012) : C1460—C1468. http://dx.doi.org/10.1152/ajpcell.00382.2011.

Texte intégral
Résumé :
Lymph nodes are highly organized structures specialized for efficient regulation of adaptive immunity. The blood and lymphatic systems within a lymph node play essential roles by providing functionally distinct environments for lymphocyte entry and egress, respectively. Direct imaging and measurement of vascular microenvironments by intravital multiphoton microscopy provide anatomical and mechanistic insights into the essential events of lymphocyte trafficking. Lymphocytes, blood endothelial cells, and lymphatic endothelial cells express sphingosine 1-phosphate receptor 1, a key G protein-coupled receptor regulating cellular egress and a modulator of endothelial permeability. Here we report the development of a differential vascular labeling (DVL) technique in which a single intravenous injection of a fluorescent dextran, in combination with fluorescent semiconductor quantum dot particles, differentially labels multiple blood and lymphatic compartments in a manner dependent on the size of the fluorescent particle used. Thus DVL allows measurement of endothelial integrity in multiple vascular compartments and the affects or pharmacological manipulation in vascular integrity. In addition, this technique allows for real-time observation of lymphocyte trafficking across physiological barriers differentiated by DVL. Last, single-field fluid movement dynamics can be derived, allowing for the simultaneous determination of fluid flow rates in diverse blood and lymphatic compartments.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Afonso, Pedro, Pasqualino De Luca, Rafael S. Carvalho, Luísa Cortes, Paulo Pinheiro, Barbara Oliveiros, Ramiro D. Almeida, Miranda Mele et Carlos B. Duarte. « BDNF increases synaptic NMDA receptor abundance by enhancing the local translation of Pyk2 in cultured hippocampal neurons ». Science Signaling 12, no 586 (18 juin 2019) : eaav3577. http://dx.doi.org/10.1126/scisignal.aav3577.

Texte intégral
Résumé :
The effects of brain-derived neurotrophic factor (BDNF) in long-term synaptic potentiation (LTP) are thought to underlie learning and memory formation and are partly mediated by local protein synthesis. Here, we investigated the mechanisms that mediate BDNF-induced alterations in the synaptic proteome that are coupled to synaptic strengthening. BDNF induced the synaptic accumulation of GluN2B-containing NMDA receptors (NMDARs) and increased the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) in cultured rat hippocampal neurons by a mechanism requiring activation of the protein tyrosine kinase Pyk2 and dependent on cellular protein synthesis. Single-particle tracking using quantum dot imaging revealed that the increase in the abundance of synaptic NMDAR currents correlated with their enhanced stability in the synaptic compartment. Furthermore, BDNF increased the local synthesis of Pyk2 at the synapse, and the observed increase in Pyk2 protein abundance along dendrites of cultured hippocampal neurons was mediated by a mechanism dependent on the ribonucleoprotein hnRNP K, which bound to Pyk2 mRNA and dissociated from it upon BDNF application. Knocking down hnRNP K reduced the BDNF-induced synaptic synthesis of Pyk2 protein, whereas its overexpression enhanced it. Together, these findings indicate that hnRNP K mediates the synaptic distribution of Pyk2 synthesis, and hence the synaptic incorporation of GluN2B-containing NMDARs, induced by BDNF, which may affect LTP and synaptic plasticity.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kashani, Hediyeh Mahmood, Tayyebeh Madrakian, Abbas Afkhami, Frouzandeh Mahjoubi et Mohammad Amin Moosavi. « Bottom-up and green-synthesis route of amino functionalized graphene quantum dot as a novel biocompatible and label-free fluorescence probe for in vitro cellular imaging of human ACHN cell lines ». Materials Science and Engineering : B 251 (décembre 2019) : 114452. http://dx.doi.org/10.1016/j.mseb.2019.114452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Porod, Wolfgang. « Quantum-dot devices and Quantum-dot Cellular Automata ». Journal of the Franklin Institute 334, no 5-6 (septembre 1997) : 1147–75. http://dx.doi.org/10.1016/s0016-0032(97)00041-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Porod, Wolfgang. « Quantum-Dot Devices and Quantum-Dot Cellular Automata ». International Journal of Bifurcation and Chaos 07, no 10 (octobre 1997) : 2199–218. http://dx.doi.org/10.1142/s0218127497001606.

Texte intégral
Résumé :
We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. Boolean logic functions may be implemented in specific arrays of cells representing binary information, the so-called Quantum-Dot Cellular Automata (QCA). Cells may also be viewed as carrying analog information and we outline a network-theoretic description of such Quantum-Dot Nonlinear Networks (Q-CNN). In addition, we discuss possible realizations of these structures in a variety of semiconductor systems (including GaAs/AlGaAs, Si/SiGe, and Si/SiO 2), rings of metallic tunnel junctions, and candidates for molecular implementations.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cole, T., et J. C. Lusth. « Quantum-dot cellular automata ». Progress in Quantum Electronics 25, no 4 (janvier 2001) : 165–89. http://dx.doi.org/10.1016/s0079-6727(01)00007-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Snider, G. L., A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz et W. Porod. « Quantum-dot cellular automata ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 17, no 4 (juillet 1999) : 1394–98. http://dx.doi.org/10.1116/1.581826.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Snider, G. L., A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, J. L. Merz et W. Porod. « Quantum-dot cellular automata ». Microelectronic Engineering 47, no 1-4 (juin 1999) : 261–63. http://dx.doi.org/10.1016/s0167-9317(99)00209-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Lent, Craig S., Beth Isaksen et Marya Lieberman. « Molecular Quantum-Dot Cellular Automata ». Journal of the American Chemical Society 125, no 4 (janvier 2003) : 1056–63. http://dx.doi.org/10.1021/ja026856g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Crocker, Michael, Xiaobo Sharon Hu, Michael Niemier, Minjun Yan et Gary Bernstein. « PLAs in Quantum-Dot Cellular Automata ». IEEE Transactions on Nanotechnology 7, no 3 (mai 2008) : 376–86. http://dx.doi.org/10.1109/tnano.2007.915022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

KIM, K. « Quantum-Dot Cellular Automata Design Guideline ». IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, no 6 (1 juin 2006) : 1607–14. http://dx.doi.org/10.1093/ietfec/e89-a.6.1607.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lent, C. S., et B. Isaksen. « Clocked molecular quantum-dot cellular automata ». IEEE Transactions on Electron Devices 50, no 9 (septembre 2003) : 1890–96. http://dx.doi.org/10.1109/ted.2003.815857.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ren, Dahai, Bin Wang, Chen Hu et Zheng You. « Quantum dot probes for cellular analysis ». Analytical Methods 9, no 18 (2017) : 2621–32. http://dx.doi.org/10.1039/c7ay00018a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

POROD, WOLFGANG, CRAIGS LENT, GARY H. BERNSTEIN, ALEXEI O. ORLOV, ISLAMSHA HAMLANI, GREGORY L. SNIDER et JAMES L. MERZ. « Quantum-dot cellular automata : computing with coupled quantum dots ». International Journal of Electronics 86, no 5 (mai 1999) : 549–90. http://dx.doi.org/10.1080/002072199133265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Gladshtein, M. A. « Quantum-dot cellular automata serial decimal subtractors ». Automatic Control and Computer Sciences 46, no 6 (novembre 2012) : 239–47. http://dx.doi.org/10.3103/s0146411612060041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bishnoi, Yash, Vaibhav Gajanan Patil, Mon ika et Rohit Kumar Saini. « Review Shop Store Quantum-Dot Cellular Automata ». International Journal of VLSI and Signal Processing 8, no 1 (25 avril 2021) : 1–4. http://dx.doi.org/10.14445/23942584/ijvsp-v8i1p101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Navi, Keivan, Mohammad A. Tehrani et Maliheh Khatami. « Well-Polarized Quantum-dot Cellular Automata Inverters ». International Journal of Computer Applications 58, no 20 (15 novembre 2012) : 10–13. http://dx.doi.org/10.5120/9397-3385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie